
Microchip Technology - ATSAM4E8EA-CU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 120MHz

Connectivity CANbus, EBI/EMI, Ethernet, IrDA, SD, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 117

Program Memory Size 512KB (512K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 16x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 144-LFBGA

Supplier Device Package 144-LFBGA (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4e8ea-cu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4e8ea-cu-4394748
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

8. Real-time Event Management

The events generated by peripherals are designed to be directly routed to peripherals managing/using these
events without processor intervention. Peripherals receiving events contain logic by which to select the one
required.

8.1 Embedded Characteristics
 Timers, PWM, IO peripherals generate event triggers which are directly routed to event managers such as

AFEC or DACC, for example, to start measurement/conversion without processor intervention.

 UART, USART, SPI, TWI, PWM, HSMCI, AES, AFEC, DACC, PIO, TIMER (capture mode) also generate
event triggers directly connected to Peripheral DMA Controller (PDC) for data transfer without processor
intervention.

 Parallel capture logic is directly embedded in PIO and generates trigger event to PDC to capture data
without processor intervention.

 PWM security events (faults) are in combinational form and directly routed from event generators (AFEC,
ACC, PMC, TIMER) to PWM module.

 PWM output comparators generate events directly connected to TIMER.

 PMC security event (clock failure detection) can be programmed to switch the MCK on reliable main RC
internal clock without processor intervention.

8.2 Real-time Event Mapping

Table 8-1. Real-time Event Mapping List

Function Application Description Event Source Event Destination

Security General-purpose
Immediate GPBR clear (asynchronous) on
Tamper detection through WKUP0/1 IO pins (1)

Parallel Input/Output
Controller (PIO):

WKUP0/1

General Purpose
Backup Registers

(GPBR)

Safety

General-purpose
Automatic Switch to reliable main RC oscillator
in case of Main Crystal Clock Failure (2)

Power Management
Controller (PMC)

PMC

General-
purpose, motor

control

Puts the PWM Outputs in Safe Mode (Main
Crystal Clock Failure Detection) (2)(3) PMC

Pulse Width
Modulation (PWM)

Motor control

Puts the PWM Outputs in Safe Mode
(Overcurrent sensor, ...) (3)(4)

Analog Comparator
Controller (ACC)

Puts the PWM Outputs in Safe Mode
(Overspeed, Overcurrent detection ...) (3)(5)

Analog-Front-End-
Controller (AFEC0/1)

Puts the PWM Outputs in Safe Mode
(Overspeed detection through TIMER
Quadrature Decoder) (3)(6)

Timer Counter (TC)

General-
purpose, motor

control

Puts the PWM Outputs in Safe Mode (General
Purpose Fault Inputs) (3) PIO

Image
capture

Low-cost image
sensor

PC is embedded in PIO (Capture Image from
Sensor directly to System Memory) (7) PIO DMA
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

30

11.4.1.10 Interrupt Program Status Register

Name: IPSR

Access: Read/Write

Reset: 0x000000000

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).

• ISR_NUMBER: Number of the Current Exception

0 = Thread mode

1 = Reserved

2 = NMI

3 = Hard fault

4 = Memory management fault

5 = Bus fault

6 = Usage fault

7–10 = Reserved

11 = SVCall

12 = Reserved for Debug

13 = Reserved

14 = PendSV

15 = SysTick

16 = IRQ0

49 = IRQ46

See “Exception Types” for more information.

31 30 29 28 27 26 25 24

–

23 22 21 20 19 18 17 16

–

15 14 13 12 11 10 9 8

– ISR_NUMBER

7 6 5 4 3 2 1 0

ISR_NUMBER
49SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.1.11 Execution Program Status Register

Name: EPSR

Access: Read/Write

Reset: 0x000000000

The EPSR contains the Thumb state bit, and the execution state bits for either the If-Then (IT) instruction, or the Interrupt-
ible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction.

