
Microchip Technology - ATSAM4E8CB-CNR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 120MHz

Connectivity CANbus, Ethernet, IrDA, MMC/SD, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 79

Program Memory Size 512KB (512K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 16x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 100-TFBGA

Supplier Device Package 100-TFBGA (9x9)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4e8cb-cnr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4e8cb-cnr-4386259
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

11.6.2 CMSIS Functions

ISO/IEC cannot directly access some Cortex-M4 instructions. This section describes intrinsic functions that can
generate these instructions, provided by the CMIS and that might be provided by a C compiler. If a C compiler
does not support an appropriate intrinsic function, the user might have to use inline assembler to access some
instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C code cannot directly
access:

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR
instructions:

Table 11-14. CMSIS Functions to Generate some Cortex-M4 Instructions

Instruction CMSIS Function

CPSIE I void __enable_irq(void)

CPSID I void __disable_irq(void)

CPSIE F void __enable_fault_irq(void)

CPSID F void __disable_fault_irq(void)

ISB void __ISB(void)

DSB void __DSB(void)

DMB void __DMB(void)

REV uint32_t __REV(uint32_t int value)

REV16 uint32_t __REV16(uint32_t int value)

REVSH uint32_t __REVSH(uint32_t int value)

RBIT uint32_t __RBIT(uint32_t int value)

SEV void __SEV(void)

WFE void __WFE(void)

WFI void __WFI(void)

Table 11-15. CMSIS Intrinsic Functions to Access the Special Registers

Special Register Access CMSIS Function

PRIMASK
Read uint32_t __get_PRIMASK (void)

Write void __set_PRIMASK (uint32_t value)

FAULTMASK
Read uint32_t __get_FAULTMASK (void

Write void __set_FAULTMASK (uint32_t value)

BASEPRI
Read uint32_t __get_BASEPRI (void)

Write void __set_BASEPRI (uint32_t value)

CONTROL
Read uint32_t __get_CONTROL (void)

Write void __set_CONTROL (uint32_t value)

MSP
Read uint32_t __get_MSP (void)

Write void __set_MSP (uint32_t TopOfMainStack)

PSP
Read uint32_t __get_PSP (void)

Write void __set_PSP (uint32_t TopOfProcStack)
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

82

11.6.6.5 SMLAL and SMLALD

Signed Multiply Accumulate Long, Signed Multiply Accumulate Long (halfwords) and Signed Multiply Accumulate
Long Dual.

Syntax
op{cond} RdLo, RdHi, Rn, Rm
op{XY}{cond} RdLo, RdHi, Rn, Rm
op{X}{cond} RdLo, RdHi, Rn, Rm

where:

op is one of:

MLAL Signed Multiply Accumulate Long.

SMLAL Signed Multiply Accumulate Long (halfwords, X and Y).

X and Y specify which halfword of the source registers Rn and Rm are used as
the first and second multiply operand:

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMLALD Signed Multiply Accumulate Long Dual.

SMLALDX Signed Multiply Accumulate Long Dual Reversed.

If the X is omitted, the multiplications are bottom × bottom and top × top.

If X is present, the multiplications are bottom × top and top × bottom.

cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers.
RdLo is the lower 32 bits and RdHi is the upper 32 bits of the 64-bit integer.
For SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD and SMLA
LDX, they also hold the accumulating value.

Rn, Rm are registers holding the first and second operands.

Operation

The SMLAL instruction:

 Multiplies the two’s complement signed word values from Rn and Rm.

 Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.

 Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:

 Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

 Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi.

 Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The non-specified halfwords of the source registers are ignored.

The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four halfword two’s complement
signed 16-bit integers. These instructions:

 If X is not present, multiply the top signed halfword value of Rn with the top signed halfword of Rm and the
bottom signed halfword values of Rn with the bottom signed halfword of Rm.

 Or if X is present, multiply the top signed halfword value of Rn with the bottom signed halfword of Rm and
the bottom signed halfword values of Rn with the top signed halfword of Rm.
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

136

11.6.11.16 VMOV ARM Core Register to Single Precision

Transfers a single-precision register to and from an ARM core register.

