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11.6.5.20 UHSUB16 and UHSUB8

Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:

UHSUB16 Performs two unsigned 16-bit integer additions, halves the results,
 and writes the results to the destination register.

UHSUB8 Performs four unsigned 8-bit integer additions, halves the results, and
writes the results to the destination register.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the
destination register:

The UHSUB16 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfword of the first operand.

2. Shuffles each halfword result to the right by one bit, halving the data.

3. Writes each unsigned halfword result to the corresponding halfwords in the destination register.

The UHSUB8 instruction:

1. Subtracts each byte of second operand from the corresponding byte of the first operand.

2. Shuffles each byte result by one bit to the right, halving the data. 

3. Writes the unsigned byte results to the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
UHSUB16 R1, R0  ; Subtracts halfwords in R0 from corresponding halfword of 

 ; R1 and writes halved result to corresponding halfword in R1
UHSUB8 R4, R0, R5  ; Subtracts bytes of R5 from corresponding byte in R0 and 

 ; writes halved result to corresponding byte in R4.
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11.8.3 Nested Vectored Interrupt Controller (NVIC) User Interface

Table 11-32. Nested Vectored Interrupt Controller (NVIC) Register Mapping

Offset Register Name Access Reset

0xE000E100 Interrupt Set-enable Register 0 NVIC_ISER0 Read/Write 0x00000000

... ... ... ... ...

0xE000E11C Interrupt Set-enable Register 7 NVIC_ISER7 Read/Write 0x00000000

0XE000E180 Interrupt Clear-enable Register 0 NVIC_ICER0 Read/Write 0x00000000

... ... ... ... ...

0xE000E19C Interrupt Clear-enable Register 7 NVIC_ICER7 Read/Write 0x00000000

0XE000E200 Interrupt Set-pending Register 0 NVIC_ISPR0 Read/Write 0x00000000

... ... ... ... ...

0xE000E21C Interrupt Set-pending Register 7 NVIC_ISPR7 Read/Write 0x00000000

0XE000E280 Interrupt Clear-pending Register 0 NVIC_ICPR0 Read/Write 0x00000000

... ... ... ... ...

0xE000E29C Interrupt Clear-pending Register 7 NVIC_ICPR7 Read/Write 0x00000000

0xE000E300 Interrupt Active Bit Register 0 NVIC_IABR0 Read/Write 0x00000000

... ... ... ... ...

0xE000E31C Interrupt Active Bit Register 7 NVIC_IABR7 Read/Write 0x00000000

0xE000E400 Interrupt Priority Register 0 NVIC_IPR0 Read/Write 0x00000000

... ... ... ... ...

0XE000E42C Interrupt Priority Register 12 NVIC_IPR12 Read/Write 0x00000000

0xE000EF00 Software Trigger Interrupt Register NVIC_STIR Write-only 0x00000000
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11.11.2.6 MPU Region Base Address Register Alias 1

Name: MPU_RBAR_A1

Access: Read/Write 

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the 
MPU_RNR. 

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

• ADDR: Region Base Address

Software must ensure that the value written to the ADDR field aligns with the size of the selected region.

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified 
by the SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes),

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies 
the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB, 
for example, at 0x00010000 or 0x00020000.

• VALID: MPU Region Number Valid

Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and 
ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for 
the region specified in the REGION field.

Always reads as zero.

• REGION: MPU Region

For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR VALID REGION
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12.4 Application Examples

12.4.1 Debug Environment

Figure 12-2 shows a complete debug environment example. The SWJ-DP interface is used for standard
debugging functions, such as downloading code and single-stepping through the program and viewing core and
peripheral registers.

Figure 12-2. Application Debug Environment Example 

12.4.2 Test Environment

Figure 12-3 shows a test environment example (JTAG Boundary scan). Test vectors are sent and interpreted by
the tester. In this example, the “board in test” is designed using a number of JTAG-compliant devices. These
devices can be connected to form a single scan chain.

SAM4

Host Debugger
PC

SAM4-based Application Board

SWJ-DP
Connector

SWJ-DP
Emulator/Probe
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 Time stamping: Timestamps are emitted relative to packets. The ITM contains a 21-bit counter to generate 
the timestamp.