Attempts to read the EPSR directly through application software using the MSR instruction always return zero. Attempts to
write the EPSR using the MSR instruction in the application software are ignored. Fault handlers can examine the EPSR
value in the stacked PSR to indicate the operation that is at fault. See “Exception Entry and Return” .

• ICI: Interruptible-continuable Instruction

When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH, or VPOP instruction,
the processor:

– Stops the load multiple or store multiple instruction operation temporarily

– Stores the next register operand in the multiple operation to EPSR bits[15:12].

After servicing the interrupt, the processor:

– Returns to the register pointed to by bits[15:12]

– Resumes the execution of the multiple load or store instruction.

When the EPSR holds the ICI execution state, bits[26:25,11:10] are zero.

• IT: If-Then Instruction

Indicates the execution state bits of the IT instruction.

The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block is conditional.
The conditions for the instructions are either all the same, or some can be the inverse of others. See “IT” for more
information.

• T: Thumb State

The Cortex-M4 processor only supports the execution of instructions in Thumb state. The following can clear the T bit to 0:

– Instructions BLX, BX and POP{PC}

– Restoration from the stacked xPSR value on an exception return

– Bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is 0 results in a fault or lockup. See “Lockup” for more information.

31 30 29 28 27 26 25 24

– ICI/IT T

23 22 21 20 19 18 17 16

–

15 14 13 12 11 10 9 8

ICI/IT –

7 6 5 4 3 2 1 0

–

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

50

 Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create the resulting 64-bit
product.

 Write the 64-bit product in RdLo and RdHi.

Restrictions

In these instructions:

 Do not use SP and do not use PC.

 RdHi and RdLo must be different registers.

Condition Flags

These instructions do not affect the condition code flags.

Examples
SMLAL R4, R5, R3, R8 ; Multiplies R3 and R8, adds R5:R4 and writes to

; R5:R4
SMLALBT R2, R1, R6, R7 ; Multiplies bottom halfword of R6 with top

 ; halfword of R7, sign extends to 32-bit, adds
; R1:R2 and writes to R1:R2

SMLALTB R2, R1, R6, R7 ; Multiplies top halfword of R6 with bottom
; halfword of R7,sign extends to 32-bit, adds R1:R2
; and writes to R1:R2

SMLALD R6, R8, R5, R1 ; Multiplies top halfwords in R5 and R1 and bottom
 ; halfwords of R5 and R1, adds R8:R6 and writes to
 ; R8:R6

SMLALDX R6, R8, R5, R1 ; Multiplies top halfword in R5 with bottom
; halfword of R1, and bottom halfword of R5 with
 ; top halfword of R1, adds R8:R6 and writes to
 ; R8:R6.

137SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.9.1 BFC and BFI

Bit Field Clear and Bit Field Insert.

Syntax
BFC{cond} Rd, #lsb, #width
BFI{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the source register.

lsb is the position of the least significant bit of the bitfield. lsb must be in the range
0 to 31.

width is the width of the bitfield and must be in the range 1 to 32-lsb.

Operation

BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position lsb. Other bits in Rd are
unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at the low bit
position lsb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples
BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to 0
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with

; bit 0 to bit 11 from R2.
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

164

11.6.12.3 DMB

Data Memory Barrier.

Syntax
DMB{cond}

where:

cond is an optional condition code, see “Conditional Execution” .

Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in program order,
before the DMB instruction are completed before any explicit memory accesses that appear, in program order,
after the DMB instruction. DMB does not affect the ordering or execution of instructions that do not access
memory.

Condition Flags

This instruction does not change the flags.

Examples
DMB ; Data Memory Barrier
209SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.8.3.4 Interrupt Clear-pending Registers

Name: NVIC_ICPRx [x=0..7]

Access: Read/Write

Reset: 0x000000000

These registers remove the pending state from interrupts, and show which interrupts are pending.

• CLRPEND: Interrupt Clear-pending

Write:

0: No effect.