Syntax
VMOV{cond} Sn, Rt
VMOV{cond} Rt, Sn

where:

cond is an optional condition code, see “Conditional Execution” .

Sn is the single-precision floating-point register.

Rt is the ARM core register.

Operation

This instruction transfers:

 The contents of a single-precision register to an ARM core register.

 The contents of an ARM core register to a single-precision register.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

192

11.6.12.2 CPS

Change Processor State.

Syntax
CPSeffect iflags

where:

effect is one of:

IE Clears the special purpose register.

ID Sets the special purpose register.

iflags is a sequence of one or more flags:

i Set or clear PRIMASK.

f Set or clear FAULTMASK.

Operation

CPS changes the PRIMASK and FAULTMASK special register values. See “Exception Mask Registers” for more
information about these registers.

Restrictions

The restrictions are:

 Use CPS only from privileged software, it has no effect if used in unprivileged software

 CPS cannot be conditional and so must not be used inside an IT block.

Condition Flags

This instruction does not change the condition flags.

Examples
CPSID i ; Disable interrupts and configurable fault handlers (set PRIMASK)
CPSID f ; Disable interrupts and all fault handlers (set FAULTMASK)
CPSIE i ; Enable interrupts and configurable fault handlers (clear PRIMASK)
CPSIE f ; Enable interrupts and fault handlers (clear FAULTMASK)
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

208

If BODRSTEN is set and the voltage regulation is lost (output voltage of the regulator too low), the vddcore_nreset
signal is asserted for a minimum of one slow clock cycle and then released if bodcore_in has been reactivated.
The BODRSTS bit in SUPC_SR indicates the source of the last reset.

Until bodcore_in is deactivated, the vddcore_nreset signal remains active.

18.4.7 Wake-up Sources

The wake-up events allow the device to exit Backup mode. When a wake-up event is detected, the SUPC
performs a sequence that automatically reenables the core power supply.

Figure 18-4. Wake-up Sources

18.4.7.1 Force Wake-up

The FWUP pin is enabled as a wake-up source by writing a 1 to the FWUPEN bit in SUPC_WUMR. The
FWUPDBC field then selects a debouncing period of 3, 32, 512, 4,096 or 32,768 slow clock cycles. The duration of
these periods corresponds, respectively, to about 100 µs, about 1 ms, about 16 ms, about 128 ms and about 1
second (for a typical slow clock frequency of 32 kHz). Programming FWUPDBC to 0x0 selects an immediate
wake-up, i.e., the FWUP must be low during at least one slow clock period to wake up the core power supply.

If the FWUP pin is asserted for a time longer than the debouncing period, a wake-up of the core power supply is
started and the FWUPS bit in SUPC_SR is set and remains high until the register is read.

WKUP15

WKUPEN15WKUPT15

WKUPEN1

WKUPEN0

Debouncer

SLCK

WKUPDBC

WKUPS

RTCEN
rtc_alarm

SMEN
sm_out

Core
Supply
Restart

WKUPIS0

WKUPIS1

WKUPIS15

WKUPT0

WKUPT1

WKUP0

WKUP1

RTTEN
rtt_alarm

Debouncer

RTCOUT0
LPDBC

Debouncer

LPDBC
RTCOUT0

LPDBCS0

LPDBCS1LPDBCEN1

WKUPT1

LPDBCEN0

WKUPT0

Falling/Rising
Edge Detect

Low-power
Tamper Detection
Logic

GPBR Clear

LPDBCCLR

LPDBCS1

LPDBCS0

Falling/Rising
Edge Detect

Falling/Rising
Edge Detect

Falling/Rising
Edge Detect

Falling/Rising
Edge Detect
379SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

