
Microchip Technology - ATMEGA323-8AI Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 8MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 32

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 4.5V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C

Mounting Type Surface Mount

Package / Case 44-TQFP

Supplier Device Package 44-TQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega323-8ai

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega323-8ai-4425786
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

The Stack Pointer – SP The ATmega323 Stack Pointer is implemented as two 8-bit registers in the I/O space
locations $3E ($5E) and $3D ($5D). As the ATmega323 Data memory has $860 loca-
tions, 12 bits are used.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Inter-
rupt Stacks are located. This Stack space in the data SRAM must be defined by the
program before any subroutine calls are executed or interrupts are enabled. The Stack
Pointer must be set to point above $60. The Stack Pointer is decremented by one when
data is pushed onto the Stack with the PUSH instruction, and it is decremented by two
when the return address is pushed onto the Stack with subroutine call and interrupt. The
Stack Pointer is incremented by one when data is popped from the Stack with the POP
instruction, and it is incremented by two when data is popped from the Stack with return
from subroutine RET or return from interrupt RETI.

Reset and Interrupt
Handling

The ATmega323 provides nineteen different interrupt sources. These interrupts and the
separate Reset Vector, each have a separate Program Vector in the Program memory
space. All interrupts are assigned individual enable bits which must be set (one)
together with the I-bit in the Status Register in order to enable the interrupt. Depending
on the Program Counter value, interrupts may be disabled when Boot Lock bits BLB02
or BLB12 are set. See the section “Boot Loader Support” on page 177 for details

The lowest addresses in the Program memory space are automatically defined as the
Reset and Interrupt Vectors. The complete list of vectors is shown in Table 3. The list
also determines the priority levels of the different interrupts. The lower the address the
higher is the priority level. RESET has the highest priority, and next is INT0 – the Exter-
nal Interrupt Request 0, etc. The Interrupt Vectors can be moved to the start of the boot
Flash section by setting the IVSEL bit in the General Interrupt Control Register (GICR).
See the GICR description on page 33 for details..

Bit 15 14 13 12 11 10 9 8

$3E ($5E) – – – – SP11 SP10 SP9 SP8 SPH

$3D ($5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Table 3. Reset and Interrupt Vectors

Vector No. Program Address(2) Source Interrupt Definition

1 $000(1) RESET
External Pin, Power-on Reset,
Brown-out Reset and Watchdog
Reset

2 $002 INT0 External Interrupt Request 0

3 $004 INT1 External Interrupt Request 1

4 $006 INT2 External Interrupt Request 2

5 $008 TIMER2 COMP Timer/Counter2 Compare Match

6 $00A TIMER2 OVF Timer/Counter2 Overflow

7 $00C TIMER1 CAPT Timer/Counter1 Capture Event

8 $00E TIMER1 COMPA Timer/Counter1 Compare Match A

9 $010 TIMER1 COMPB Timer/Counter1 Compare Match B
22 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
The EEPROM Control Register
– EECR

• Bits 7..4 – Res: Reserved Bits

These bits are reserved bits in the ATmega323 and will always read as zero.

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable

When the I bit in SREG and EERIE are set (one), the EEPROM Ready Interrupt is
enabled. When cleared (zero), the interrupt is disabled. The EEPROM Ready interrupt
generates a constant interrupt when EEWE is cleared (zero).

• Bit 2 – EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be
written. When EEMWE is set(one) setting EEWE will write data to the EEPROM at the
selected address If EEMWE is zero, setting EEWE will have no effect. When EEMWE
has been set (one) by software, hardware clears the bit to zero after four clock cycles.
See the description of the EEWE bit for an EEPROM write procedure.

• Bit 1 – EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When
address and data are correctly set up, the EEWE bit must be set to write the value into
the EEPROM. The EEMWE bit must be set when the logical one is written to EEWE,
otherwise no EEPROM write takes place. The following procedure should be followed
when writing the EEPROM (the order of steps 2 and 3 is not essential):

1. Wait until EEWE becomes zero.

2. Write new EEPROM address to EEAR (optional).

3. Write new EEPROM data to EEDR (optional).

4. Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.

5. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

Caution: An interrupt between step 4 and step 5 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the
EEPROM is interrupting another EEPROM access, the EEAR or EEDR Register will be
modified, causing the interrupted EEPROM access to fail. It is recommended to have
the Global Interrupt Flag cleared during the 4 last steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared (zero) by hardware.
The user software can poll this bit and wait for a zero before writing the next byte. When
EEWE has been set, the CPU is halted for two cycles before the next instruction is
executed.

• Bit 0 – EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the
correct address is set up in the EEAR Register, the EERE bit must be set. When the
EERE bit is cleared (zero) by hardware, requested data is found in the EEDR Register.
The EEPROM read access takes one instruction, and there is no need to poll the EERE
bit. When EERE has been set, the CPU is halted for four cycles before the next instruc-
tion is executed.

Bit 7 6 5 4 3 2 1 0

$1C ($3C) – – – – EERIE EEMWE EEWE EERE EECR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X 0
67
1457G–AVR–09/03

ATmega323(L)
The Two-wire Serial Interface
(Slave) Address Register –
TWAR

• Bits 7..1 – TWA: Two-wire Serial Interface (Slave) Address Register

These seven bits constitute the slave address of the Two-wire Serial Bus unit.

• Bit 0 – TWGCE: Two-wire Serial Interface General Call Recognition Enable bit

This bit enables, if set, the recognition of the General Call given over the Two-wire Serial
Bus.

The TWAR should be loaded with the 7-bit slave address (in the seven most significant
bits of TWAR) to which the Two-wire Serial Interface will respond when programmed as
a Slave Transmitter or Receiver, and not needed in the Master modes. The LSB of
TWAR is used to enable recognition of the general call address ($00). There is an asso-
ciated address comparator that looks for the slave address (or general call address if
enabled) in the received serial address. If a match is found, an interrupt request is
generated.

Two-wire Serial Interface
Modes

The Two-wire Serial Interface can operate in four different modes:

• Master Transmitter

• Master Receiver

• Slave Receiver

• Slave Transmitter

Data transfer in each mode of operation is shown in Figure 55 to Figure 58. These fig-
ures contain the following abbreviations:

S: START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 55 to Figure 58, circles are used to indicate that the Two-wire Serial Interface
Interrupt Flag is set. The numbers in the circles show the status code held in TWSR. At
these points, actions must be taken by the application to continue or complete the Two-
wire Serial Bus transfer. The Two-wire Serial Bus transfer is suspended until the Two-
wire Serial Interface Interrupt Flag is cleared by software.

The Two-wire Serial Interface Interrupt Flag is not automatically cleared by hardware
when executing the interrupt routine. Software has to clear the flag to continue the Two-
wire transfer. Also note that the Two-wire Serial Interface starts execution as soon as
this bit is cleared, so that all access to TWAR, TWDR, and TWSR must have been com-
pleted before clearing this flag.

Bit 7 6 5 4 3 2 1 0

$02 ($22) TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0
107
1457G–AVR–09/03

ATmega323(L)
ldi r16, 0xc8 ; Load SLA+W into TWDR Register

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start transmission
; of address

wait2: in r16, TWCR ; Wait for TWINT Flag set. This indicates that

sbrs r16, TWINT ; SLA+W has been transmitted, and ACK/NACK has

rjmp wait2 ; been received

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, MT_SLA_ACK ; different from MT_SLA_ACK, go to ERROR

brne ERROR

ldi r16, 0x33 ; Load data (here, data=0x33) into TWDR
; Register

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start transmission
; of data

wait3: in r16, TWCR ; Wait for TWINT Flag set. This indicates that

sbrs r16, TWINT ; data has been transmitted, and ACK/NACK has

rjmp wait3 ; been received

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, MT_DATA_ACK ; different from MT_DATA_ACK, go to ERROR

brne ERROR

ldi r16, 0x44 ; Load data (here, data = 0x44) into TWDR
; Register

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start transmission
; of data