12.6.8.1 How to Configure the ITM

The following example describes how to output trace data in asynchronous trace mode.

 Configure the TPIU for asynchronous trace mode (refer to Section 12.6.8.3 “How to Configure the TPIU”)

 Enable the write accesses into the ITM registers by writing “0xC5ACCE55” into the Lock Access Register 
(Address: 0xE0000FB0)

 Write 0x00010015 into the Trace Control Register:

̶ Enable ITM

̶ Enable Synchronization packets

̶ Enable SWO behavior

̶ Fix the ATB ID to 1

 Write 0x1 into the Trace Enable Register:

̶ Enable the Stimulus port 0

 Write 0x1 into the Trace Privilege Register:

̶ Stimulus port 0 only accessed in privileged mode (Clearing a bit in this register will result in the 
corresponding stimulus port being accessible in user mode.)

 Write into the Stimulus port 0 register: TPIU (Trace Port Interface Unit)

The TPIU acts as a bridge between the on-chip trace data and the Instruction Trace Macrocell (ITM).

The TPIU formats and transmits trace data off-chip at frequencies asynchronous to the core.

12.6.8.2 Asynchronous Mode

The TPIU is configured in asynchronous mode, trace data are output using the single TRACESWO pin. The
TRACESWO signal is multiplexed with the TDO signal of the JTAG Debug Port. As a consequence, asynchronous
trace mode is only available when the Serial Wire Debug mode is selected since TDO signal is used in JTAG
debug mode.

Two encoding formats are available for the single pin output:

  Manchester encoded stream. This is the reset value.

  NRZ_based UART byte structure

12.6.8.3 How to Configure the TPIU

This example only concerns the asynchronous trace mode.

 Set the TRCENA bit to 1 into the Debug Exception and Monitor Register (0xE000EDFC) to enable the use of 
trace and debug blocks.

 Write 0x2 into the Selected Pin Protocol Register

̶ Select the Serial Wire Output – NRZ

 Write 0x100 into the Formatter and Flush Control Register

 Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the baud rate of the 
asynchronous output (this can be done automatically by the debugging tool).

12.6.9 IEEE® 1149.1 JTAG Boundary Scan

IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging technology.

IEEE1149.1 JTAG Boundary Scan is enabled when TST is tied to high, PA7 tied low, and JTAGSEL tied to high
during power-up. These pins must be maintained in their respective states for the duration of the boundary scan
operation.
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18.4.7.2 Wake-up Inputs

The wake-up inputs, WKUPx, can be programmed to perform a wake-up of the core power supply. Each input can
be enabled by writing a 1 to the corresponding bit, WKUPENx, in the Wake-up Inputs register (SUPC_WUIR). The
wake-up level can be selected with the corresponding polarity bit, WKUPTx, also located in SUPC_WUIR. 

The resulting signals are wired-ORed to trigger a debounce counter, which is programmed with the WKUPDBC
field in SUPC_WUMR. The WKUPDBC field selects a debouncing period of 3, 32, 512, 4,096 or 32,768 slow clock
cycles. The duration of these periods corresponds, respectively, to about 100 µs, about 1 ms, about 16 ms, about
128 ms and about 1 second (for a typical slow clock frequency of 32 kHz). Programming WKUPDBC to 0x0 selects
an immediate wake-up, i.e., an enabled WKUP pin must be active according to its polarity during a minimum of
one slow clock period to wake up the core power supply.

If an enabled WKUP pin is asserted for a duration longer than the debouncing period, a wake-up of the core power
supply is started and the signals, WKUP0 to WKUPx as shown in Figure 18-4 "Wake-up Sources", are latched in
SUPC_SR. This allows the user to identify the source of the wake-up. However, if a new wake-up condition
occurs, the primary information is lost. No new wake-up can be detected since the primary wake-up condition has
disappeared.

Before instructing the system to enter Backup mode, if the field WKUPDBC > 0, it must be checked that none of
the WKUPx pins that are enabled for a wake-up (exit from Backup mode) holds an active polarity. This is checked
by reading the pin status in the PIO Controller. If WKUPENx=1 and the pin WKUPx holds an active polarity, the
system must not be instructed to enter Backup mode.