24.12 Bus Matrix (MATRIX) User Interface

Table 24-3. Register Mapping

Offset Register Name Access Reset

0x0000 Master Configuration Register 0 MATRIX_MCFG0 Read-write 0x00000001

0x0004 Master Configuration Register 1 MATRIX_MCFG1 Read-write 0x00000000

0x0008 Master Configuration Register 2 MATRIX_MCFG2 Read-write 0x00000000

0x000C Master Configuration Register 3 MATRIX_MCFG3 Read-write 0x00000000

0x0010 Master Configuration Register 4 MATRIX_MCFG4 Read-write 0x00000000

0x0014 Master Configuration Register 5 MATRIX_MCFG5 Read-write 0x00000000

0x0018 Master Configuration Register 6 MATRIX_MCFG6 Read-write 0x00000000

0x001C-0x003C Reserved – – –

0x0040 Slave Configuration Register 0 MATRIX_SCFG0 Read-write 0x000001FF

0x0044 Slave Configuration Register 1 MATRIX_SCFG1 Read-write 0x000001FF

0x0048 Slave Configuration Register 2 MATRIX_SCFG2 Read-write 0x000001FF

0x004C Slave Configuration Register 3 MATRIX_SCFG3 Read-write 0x000001FF

0x0050 Slave Configuration Register 4 MATRIX_SCFG4 Read-write 0x000001FF

0x0054 Slave Configuration Register 5 MATRIX_SCFG5 Read-write 0x000001FF

0x0058-0x007C Reserved – – –

0x0080 Priority Register A for Slave 0 MATRIX_PRAS0 Read-write 0x33333333(1)

0x0084 Reserved – – –

0x0088 Priority Register A for Slave 1 MATRIX_PRAS1 Read-write 0x33333333(1)

0x008C Reserved – – –

0x0090 Priority Register A for Slave 2 MATRIX_PRAS2 Read-write 0x33333333(1)

0x0094 Reserved – – –

0x0098 Priority Register A for Slave 3 MATRIX_PRAS3 Read-write 0x33333333(1)

0x009C Reserved – – –

0x00A0 Priority Register A for Slave 4 MATRIX_PRAS4 Read-write 0x33333333(1)

0x00A4 Reserved – – –

0x00A8 Priority Register A for Slave 5 MATRIX_PRAS5 Read-write 0x33333333(1)

0x00AC Reserved – – –

0x00B4-0x00FC Reserved – – –

0x0100 Master Remap Control Register MATRIX_MRCR Read-write 0x00000000

0x0104 - 0x010C Reserved – – –

0x0110 Reserved – – –

0x0114 System I/O Configuration Register CCFG_SYSIO Read-write 0x00000000

0x0118 - 0x0120 Reserved – – –

0x0124
SMC NAND Flash Chip Select
Configuration Register

CCFG_SMCNFCS Read-write 0x00000000
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

456

25.8.12 DMAC Channel Handler Status Register

Name: DMAC_CHSR

Address: 0x400C0030

Access: Read-only

• ENAx: Enable [3:0]

A one in any position of this field indicates that the relevant channel is enabled.

• SUSPx: Suspend [3:0]

A one in any position of this field indicates that the channel transfer is suspended.

• EMPTx: Empty [3:0]

A one in any position of this field indicates that the relevant channel is empty.

• STALx: Stalled [3:0]

A one in any position of this field indicates that the relevant channel is stalling.

31 30 29 28 27 26 25 24

– – – – STAL3 STAL2 STAL1 STAL0

23 22 21 20 19 18 17 16

– – – – EMPT3 EMPT2 EMPT1 EMPT0

15 14 13 12 11 10 9 8

– – – – SUSP3 SUSP2 SUSP1 SUSP0

7 6 5 4 3 2 1 0

– – – – ENA3 ENA2 ENA1 ENA0
497SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.8 PIO Input Filter Disable Register

Name: PIO_IFDR

Address: 0x400E0E24 (PIOA), 0x400E1024 (PIOB), 0x400E1224 (PIOC), 0x400E1424 (PIOD), 0x400E1624 (PIOE)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Input Filter Disable

0: No effect.

1: Disables the input glitch filter on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

734

34.5 Signal Description

34.6 Product Dependencies

34.6.1 I/O Lines

The pins used for interfacing the compliant external devices can be multiplexed with PIO lines. The programmer
must first program the PIO controllers to assign the SPI pins to their peripheral functions.