1: Removes the pending state from an interrupt.

Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Note: Writing a 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

31 30 29 28 27 26 25 24

CLRPEND

23 22 21 20 19 18 17 16

CLRPEND

15 14 13 12 11 10 9 8

CLRPEND

7 6 5 4 3 2 1 0

CLRPEND
225SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• INVPC: Invalid PC Load Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” . It is caused by an invalid PC load by EXC_RETURN:

0: No invalid PC load usage fault.

1: The processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid
EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the ille-
gal load of the PC.

• NOCP: No Coprocessor Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” . The processor does not support coprocessor instructions:

0: No usage fault caused by attempting to access a coprocessor.

1: The processor has attempted to access a coprocessor.

• UNALIGNED: Unaligned Access Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No unaligned access fault, or unaligned access trapping not enabled.

1: The processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the SCB_CCR to 1. See “Configuration and
Control Register” . Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of
UNALIGN_TRP.

• DIVBYZERO: Divide by Zero Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No divide by zero fault, or divide by zero trapping not enabled.

1: The processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed
the divide by zero. Enable trapping of divide by zero by setting the DIV_0_TRP bit in the SCB_CCR to 1. See “Configura-
tion and Control Register” .
251SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

14.5.3 Real-time Timer Value Register

Name: RTT_VR

Address: 0x400E1838

Access: Read-only

• CRTV: Current Real-time Value

Returns the current value of the Real-time Timer.

Note: As CRTV can be updated asynchronously, it must be read twice at the same value.

31 30 29 28 27 26 25 24

CRTV

23 22 21 20 19 18 17 16

CRTV

15 14 13 12 11 10 9 8

CRTV

7 6 5 4 3 2 1 0

CRTV
325SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The status of lock bits can be returned by the EEFC. The ‘Get Lock Bit’ sequence is the following:

1. Execute the ‘Get Lock Bit’ command by writing EEFC_FCR.FCMD with the GLB command. Field
EEFC_FCR.FARG is meaningless.

2. Lock bits can be read by the software application in EEFC_FRR. The first word read corresponds to the 32
first lock bits, next reads providing the next 32 lock bits as long as it is meaningful. Extra reads to
EEFC_FRR return 0.

For example, if the third bit of the first word read in EEFC_FRR is set, the third lock region is locked.

Two errors can be detected in EEFC_FSR after a programming sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has
failed.

Note: Access to the Flash in read is permitted when a ‘Set Lock Bit’, ‘Clear Lock Bit’ or ‘Get Lock Bit’ command is executed.

20.4.3.5 GPNVM Bit

GPNVM bits do not interfere with the embedded Flash memory plane. For more details, refer to the section
“Memories” of this datasheet.

The ‘Set GPNVM Bit’ sequence is the following:

1. Execute the ‘Set GPNVM Bit’ command by writing EEFC_FCR.FCMD with the SGPB command and
EEFC_FCR.FARG with the number of GPNVM bits to be set.

2. When the GPNVM bit is set, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled by setting the bit
EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

3. The result of the SGPB command can be checked by running a ‘Get GPNVM Bit’ (GGPB) command.

Note: The value of the FARG argument passed together with SGPB command must not exceed the higher GPNVM index
available in the product. Flash data content is not altered if FARG exceeds the limit. Command Error is detected only if
FARG is greater than 8.

Two errors can be detected in EEFC_FSR after a programming sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has
failed.

It is possible to clear GPNVM bits previously set. The ‘Clear GPNVM Bit’ sequence is the following:

1. Execute the ‘Clear GPNVM Bit’ command by writing EEFC_FCR.FCMD with the CGPB command and
EEFC_FCR.FARG with the number of GPNVM bits to be cleared.

2. When the clear completes, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the bit
EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note: The value of the FARG argument passed together with CGPB command must not exceed the higher GPNVM index
available in the product. Flash data content is not altered if FARG exceeds the limit. Command Error is detected only if
FARG is greater than 8.