;<send more data bytes if needed>

wait4: in r16, TWCR ; Wait for TWINT Flag set. This indicates that

sbrs r16, TWINT ; data has been transmitted, and ACK/NACK has

rjmp wait4 ; been received

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, MT_DATA_ACK ; different from MT_DATA_ACK, go to ERROR

brne ERROR

ldi r16, (1<<TWINT) | (1<<TWSTO) | (1<<TWEN)

out TWCR, r16 ; Transmit STOP condition
113
1457G–AVR–09/03

Table 40. Miscellaneous States

Status Code
(TWSR)

Status of the Two-wire Serial Bus
and Two-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by Two-wire Serial Interface Hard-
ware

To/from TWDR
To TWCR

STA STO TWINT TWEA

$A8 Own SLA+R has been received;
ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

$B0 Arbitration lost in SLA+R/W as
Master; own SLA+R has been
received; ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

$B8 Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

$C0 Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

$C8 Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK
has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free
120 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
Figure 58. Formats and States in the Slave Transmitter Mode

Assembly Code Example –
Slave Transmitter Mode

; Part specific include file and TWI include file must be included.

; <Initialize registers, including TWAR, TWBR and TWCR>

ldi r16, (1<<TWINT) | (1<<TWEA) | (1<<TWEN)

out TWCR, r16 ; Enable TWI in Slave Transmitter mode

; <Receive START condition and SLA+R>

wait14:in r16,TWCR ; Wait for TWINT Flag set. This indicates that

sbrs r16, TWINT ; SLA+R has been received, and ACK/NACK has

rjmp wait14 ; been returned

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, ST_SLA_ACK ; different from ST_SLA_ACK, go to ERROR

brne ERROR

ldi r16, 0x33 ; Load data(here, data=0x33)into TWDR Register

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEA) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start transmission
; of data. Setting TWEA indicates that ACK
; should be received when transfer finished

; <Send more data bytes if needed>

wait15:in r16,TWCR ; Wait for TWINT Flag set. This indicates that

sbrs r16, TWINT ; data has been transmitted, and ACK/NACK has

rjmp wait15 ; been received

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, ST_DATA_ACK ; different from ST_DATA_ACK, go to ERROR

brne ERROR

S SLA R A DATA A

$A8 $B8

A

$B0

Reception of the
Own Slave Address
and One or
More Data Bytes

Last Data Byte Transmitted.
Switched to not Addressed
Slave (TWEA = '0')

Arbitration Lost as Master
and Addressed as Slave

n

From Master to Slave

From Slave to Master

Any Number of Data Bytes
and their Associated Acknowledge Bits

This Number (Contained in TWSR) Corresponds
to a Defined State of the Two-wire Serial Bus

P or SDATA

$C0

DATA A

A

$C8

P or SAll 1's

A

121
1457G–AVR–09/03

The Analog
Comparator

The Analog Comparator compares the input values on the positive pin PB2 (AIN0) and
negative pin PB3 (AIN1). When the voltage on the positive pin PB2 (AIN0) is higher than
the voltage on the negative pin PB3 (AIN1), the Analog Comparator Output, ACO, is set
(one). The comparator’s output can be set to trigger the Timer/Counter1 Input Capture
function. In addition, the comparator can trigger a separate interrupt, exclusive to the
Analog Comparator. The user can select Interrupt triggering on comparator output rise,
fall or toggle. A block diagram of the comparator and its surrounding logic is shown in
Figure 59.

Figure 59. Analog Comparator Block Diagram

Note: See Figure 60 on page 128.

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME
ADEN

1)
124 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
Analog to Digital
Converter

Features • 10-bit Resolution
• 0.5 LSB Integral Non-linearity
• ±2 LSB Absolute Accuracy
• 65 - 260 µs Conversion Time
• Up to 15 kSPS at Maximum Resolution
• Up to 76 kSPS at 8-bit Resolution
• Eight Multiplexed Single Ended Input Channels
• Optional Left Adjustment for ADC Result Readout
• 0 - VCC ADC Input Voltage Range
• Selectable 2.56V ADC Reference Voltage
• Free Run or Single Conversion Mode
• Interrupt on ADC Conversion Complete
• Sleep Mode Noise Canceler

The ATmega323 features a 10-bit successive approximation ADC. The ADC is con-
nected to an 8-channel Analog Multiplexer which allows each pin of Port A to be used as
input for the ADC.