34.6.2 Power Management

The SPI can be clocked through the Power Management Controller (PMC), thus the programmer must first
configure the PMC to enable the SPI clock.

Table 34-1. Signal Description

Pin Name Pin Description

Type

Master Slave

MISO Master In Slave Out Input Output

MOSI Master Out Slave In Output Input

SPCK Serial Clock Output Input

NPCS1–NPCS3 Peripheral Chip Selects Output Unused

NPCS0/NSS Peripheral Chip Select/Slave Select Output Input

Table 34-2. I/O Lines

Instance Signal I/O Line Peripheral

SPI MISO PA12 A

SPI MOSI PA13 A

SPI NPCS0 PA11 A

SPI NPCS1 PA9 B

SPI NPCS1 PA31 A

SPI NPCS1 PB14 A

SPI NPCS1 PC4 B

SPI NPCS2 PA10 B

SPI NPCS2 PA30 B

SPI NPCS2 PB2 B

SPI NPCS3 PA3 B

SPI NPCS3 PA5 B

SPI NPCS3 PA22 B

SPI SPCK PA14 A
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

784

sending the IADR) is sometimes called “repeated start” (Sr) in I2C fully-compatible devices. See Figure 35-11. See
Figure 35-10 and Figure 35-12 for master write operation with internal address.

The three internal address bytes are configurable through the Master Mode register (TWI_MMR).

If the slave device supports only a 7-bit address, i.e., no internal address, IADRSZ must be set to 0.

Table 35-6 shows the abbreviations used in Figure 35-10 and Figure 35-11.

Figure 35-10. Master Write with One, Two or Three Bytes Internal Address and One Data Byte

Figure 35-11. Master Read with One, Two or Three Bytes Internal Address and One Data Byte

10-bit Slave Addressing

For a slave address higher than seven bits, the user must configure the address size (IADRSZ) and set the other
slave address bits in the Internal Address register (TWI_IADR). The two remaining internal address bytes,
IADR[15:8] and IADR[23:16] can be used the same way as in 7-bit slave addressing.

Example: Address a 10-bit device (10-bit device address is b1 b2 b3 b4 b5 b6 b7 b8 b9 b10)

Table 35-6. Abbreviations

Abbreviation Definition

S Start

Sr Repeated Start

P Stop

W Write

R Read

A Acknowledge

NA Not Acknowledge

DADR Device Address

IADR Internal Address

S DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A DATA A P

S DADR W A IADR(15:8) A IADR(7:0) A PDATA A

A IADR(7:0) A PDATA AS DADR W

TWD
Three bytes internal address

Two bytes internal address

One byte internal address

TWD

TWD

S DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A

S DADR W A IADR(15:8) A IADR(7:0) A

A IADR(7:0) AS DADR W

DATA NA P

Sr DADR R A

Sr DADR R A DATA NA P

Sr DADR R A DATA NA P

TWD

TWD

TWD

Three bytes internal address

Two bytes internal address

One byte internal address
823SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1. Program IADRSZ = 1,

2. Program DADR with 1 1 1 1 0 b1 b2 (b1 is the MSB of the 10-bit address, b2, etc.)

3. Program TWI_IADR with b3 b4 b5 b6 b7 b8 b9 b10 (b10 is the LSB of the 10-bit address)

Figure 35-12 below shows a byte write to a memory device. This demonstrates the use of internal addresses to
access the device.

Figure 35-12. Internal Address Usage

35.7.3.6 Using the Peripheral DMA Controller (PDC)

The use of the PDC significantly reduces the CPU load.

To ensure correct implementation, proceed as follows.