Two errors can be detected in EEFC_FSR after a programming sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has
failed.

The status of GPNVM bits can be returned by the EEFC. The sequence is the following:

1. Execute the ‘Get GPNVM Bit’ command by writing EEFC_FCR.FCMD with the GGPB command. Field
EEFC_FCR.FARG is meaningless.

2. GPNVM bits can be read by the software application in EEFC_FRR. The first word read corresponds to the
32 first GPNVM bits, following reads provide the next 32 GPNVM bits as long as it is meaningful. Extra reads
to EEFC_FRR return 0.
411SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Reversal After a Repeated Start

Reversal of Read to Write

The master initiates the communication by a read command and finishes it by a write command.

Figure 35-28 describes the repeated start + reversal from Read to Write mode.

Figure 35-28. Repeated Start + Reversal from Read to Write Mode

Note: 1. TXCOMP is only set at the end of the transmission because after the repeated start, SADR is detected again.

Reversal of Write to Read

The master initiates the communication by a write command and finishes it by a read command.

Figure 35-29 describes the repeated start + reversal from Write to Read mode.

Figure 35-29. Repeated Start + Reversal from Write to Read Mode

Notes: 1. In this case, if TWI_THR has not been written at the end of the read command, the clock is automatically stretched before
the ACK.

2. TXCOMP is only set at the end of the transmission because after the repeated start, SADR is detected again.

35.7.5.5 Using the Peripheral DMA Controller (PDC) in Slave Mode

The use of the PDC significantly reduces the CPU load.

Data Transmit with the PDC in Slave Mode

The following procedure shows an example of data transmission with PDC.

S SADR R ADATA0A DATA1 SADRSrNA W A DATA2 A DATA3 A P

Cleared after read

DATA0 DATA1

DATA2 DATA3

SVACC

SVREAD

TWD

TWI_THR

TWI_RHR

EOSACC

TXRDY

RXRDY

TXCOMP As soon as a START is detected

S SADR W ADATA0A DATA1 SADRSrA R A DATA2 A DATA3 NA P

Cleared after read

DATA0

DATA2 DATA3

DATA1

TXCOMP

TXRDY

RXRDY

As soon as a START is detected

Read TWI_RHR

SVACC

SVREAD

TWD

TWI_RHR

TWI_THR

EOSACC
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

840

 Offers Buffer Transfer without Processor Intervention

 Register Write Protection
879SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

predefined pattern with a programmable length from 1 to 15 bit times. If the preamble length is set to 0, the
preamble waveform is not generated prior to any character. The preamble pattern is chosen among the following
sequences: ALL_ONE, ALL_ZERO, ONE_ZERO or ZERO_ONE, writing the field TX_PP in the US_MAN register,
the field TX_PL is used to configure the preamble length. Figure 37-8 illustrates and defines the valid patterns. To
improve flexibility, the encoding scheme can be configured using the TX_MPOL field in the US_MAN register. If
the TX_MPOL field is set to zero (default), a logic zero is encoded with a zero-to-one transition and a logic one is
encoded with a one-to-zero transition. If the TX_MPOL field is set to 1, a logic one is encoded with a one-to-zero
transition and a logic zero is encoded with a zero-to-one transition.