Figure 18-5. Entering and Exiting Backup Mode with a WKUP Pin

18.4.7.3 Low-power Tamper Detection and Anti-Tampering

Low-power debouncer inputs (WKUP0, WKUP1) can be used for tamper detection. If the tamper sensor is biased
through a resistor and constantly driven by the power supply, this leads to power consumption as long as the
tamper detection switch is in its active state. To prevent power consumption when the switch is in active state, the
tamper sensor circuitry must be intermittently powered, and thus a specific waveform must be applied to the
sensor circuitry.

The waveform is generated using RTCOUTx in all modes including Backup mode. Refer to the section “Real-Time
Clock (RTC)” for waveform generation.

Separate debouncers are embedded, one for WKUP0 input, one for WKUP1 input.

The WKUP0 and/or WKUP1 inputs perform a system wake-up upon tamper detection. This is enabled by setting
the LPDBCEN0/1 bit in the SUPC_WUMR.

WKUP0 and/or WKUP1 inputs can also be used when VDDCORE is powered to detect a tamper.

WKUPx

WKUPTx=0

Active BACKUP Active BACKUP Active BACKUPSystem

Edge detect + 
debounce time

Edge detect + 
debounce time

active runtime active runtime

VROFF=1VROFF=1

check 
WKUPx
status

check 
WKUPx
status

WKUPDBC > 0
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24.12.7 Write Protect Mode Register

Name: MATRIX_WPMR

Address: 0x400E03E4

Access: Read-write  

For more details on MATRIX_WPMR, please refer to Section 24.11 “Write Protect Registers”. 

The protected registers are:

“Bus Matrix Master Configuration Registers” 

“Bus Matrix Slave Configuration Registers” 

“Bus Matrix Priority Registers A For Slaves” 

“Bus Matrix Master Remap Control Register” 

“Write Protect Mode Register” 

• WPEN: Write Protect Enable

0: Disables the Write Protect if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).

1: Enables the Write Protect if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII). 

Protects the entire Bus Matrix address space from address offset 0x000 to 0x1FC.

• WPKEY: Write Protect KEY (Write-only)

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN

Value Name Description

0x4D4154 PASSWD

Writing any other value in this field aborts the write operation 
of the WPEN bit.

Always reads as 0.
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4. After the DMAC selected channel has been programmed, enable the channel by setting the ENAx bit in the 
DMAC Channel Handler Enable Register (DMAC_CHER), where x is the channel number. Make sure that 
the ENABLE bit (register bit 0) in DMAC_EN is set.

5. Source and destination request single and chunk DMAC transactions to transfer the buffer of data (assuming 
non-memory peripherals). The DMAC acknowledges at the completion of every transaction (chunk and 
single) in the buffer and carries out the buffer transfer.

6. Once the transfer completes, the hardware sets the interrupts and disables the channel. At this time, you can 
either respond to the Buffer Transfer Completed Interrupt or Chained Buffer Transfer Completed Interrupt, or 
poll for the DMAC_CHSR.ENAx bit until it is cleared by hardware, to detect when the transfer is complete.

Multi-buffer Transfer with Linked List for Source and Linked List for Destination (Row 4)

1. Read the DMAC_CHSR to choose a free (disabled) channel.

2. Set up the chain of Linked List Items (otherwise known as buffer descriptors) in memory. Write the control 
information in the LLI.DMAC_CTRLAx and LLI.DMAC_CTRLBx registers location of the buffer descriptor for 
each LLI in memory (see Figure 25-5 on page 476) for channel x. For example, in the register, it is possible 
to program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and destination) and flow con-
trol device by programming the FC field in DMAC_CTRLBx.

b. Set up the transfer characteristics, such as:

̶ i. Transfer width for the source in the SRC_WIDTH field.

̶ ii. Transfer width for the destination in the DST_WIDTH field.

̶ v. Incrementing/decrementing or fixed address for source in SRC_INCR field.

̶ vi. Incrementing/decrementing or fixed address for destination DST_INCR field.

3. Write the channel configuration information into DMAC_CFGx for channel x.

a. Designate the handshaking interface type (hardware or software) for the source and destination 
peripherals. This is not required for memory. This step requires programming the 
SRC_H2SEL/DST_H2SEL bits, respectively. Writing a ‘1’ activates the hardware handshaking inter-
face to handle source/destination requests for the specific channel. Writing a ‘0’ activates the 
software handshaking interface to handle source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination peripheral, assign the 
handshaking interface to the source and destination peripheral. This requires programming the 
SRC_PER and DST_PER bits, respectively.