Data Transmit with the PDC

1. Initialize the transmit PDC (memory pointers, transfer size - 1).

2. Configure the master (DADR, CKDIV, MREAD = 0, etc.)

3. Start the transfer by setting the PDC TXTEN bit.

4. Wait for the PDC ENDTX Flag either by using the polling method or ENDTX interrupt.

5. Disable the PDC by setting the PDC TXTDIS bit.

6. Wait for the TXRDY flag in TWI_SR.

7. Set the STOP bit in TWI_CR.

8. Write the last character in TWI_THR.

9. (Only if peripheral clock must be disabled) Wait for the TXCOMP flag to be raised in TWI_SR.

Data Receive with the PDC

The PDC transfer size must be defined with the buffer size minus 2. The two remaining characters must be
managed without PDC to ensure that the exact number of bytes are received regardless of system bus latency
conditions encountered during the end of buffer transfer period.

In Slave mode, the number of characters to receive must be known in order to configure the PDC.

1. Initialize the receive PDC (memory pointers, transfer size - 2).

2. Configure the master (DADR, CKDIV, MREAD = 1, etc.)

3. Set the PDC RXTEN bit.

4. (Master Only) Write the START bit in the TWI_CR to start the transfer.

5. Wait for the PDC ENDRX Flag either by using polling method or ENDRX interrupt.

6. Disable the PDC by setting the PDC RXTDIS bit.

7. Wait for the RXRDY flag in TWI_SR.

8. Set the STOP bit in TWI_CR.

9. Read the penultimate character in TWI_RHR.

10. Wait for the RXRDY flag in TWI_SR.

11. Read the last character in TWI_RHR.

12. (Only if peripheral clock must be disabled) Wait for the TXCOMP flag to be raised in TWI_SR.

S
T
A
R
T

M
S
B

Device
Address

0

L
S
B

R
/

W

A
C
K

M
S
B

W
R
I
T
E

A
C
K

A
C
K

L
S
B

A
C
K

FIRST
WORD ADDRESS

SECOND
WORD ADDRESS DATA

S
T
O
P

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

824

Figure 35-15. TWI Write Operation with Single Data Byte and Internal Address

BEGIN

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address (DADR)

- Internal address size (IADRSZ)
- Transfer direction bit

Write ==> bit MREAD = 0

Load transmit register
TWI_THR = Data to send

Read Status register

TXRDY = 1?

Read Status register

TXCOMP = 1?

Transfer finished

Set the internal address
TWI_IADR = address

Yes

Yes

No

No

Write STOP command
TWI_CR = STOP
827SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

35.7.4 Multi-master Mode

35.7.4.1 Definition

In Multi-master mode, more than one master may handle the bus at the same time without data corruption by using
arbitration.

Arbitration starts as soon as two or more masters place information on the bus at the same time, and stops
(arbitration is lost) for the master that intends to send a logical one while the other master sends a logical zero.

As soon as a master lose arbitration, it stops sending data and listens to the bus in order to detect a stop. When
the stop is detected, the master may put its data on the bus by performing arbitration.

Arbitration is illustrated in Figure 35-21.

35.7.4.2 Two Multi-master Modes

Two Multi-master modes may be distinguished:

1. TWI is considered as a master only and will never be addressed.

2. TWI may be either a master or a slave and may be addressed.

Note: Arbitration is supported in both Multi-master modes.

TWI as Master Only

In this mode, TWI is considered as a Master only (MSEN is always one) and must be driven like a Master with the
ARBLST (Arbitration Lost) flag in addition.

If arbitration is lost (ARBLST = 1), the user must reinitiate the data transfer.

If the user starts a transfer (ex.: DADR + START + W + Write in THR) and if the bus is busy, the TWI automatically
waits for a STOP condition on the bus to initiate the transfer (see Figure 35-20).

Note: The state of the bus (busy or free) is not shown in the user interface.

TWI as Master or Slave

The automatic reversal from Master to Slave is not supported in case of a lost arbitration.

Then, in the case where TWI may be either a Master or a Slave, the user must manage the pseudo Multi-master
mode described in the steps below.

1. Program TWI in Slave mode (SADR + MSDIS + SVEN) and perform a slave access (if TWI is addressed).

2. If the TWI has to be set in Master mode, wait until the TXCOMP flag is at 1.

3. Program the Master mode (DADR + SVDIS + MSEN) and start the transfer (ex: START + Write in THR).

4. As soon as the Master mode is enabled, the TWI scans the bus in order to detect if it is busy or free. When
the bus is considered free, TWI initiates the transfer.