Figure 37-8. Preamble Patterns, Default Polarity Assumed

A start frame delimiter is to be configured using the ONEBIT bit in the US_MR. It consists of a user-defined pattern
that indicates the beginning of a valid data. Figure 37-9 illustrates these patterns. If the start frame delimiter, also
known as the start bit, is one bit, (ONEBIT = 1), a logic zero is Manchester encoded and indicates that a new
character is being sent serially on the line. If the start frame delimiter is a synchronization pattern also referred to
as sync (ONEBIT to 0), a sequence of three bit times is sent serially on the line to indicate the start of a new
character. The sync waveform is in itself an invalid Manchester waveform as the transition occurs at the middle of
the second bit time. Two distinct sync patterns are used: the command sync and the data sync. The command
sync has a logic one level for one and a half bit times, then a transition to logic zero for the second one and a half
bit times. If the MODSYNC bit in the US_MR is set to 1, the next character is a command. If it is set to 0, the next
character is a data. When direct memory access is used, the MODSYNC field can be immediately updated with a
modified character located in memory. To enable this mode, VAR_SYNC bit in US_MR must be set to 1. In this
case, the MODSYNC bit in the US_MR is bypassed and the sync configuration is held in the TXSYNH in the
US_THR. The USART character format is modified and includes sync information.

Manchester
encoded

data Txd SFD DATA

8-bit width "ALL_ONE" Preamble

Manchester
encoded

data Txd SFD DATA

8-bit width "ALL_ZERO" Preamble

Manchester
encoded

data Txd SFD DATA

8-bit width "ZERO_ONE" Preamble

Manchester
encoded

data Txd SFD DATA

8-bit width "ONE_ZERO" Preamble
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

888

37.7.13 USART Receive Holding Register

Name: US_RHR

Address: 0x400A0018 (0), 0x400A4018 (1)

Access: Read-only

• RXCHR: Received Character

Last character received if RXRDY is set.

• RXSYNH: Received Sync

0: Last character received is a data.

1: Last character received is a command.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RXSYNH – – – – – – RXCHR

7 6 5 4 3 2 1 0

RXCHR
937SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.5 PWM Interrupt Enable Register 1

Name: PWM_IER1

Access: Write-only

• CHIDx: Counter Event on Channel x Interrupt Enable

• FCHIDx: Fault Protection Trigger on Channel x Interrupt Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – FCHID3 FCHID2 FCHID1 FCHID0

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – CHID3 CHID2 CHID1 CHID0
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1048

40.11.1 Boot Procedure, Processor Mode

1. Configure the HSMCI data bus width programming SDCBUS Field in the HSMCI_SDCR. The
BOOT_BUS_WIDTH field located in the device Extended CSD register must be set accordingly.

2. Set the byte count to 512 bytes and the block count to the desired number of blocks, writing BLKLEN and
BCNT fields of the HSMCI_BLKR.

3. Issue the Boot Operation Request command by writing to the HSMCI_CMDR with SPCMD field set to
BOOTREQ, TRDIR set to READ and TRCMD set to “start data transfer”.

4. The BOOT_ACK field located in the HSMCI_CMDR must be set to one, if the BOOT_ACK field of the MMC
device located in the Extended CSD register is set to one.

5. Host processor can copy boot data sequentially as soon as the RXRDY flag is asserted.

6. When Data transfer is completed, host processor shall terminate the boot stream by writing the
HSMCI_CMDR with SPCMD field set to BOOTEND.

40.12 HSMCI Transfer Done Timings

40.12.1 Definition

The XFRDONE flag in the HSMCI_SR indicates exactly when the read or write sequence is finished.

40.12.2 Read Access

During a read access, the XFRDONE flag behaves as shown in Figure 40-11.

Figure 40-11. XFRDONE During a Read Access

40.12.3 Write Access

During a write access, the XFRDONE flag behaves as shown in Figure 40-12.

CMD line

HSMCI read CMD Card response

CMDRDY flag

Data

1st Block Last Block

Not busy flag

XFRDONE flag

The CMDRDY flag is released 8 tbit after the end of the card response.
1109SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

41.7.9 UDP Reset Endpoint Register

Name: UDP_RST_EP

Address: 0x40084028

Access: Read/Write

• EP0: Reset Endpoint 0

• EP1: Reset Endpoint 1

• EP2: Reset Endpoint 2

• EP3: Reset Endpoint 3

• EP4: Reset Endpoint 4

• EP5: Reset Endpoint 5

• EP6: Reset Endpoint 6

• EP7: Reset Endpoint 7

This flag is used to reset the FIFO associated with the endpoint and the bit RXBYTECOUNT in the UDP_CSRx. It also
resets the data toggle to DATA0. It is useful after removing a HALT condition on a BULK endpoint. Refer to Chapter 5.8.5
in the USB Serial Bus Specification, Rev.2.0.