4. Make sure that the LLI.DMAC_CTRLBx register locations of all LLI entries in memory (except the last) are 
set as shown in Row 4 of Table 25-3 on page 473. The LLI.DMAC_CTRLBx register of the last Linked List 
Item must be set as described in Row 1 of Table 25-3. Figure 25-4 on page 473 shows a Linked List 
example with two list items.

5. Make sure that the LLI.DMAC_DSCRx register locations of all LLI entries in memory (except the last) are 
non-zero and point to the base address of the next Linked List Item. 

6. Make sure that the LLI.DMAC_SADDRx/LLI.DMAC_DADDRx register locations of all LLI entries in memory 
point to the start source/destination buffer address preceding that LLI fetch.

7. Make sure that the LLI.DMAC_CTRLAx.DONE bit of the LLI.DMAC_CTRLAx register locations of all LLI 
entries in memory are cleared.

8. Clear any pending interrupts on the channel from the previous DMAC transfer by reading DMAC_EBCISR.

9. Program DMAC_CTRLBx and DMAC_CFGx according to Row 4 as shown in Table 25-3 on page 473.

10. Program DMAC_DSCRx with DMAC_DSCRx(0), the pointer to the first Linked List item.

11. Finally, enable the channel by setting the DMAC_CHER.ENAx bit, where x is the channel number. The 
transfer is performed.

12. The DMAC fetches the first LLI from the location pointed to by DMAC_DSCRx(0). 
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25.8.3 DMAC Software Single Request Register

Name:  DMAC_SREQ

Address: 0x400C0008

Access:  Read/Write

• DSREQx: Destination Request 

Request a destination single transfer on channel i.

• SSREQx: Source Request 

Request a source single transfer on channel i.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

DSREQ3 SSREQ3 DSREQ2 SSREQ2 DSREQ1 SSREQ1 DSREQ0 SSREQ0
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25.8.5 DMAC Software Last Transfer Flag Register

Name:  DMAC_LAST

Address: 0x400C0010

Access:  Read/Write

• DLASTx: Destination Last

Writing one to DLASTx prior to writing one to DSREQx or DCREQx indicates that this destination request is the last trans-
fer of the buffer.

• SLASTx: Source Last

Writing one to SLASTx prior to writing one to SSREQx or SCREQx indicates that this source request is the last transfer of 
the buffer.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

DLAST3 SLAST3 DLAST2 SLAST2 DLAST1 SLAST1 DLAST0 SLAST0
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 ENDTX flag is set when the PDC Transmit Counter Register (PERIPH_TCR) reaches zero.

 TXBUFE flag is set when both PERIPH_TCR and the PDC Transmit Next Counter Register 
(PERIPH_TNCR) reach zero.

These status flags are described in the Transfer Status Register (PERIPH_PTSR).

26.4.4 Data Transfers

The serial peripheral triggers its associated PDC channels’ transfers using transmit enable (TXEN) and receive
enable (RXEN) flags in the transfer control register integrated in the peripheral’s user interface.

When the peripheral receives external data, it sends a Receive Ready signal to its PDC receive channel which
then requests access to the Matrix. When access is granted, the PDC receive channel starts reading the
peripheral Receive Holding register (RHR). The read data are stored in an internal buffer and then written to
memory.

When the peripheral is about to send data, it sends a Transmit Ready to its PDC transmit channel which then
requests access to the Matrix. When access is granted, the PDC transmit channel reads data from memory and
transfers the data to the Transmit Holding register (THR) of its associated peripheral. The same peripheral sends
data depending on its mechanism.

26.4.5 PDC Flags and Peripheral Status Register

Each peripheral connected to the PDC sends out receive ready and transmit ready flags and the PDC returns flags
to the peripheral. All these flags are only visible in the peripheral’s Status register. 

Depending on whether the peripheral is half- or full-duplex, the flags belong to either one single channel or two
different channels. 