5. As soon as the transfer is initiated and until a STOP condition is sent, the arbitration becomes relevant and
the user must monitor the ARBLST flag.

6. If the arbitration is lost (ARBLST is set to 1), the user must program the TWI in Slave mode in case the
Master that won the arbitration is required to access the TWI.

7. If the TWI has to be set in Slave mode, wait until TXCOMP flag is at 1 and then program the Slave mode.

Note: If the arbitration is lost and the TWI is addressed, the TWI will not acknowledge even if it is programmed in Slave mode
as soon as ARBLST is set to 1. Then the Master must repeat SADR.
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

832

36.4 Product Dependencies

36.4.1 I/O Lines

The UART pins are multiplexed with PIO lines. The user must first configure the corresponding PIO Controller to
enable I/O line operations of the UART.

36.4.2 Power Management

The UART clock can be controlled through the Power Management Controller (PMC). In this case, the user must
first configure the PMC to enable the UART clock. Usually, the peripheral identifier used for this purpose is 1.

36.4.3 Interrupt Sources

The UART interrupt line is connected to one of the interrupt sources of the Interrupt Controller. Interrupt handling
requires programming of the Interrupt Controller before configuring the UART.

36.5 Functional Description

The UART operates in Asynchronous mode only and supports only 8-bit character handling (with parity). It has no
clock pin.

The UART is made up of a receiver and a transmitter that operate independently, and a common baud rate
generator. Receiver timeout and transmitter time guard are not implemented. However, all the implemented
features are compatible with those of a standard USART.

36.5.1 Baud Rate Generator

The baud rate generator provides the bit period clock named baud rate clock to both the receiver and the
transmitter.

The baud rate clock is the peripheral clock divided by 16 times the clock divisor (CD) value written in the Baud
Rate Generator register (UART_BRGR). If UART_BRGR is set to 0, the baud rate clock is disabled and the UART
remains inactive. The maximum allowable baud rate is peripheral clock divided by 16. The minimum allowable
baud rate is peripheral clock divided by (16 x 65536).

Table 36-2. I/O Lines

Instance Signal I/O Line Peripheral

UART0 URXD0 PA9 A

UART0 UTXD0 PA10 A

UART1 URXD1 PA5 C

UART1 UTXD1 PA6 C

Table 36-3. Peripheral IDs

Instance ID

UART0 7

UART1 45
861SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

to 0, only a sync pattern is detected as a valid start frame delimiter. Decoder operates by detecting transition on
incoming stream. If RXD is sampled during one quarter of a bit time to zero, a start bit is detected. See Figure 37-
13. The sample pulse rejection mechanism applies.

Figure 37-13. Asynchronous Start Bit Detection

The receiver is activated and starts preamble and frame delimiter detection, sampling the data at one quarter and
then three quarters. If a valid preamble pattern or start frame delimiter is detected, the receiver continues decoding
with the same synchronization. If the stream does not match a valid pattern or a valid start frame delimiter, the
receiver resynchronizes on the next valid edge.The minimum time threshold to estimate the bit value is three
quarters of a bit time.

If a valid preamble (if used) followed with a valid start frame delimiter is detected, the incoming stream is decoded
into NRZ data and passed to USART for processing. Figure 37-14 illustrates Manchester pattern mismatch. When
incoming data stream is passed to the USART, the receiver is also able to detect Manchester code violation. A
code violation is a lack of transition in the middle of a bit cell. In this case, the MANERR flag in the US_CSR is
raised. It is cleared by writing a 1 to the RSTSTA in the US_CR. See Figure 37-15 for an example of Manchester
error detection during data phase.