Warning: This flag must be cleared at the end of the reset. It does not clear UDP_CSRx flags.

0: No reset

1: Forces the corresponding endpoint FIF0 pointers to 0, therefore RXBYTECNT field is read at 0 in UDP_CSRx

Resetting the endpoint is a two-step operation:

1. Set the corresponding EPx field.

2. Clear the corresponding EPx field.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

EP7 EP6 EP5 EP4 EP3 EP2 EP1 EP0
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1170

42.8.45 GMAC PTP Peer Event Frame Transmitted Nanoseconds Register

Name: GMAC_PEFTN

Address: 0x400341F4

Access: Read-only

• RUD: Register Update

The register is updated with the value that the 1588 Timer Nanoseconds Register holds when the SFD of a PTP transmit
peer event crosses the MII interface. An interrupt is issued when the register is updated.

31 30 29 28 27 26 25 24

– – RUD

23 22 21 20 19 18 17 16

RUD

15 14 13 12 11 10 9 8

RUD

7 6 5 4 3 2 1 0

RUD
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1262

46.7.4 ADC Transfer Function

The first operation of the ADC is a sampling function relative to a common mode voltage. The common mode
voltage (VCM) is equal to VADVREF/2 when the bits OFFx = 1, in Differential and in Single-ended mode. When the
bits OFFx = 0, sampling is done versus VADVREF/4 for gain = 2, and VADVREF/8 for gain = 4, in Single-ended mode
only.

The code in AFEC_CDR is a 12-bit positive integer. The internal DAC is set for the code 2047.

46.7.4.1 Differential Mode

A differential input voltage VI = VI+ - VI- can be applied between two selected differential pins, e.g., AD0 and AD1.
The ideal code Ci is calculated by using the following formula and rounding the result to the nearest positive
integer.

Table 46-31 is a computation example for the above formula, where VADVREF = 3V.

46.7.4.2 Single-ended Mode

A single input voltage VI can be applied to selected pins, e.g., AD0 or AD1. The ideal code Ci is calculated by using
the following formula and rounding the result to the nearest positive integer.

The single-ended ideal code conversion formula for OFFx = 1 is:

Table 46-32 is a computation example for the above formula, where VADVREF = 3V.

The single-ended ideal code conversion formula for OFFx = 0 is:

Table 46-31. Input Voltage Values in Differential Mode

Ci Gain = 0.5 Gain = 1 Gain = 2

0 -3 -1.5 -0.75

2047 0 0 0

4095 3 1.5 0.75

Ci
4096

VADVREF
----------------------- VI× Gain 2047+×=

Table 46-32. Input Voltage Values in Single-ended Mode, OFFx = 1

Ci Gain = 1 Gain = 2 Gain = 4

0 0 0.75 1.125

2047 1.5 1.5 1.5

4095 3 2.25 1.875

Ci
4096

VADVREF
----------------------- VI

VADVREF

2
-----------------------–

 × Gain 2047+×=

Ci VI Gain
4096

VADVREF
----------------------- 1–××=
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1378

47.4 144-lead LQFP Package Drawing

Figure 47-4. 144-lead LQFP Package Drawing

This package respects the recommendations of the NEMI User Group.

Table 47-10. Device and LQFP Package Maximum Weight (Preliminary)

SAM4E 900 mg

Table 47-11. LQFP Package Reference

JEDEC Drawing Reference MS-026-C

JESD97 Classification e3

Table 47-12. LQFP Package Characteristics

Moisture Sensitivity Level 3
1411SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