26.4.5.1 Receive Transfer End

The receive transfer end flag is set when PERIPH_RCR reaches zero and the last data has been transferred to
memory.

This flag is reset by writing a non-zero value to PERIPH_RCR or PERIPH_RNCR.

26.4.5.2 Transmit Transfer End

The transmit transfer end flag is set when PERIPH_TCR reaches zero and the last data has been written to the
peripheral THR.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.

26.4.5.3 Receive Buffer Full

The receive buffer full flag is set when PERIPH_RCR reaches zero, with PERIPH_RNCR also set to zero and the
last data transferred to memory.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.

26.4.5.4 Transmit Buffer Empty

The transmit buffer empty flag is set when PERIPH_TCR reaches zero, with PERIPH_TNCR also set to zero and
the last data written to peripheral THR.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.
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29.18.14 PMC Interrupt Disable Register

Name: PMC_IDR

Address: 0x400E0464

Access: Write-only 

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

• MOSCXTS: 3 to 20 MHz Crystal Oscillator Status Interrupt Disable

• LOCKA: PLLA Lock Interrupt Disable

• MCKRDY: Master Clock Ready Interrupt Disable

• PCKRDYx: Programmable Clock Ready x Interrupt Disable

• MOSCSELS: Main Clock Source Oscillator Selection Status Interrupt Disable

• MOSCRCS: 4/8/12 MHz RC Oscillator Status Interrupt Disable

• CFDEV: Clock Failure Detector Event Interrupt Disable

• XT32KERR: 32768 Hz Oscillator Error Interrupt Disable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – XT32KERR – – CFDEV MOSCRCS MOSCSELS

15 14 13 12 11 10 9 8

– – – – – PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0

– – – – MCKRDY – LOCKA MOSCXTS
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31.8.3.2 Transmission Handling

A mailbox is in Transmit Mode once the MOT field in the CAN_MMRx has been configured. Message ID and
Message Acceptance mask must be set before Receive Mode is enabled.

After Transmit Mode is enabled, the MRDY flag in the CAN_MSR is automatically set until the first command is
sent. When the MRDY flag is set, the software application can prepare a message to be sent by writing to the
CAN_MDx registers. The message is sent once the software asks for a transfer command setting the MTCR bit
and the message data length in the CAN_MCRx. 

The MRDY flag remains at zero as long as the message has not been sent or aborted. It is important to note that
no access to the mailbox data register is allowed while the MRDY flag is cleared. An interrupt is pending for the
mailbox while the MRDY flag is set. This interrupt can be masked depending on the mailbox flag in the CAN_IMR
global register. 

It is also possible to send a remote frame setting the MRTR bit instead of setting the MDLC field. The answer to
the remote frame is handled by another reception mailbox. In this case, the device acts as a consumer but with the
help of two mailboxes. It is possible to handle the remote frame emission and the answer reception using only one
mailbox configured in Consumer Mode. Refer to the section “Remote Frame Handling” on page 664.

Several messages can try to win the bus arbitration in the same time. The message with the highest priority is sent
first. Several transfer request commands can be generated at the same time by setting MBx bits in the CAN_TCR.
The priority is set in the PRIOR field of the CAN_MMRx. Priority 0 is the highest priority, priority 15 is the lowest
priority. Thus it is possible to use a part of the message ID to set the PRIOR field. If two mailboxes have the same
priority, the message of the mailbox with the lowest number is sent first. Thus if mailbox 0 and mailbox 5 have the
same priority and have a message to send at the same time, then the message of the mailbox 0 is sent first.

Setting the MACR bit in the CAN_MCRx aborts the transmission. Transmission for several mailboxes can be
aborted by writing MBx fields in the CAN_ACR. If the message is being sent when the abort command is set, then
the application is notified by the MRDY bit set and not the MABT in the CAN_MSRx. Otherwise, if the message
has not been sent, then the MRDY and the MABT are set in the CAN_MSR.

When the bus arbitration is lost by a mailbox message, the CAN controller tries to win the next bus arbitration with
the same message if this one still has the highest priority. Messages to be sent are re-tried automatically until they
win the bus arbitration. This feature can be disabled by setting the bit DRPT in the CAN_MR. In this case if the
message was not sent the first time it was transmitted to the CAN transceiver, it is automatically aborted. The
MABT flag is set in the CAN_MSRx until the next transfer command.