Figure 37-14. Preamble Pattern Mismatch

Figure 37-15. Manchester Error Flag

Manchester
encoded

data Txd

1 2 3 4

Sampling
Clock
(16 x)

Start
Detection

Manchester
encoded

data Txd SFD DATA

Preamble Length is set to 8

Preamble Mismatch
invalid pattern

Preamble Mismatch
Manchester coding error

Manchester
encoded

data Txd

SFD

Preamble Length
is set to 4

Elementary character bit time

Manchester
Coding Error

detected

sampling points

Preamble subpacket
and Start Frame Delimiter

were successfully
decoded

Entering USART character area
891SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.7.10 USART Interrupt Mask Register (SPI_MODE)

Name: US_IMR (SPI_MODE)

Address: 0x400A0010 (0), 0x400A4010 (1)

Access: Read-only

This configuration is relevant only if USART_MODE = 0xE or 0xF in the USART Mode Register.

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is not enabled.

1: The corresponding interrupt is enabled.

• RXRDY: RXRDY Interrupt Mask

• TXRDY: TXRDY Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• OVRE: Overrun Error Interrupt Mask

• TXEMPTY: TXEMPTY Interrupt Mask

• UNRE: SPI Underrun Error Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• NSSE: NSS Line (Driving CTS Pin) Rising or Falling Edge Event Interrupt Mask

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – NSSE – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE UNRE TXEMPTY –

7 6 5 4 3 2 1 0

– – OVRE ENDTX ENDRX – TXRDY RXRDY
931SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 38-22. 2-bit Gray Up/Down Counter

38.6.18 Fault Mode

At any time, the TC_RCx registers can be used to perform a comparison on the respective current channel counter
value (TC_CVx) with the value of TC_RCx register.

The CPCSx flags can be set accordingly and an interrupt can be generated.

This interrupt is processed but requires an unpredictable amount of time to be achieve the required action.

It is possible to trigger the FAULT output of the TIMER1 with CPCS from TC_SR0 and/or CPCS from TC_SR1.
Each source can be independently enabled/disabled in the TC_FMR.

This can be useful to detect an overflow on speed and/or position when QDEC is processed and to act
immediately by using the FAULT output.

Figure 38-23. Fault Output Generation

TIOAx

TIOBx

DOWNx

TC_RCx

WAVEx = GCENx =1

TC_SR0 flag CPCS

TC_FMR / ENCF0

FAULT (to PWM input)

OR

AND

AND
TC_SR1 flag CPCS

TC_FMR / ENCF1
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

974

41.6.3.2 Entering Attached State

To enable integrated pull-up, the PUON bit in the UDP_TXVC register must be set.

Warning: To write to the UDP_TXVC register, MCK clock must be enabled on the UDP. This is done in the Power
Management Controller.

After pull-up connection, the device enters the powered state. In this state, the UDPCK and MCK must be enabled
in the Power Management Controller. The transceiver can remain disabled.

41.6.3.3 From Powered State to Default State

After its connection to a USB host, the USB device waits for an end-of-bus reset. The unmaskable flag
ENDBUSRES is set in the UDP_ISR and an interrupt is triggered.

Once the ENDBUSRES interrupt has been triggered, the device enters Default State. In this state, the UDP
software must:

 Enable the default endpoint, setting the EPEDS flag in the UDP_CSR0 and, optionally, enabling the interrupt
for endpoint 0 by writing 1 to the UDP_IER. The enumeration then begins by a control transfer.

 Configure the interrupt mask register which has been reset by the USB reset detection

 Enable the transceiver clearing the TXVDIS flag in the UDP_TXVC register.

In this state UDPCK and MCK must be enabled.

Warning: Each time an ENDBUSRES interrupt is triggered, the Interrupt Mask Register and UDP_CSRs have
been reset.

41.6.3.4 From Default State to Address State

After a set address standard device request, the USB host peripheral enters the address state.

Warning: Before the device enters in address state, it must achieve the Status IN transaction of the control
transfer, i.e., the UDP device sets its new address once the TXCOMP flag in the UDP_CSR0 has been received
and cleared.

To move to address state, the driver software sets the FADDEN flag in the UDP_GLB_STAT register, sets its new
address, and sets the FEN bit in the UDP_FADDR register.

41.6.3.5 From Address State to Configured State

Once a valid Set Configuration standard request has been received and acknowledged, the device enables
endpoints corresponding to the current configuration. This is done by setting the EPEDS and EPTYPE fields in the
UDP_CSRx and, optionally, enabling corresponding interrupts in the UDP_IER.

41.6.3.6 Entering in Suspend State

When a Suspend (no bus activity on the USB bus) is detected, the RXSUSP signal in the UDP_ISR is set. This
triggers an interrupt if the corresponding bit is set in the UDP_IMR. This flag is cleared by writing to the UDP_ICR.
Then the device enters Suspend Mode.

In this state bus powered devices must drain no more than 2.5 mA from the 5V VBUS. As an example, the
microcontroller switches to slow clock, disables the PLL and main oscillator, and goes into Idle Mode. It may also
switch off other devices on the board.

The USB device peripheral clocks can be switched off. Resume event is asynchronously detected. MCK and
UDPCK can be switched off in the Power Management controller and the USB transceiver can be disabled by
setting the TXVDIS bit in the UDP_TXVC register.

Warning: Read, write operations to the UDP registers are allowed only if MCK is enabled for the UDP peripheral.
Switching off MCK for the UDP peripheral must be one of the last operations after writing to the UDP_TXVC
register and acknowledging the RXSUSP.
1155SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Notes: 1. If an offset is not listed in the Register Mapping, it must be considered as ‘reserved’.

2. Some register groups are not continuous in memory.

0x0C8 Specific Address 1 Mask Bottom Register GMAC_SAMB1 Read/Write 0x0000_0000

0x0CC Specific Address 1 Mask Top Register GMAC_SAMT1 Read/Write 0x0000_0000

0x0D0–0x0E4 Reserved – – –

0x0E8–0x0FC Reserved – – –

0x100–0x1B0 Reserved – – –

0x1B4–0x1CC Reserved – – –

0x1D0 1588 Timer Seconds Low Register GMAC_TSL Read/Write 0x0000_0000

0x1D4 1588 Timer Nanoseconds Register GMAC_TN Read/Write 0x0000_0000

0x1D8 1588 Timer Adjust Register GMAC_TA Write-only –

0x1DC 1588 Timer Increment Register GMAC_TI Read/Write 0x0000_0000

0x1E0
PTP Event Frame Transmitted Seconds Low
Register

GMAC_EFTSL Read-only 0x0000_0000

0x1E4
PTP Event Frame Transmitted Nanoseconds
Register

GMAC_EFTN Read-only 0x0000_0000

0x1E8 PTP Event Frame Received Seconds Low Register GMAC_EFRSL Read-only 0x0000_0000

0x1EC PTP Event Frame Received Nanoseconds Register GMAC_EFRN Read-only 0x0000_0000

0x1F0
PTP Peer Event Frame Transmitted Seconds Low
Register

GMAC_PEFTSL Read-only 0x0000_0000

0x1F4
PTP Peer Event Frame Transmitted Nanoseconds
Register

GMAC_PEFTN Read-only 0x0000_0000

0x1F8
PTP Peer Event Frame Received Seconds Low
Register

GMAC_PEFRSL Read-only 0x0000_0000

0x1FC
PTP Peer Event Frame Received Nanoseconds
Register

GMAC_PEFRN Read-only 0x0000_0000

0x200–0x7FC Reserved – – –

Table 42-17. Register Mapping (Continued)

Offset(1) (2) Register Name Access Reset
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1208

42.8.36 GMAC 1588 Timer Seconds Low Register

Name: GMAC_TSL

Address: 0x400341D0

Access: Read/Write

• TCS: Timer Count in Seconds

This register is writable. It increments by one when the 1588 nanoseconds counter counts to one second. It may also be
incremented when the Timer Adjust Register is written.

31 30 29 28 27 26 25 24

TCS

23 22 21 20 19 18 17 16

TCS

15 14 13 12 11 10 9 8

TCS

7 6 5 4 3 2 1 0

TCS
1253SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