Figure 31-15 shows three MBx message attempts being made (MRDY of MBx set to 0).

The first MBx message is sent, the second is aborted and the last one is trying to be aborted but too late because
it has already been transmitted to the CAN transceiver. 
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Figure 31-21. Time Triggered Operations
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31.9.9 CAN Error Counter Register

Name: CAN_ECR

Address: 0x40010020 (0), 0x40014020 (1)

Access: Read-only 

• REC: Receive Error Counter

When a receiver detects an error, REC will be increased by one, except when the detected error is a BIT ERROR while 
sending an ACTIVE ERROR FLAG or an OVERLOAD FLAG.

When a receiver detects a dominant bit as the first bit after sending an ERROR FLAG, REC is increased by 8.

When a receiver detects a BIT ERROR while sending an ACTIVE ERROR FLAG, REC is increased by 8.

Any node tolerates up to 7 consecutive dominant bits after sending an ACTIVE ERROR FLAG, PASSIVE ERROR FLAG or 
OVERLOAD FLAG. After detecting the 14th consecutive dominant bit (in case of an ACTIVE ERROR FLAG or an OVER-
LOAD FLAG) or after detecting the 8th consecutive dominant bit following a PASSIVE ERROR FLAG, and after each 
sequence of additional eight consecutive dominant bits, each receiver increases its REC by 8.

After successful reception of a message, REC is decreased by 1 if it was between 1 and 127. If REC was 0, it stays 0, and 
if it was greater than 127, then it is set to a value between 119 and 127.

• TEC: Transmit Error Counter

When a transmitter sends an ERROR FLAG, TEC is increased by 8 except when

– the transmitter is error passive and detects an ACKNOWLEDGMENT ERROR because of not detecting a 
dominant ACK and does not detect a dominant bit while sending its PASSIVE ERROR FLAG.

– the transmitter sends an ERROR FLAG because a STUFF ERROR occurred during arbitration and should 
have been recessive and has been sent as recessive but monitored as dominant.

When a transmitter detects a BIT ERROR while sending an ACTIVE ERROR FLAG or an OVERLOAD FLAG, the TEC will 
be increased by 8.

Any node tolerates up to 7 consecutive dominant bits after sending an ACTIVE ERROR FLAG, PASSIVE ERROR FLAG or 
OVERLOAD FLAG. After detecting the 14th consecutive dominant bit (in case of an ACTIVE ERROR FLAG or an OVER-
LOAD FLAG) or after detecting the 8th consecutive dominant bit following a PASSIVE ERROR FLAG, and after each 
sequence of additional eight consecutive dominant bits every transmitter increases its TEC by 8.

After a successful transmission the TEC is decreased by 1 unless it was already 0.

31 30 29 28 27 26 25 24

– – – – – – – TEC

23 22 21 20 19 18 17 16

TEC

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

REC
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34.7.4 SPI Slave Mode

When operating in Slave mode, the SPI processes data bits on the clock provided on the SPI clock pin (SPCK).

The SPI waits until NSS goes active before receiving the serial clock from an external master. When NSS falls, the
clock is validated and the data is loaded in the SPI_RDR depending on the BITS field configured in SPI_CSR0.
These bits are processed following a phase and a polarity defined respectively by the NCPHA and CPOL bits in
SPI_CSR0.  Note  tha t  the  f i leds  BITS,  CPOL and  NCPHA o f  the  o ther  ch ip  se lec t  reg is te rs
(SPI_CSR1...SPI_CSR3) have no effect when the SPI is programmed in Slave mode.

The bits are shifted out on the MISO line and sampled on the MOSI line. 

Note: For more information on the BITS field, see also the note below the SPI_CSRx register bitmap (Section 34.8.9 “SPI 
Chip Select Register”).

When all bits are processed, the received data is transferred in the SPI_RDR and the RDRF bit rises. If the
SPI_RDR has not been read before new data is received, the Overrun Error Status (OVRES) bit in the SPI_SR is
set. As long as this flag is set, data is loaded in the SPI_RDR. The user must read SPI_SR to clear the OVRES bit.

When a transfer starts, the data shifted out is the data present in the Shift register. If no data has been written in
the SPI_TDR, the last data received is transferred. If no data has been received since the last reset, all bits are
transmitted low, as the Shift register resets to 0. 

When a first data is written in the SPI_TDR, it is transferred immediately in the Shift register and the TDRE flag
rises. If new data is written, it remains in the SPI_TDR until a transfer occurs, i.e., NSS falls and there is a valid
clock on the SPCK pin. When the transfer occurs, the last data written in the SPI_TDR is transferred in the Shift
register and the TDRE flag rises. This enables frequent updates of critical variables with single transfers. 

Then, new data is loaded in the Shift register from the SPI_TDR. If no character is ready to be transmitted, i.e., no
character has been written in the SPI_TDR since the last load from the SPI_TDR to the Shift register, the
SPI_TDR is retransmitted. In this case the Underrun Error Status Flag (UNDES) is set in the SPI_SR.

Figure 34-13 shows a block diagram of the SPI when operating in Slave mode.

Figure 34-13. Slave Mode Functional Block Diagram 

34.7.5 Register Write Protection

To prevent any single software error from corrupting SPI behavior, certain registers in the address space can be
write-protected by setting the WPEN bit in the SPI Write Protection Mode Register (SPI_WPMR).
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Figure 35-15. TWI Write Operation with Single Data Byte and Internal Address
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41.6.1.3 USB Transfer Event Definitions

As indicated below, transfers are sequential events carried out on the USB bus.

Notes: 1. Control transfer must use endpoints with no ping-pong attributes. 

2. Isochronous transfers must use endpoints with ping-pong attributes.

3. Control transfers can be aborted using a stall handshake.

A status transaction is a special type of host-to-device transaction used only in a control transfer. The control
transfer must be performed using endpoints with no ping-pong attributes. According to the control sequence (read
or write), the USB device sends or receives a status transaction.

Figure 41-4. Control Read and Write Sequences

Notes: 1. During the Status IN stage, the host waits for a zero length packet (Data IN transaction with no data) from the 
device using DATA1 PID. Refer to Chapter 8 of the Universal Serial Bus Specification, Rev. 2.0, for more 
information on the protocol layer. 

Table 41-5. USB Transfer Events

Transfer

TransactionDirection Type

CONTROL (bidirectional) Control(1)(3)

Setup transaction → Data IN transactions → Status OUT transaction

Setup transaction → Data OUT transactions → Status IN transaction

Setup transaction → Status IN transaction

IN (device toward host)

Interrupt IN

Data IN transaction → Data IN transactionIsochronous IN(2)

Bulk IN

OUT (host toward device)
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46.7.6.2 Conditions @ 25°C with Gain = 4

 fADC = 20 MHz

 fS = 1 MHz, ADC Sampling Frequency in Free Run Mode

 VADVREF= 3V

 Signal Amplitude: VADVREF/2, Signal Frequency < 100 Hz

 OSR: Number of Averaged Samples

Table 46-47. ADC Resolution following Digital Averaging (Gain = 4)

Parameter Averaging 
Resolution

RES (AFEC_EMR)

Over 
Sampling 

Ratio
Mode
(bits)

INL
(LSB)

DNL
(LSB)

SNR
(dB)

THD
(dB)

ENOB
(bits)

FS 
(ksps)

Single-ended Mode

RES = 0 1 12 ±1 ±0.5 59 -81 9.5 1000

RES = 2 4 13 +1.7 / -1.3 +1.6 / -1 63.1 -82.9 10.2  250

RES = 3 16 14 +1.7 / -2.5 +2 / -1 67 -83.6 10.8 62.5

RES = 4 64 15 ±8 — 70.3 -84.5 11.4 15.6

RES = 5 256 16 ±12 — 74.8 -85.1 12.1 3.9

Differential Mode

RES = 0 1 12 ±1 ±0.5 62 -84.5 10 1000

RES = 2 4 13 ±1 ±1 67.7 -85.7 10.9  25

RES = 3 16 14 +4.1 / -1.6 +3.4 / -1 73.6 -86.8 11.9 6.25

RES = 4 64 15 ±3.5 — 78.7 -86.8 12.7 1.56

RES = 5 256 16 ±7.5 — 82.1 -86.8 13.1 0.39
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