The ADC contains a Sample and Hold Amplifier which ensures that the input voltage to
the ADC is held at a constant level during conversion. A block diagram of the ADC is
shown in Figure 60.

The ADC has two separate analog supply voltage pins, AVCC and AGND. AGND must
be connected to GND, and the voltage on AVCC must not differ more than ±0.3V from
VCC. See the paragraph ADC Noise Canceling Techniques on how to connect these
pins.

Internal reference voltages of nominally 2.56V or AVCC are provided On-chip. The
2.56V reference may be externally decoupled at the AREF pin by a capacitor for better
noise performance. See “Internal Voltage Reference” on page 31 for a description of the
internal voltage reference.
127
1457G–AVR–09/03

ATmega323(L)
The ADC Control and Status
Register – ADCSR

• Bit 7 – ADEN: ADC Enable

Writing a logical “1” to this bit enables the ADC. By clearing this bit to zero, the ADC is
turned off. Turning the ADC off while a conversion is in progress, will terminate this
conversion.

• Bit 6 – ADSC: ADC Start Conversion

In Single Conversion mode, a logical “1” must be written to this bit to start each conver-
sion. In Free Running mode, a logical “1” must be written to this bit to start the first
conversion. The first time ADSC has been written after the ADC has been enabled, or if
ADSC is written at the same time as the ADC is enabled, an extended conversion will
precede the initiated conversion. This extended conversion performs initialization of the
ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is
complete, it returns to zero. When a extended conversion precedes a real conversion,
ADSC will stay high until the real conversion completes. Writing a 0 to this bit has no
effect.

• Bit 5 – ADFR: ADC Free Running Select

When this bit is set (one) the ADC operates in Free Running mode. In this mode, the
ADC samples and updates the Data Registers continuously. Clearing this bit (zero) will
terminate Free Running mode.

• Bit 4 – ADIF: ADC Interrupt Flag

This bit is set (one) when an ADC conversion completes and the Data Registers are
updated. The ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-
bit in SREG are set (one). ADIF is cleared by hardware when executing the correspond-
ing interrupt handling vector. Alternatively, ADIF is cleared by writing a logical one to the
flag. Beware that if doing a Read-Modify-Write on ADCSR, a pending interrupt can be
disabled. This also applies if the SBI and CBI instructions are used.

• Bit 3 – ADIE: ADC Interrupt Enable

When this bit is set (one) and the I-bit in SREG is set (one), the ADC Conversion Com-
plete Interrupt is activated.

01000..11101 Reserved

11110 1.22V (VBG)

11111 0V (AGND)

Table 46. Input Channel Selections (Continued)

MUX4..0 Single-ended Input

Bit 7 6 5 4 3 2 1 0

$06 ($26) ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
133
1457G–AVR–09/03

ATmega323(L)
Scanning Multiple
Channels

Since change of analog channel always is delayed until a conversion is finished, the
Free Running mode can be used to scan multiple channels without interrupting the con-
verter. Typically, the ADC Conversion Complete interrupt will be used to perform the
channel shift. However, the user should take the following fact into consideration:

The interrupt triggers once the result is ready to be read. In Free Running mode, the
next conversion will start immediately when the interrupt triggers. If ADMUX is changed
after the interrupt triggers, the next conversion has already started, and the old setting is
used.

ADC Noise Canceling
Techniques

Digital circuitry inside and outside the ATmega323 generates EMI which might affect the
accuracy of analog measurements. If conversion accuracy is critical, the noise level can
be reduced by applying the following techniques:

1. The analog part of the ATmega323 and all analog components in the application
should have a separate analog ground plane on the PCB. This ground plane is
connected to the digital ground plane via a single point on the PCB.

2. Keep analog signal paths as short as possible. Make sure analog tracks run over
the analog ground plane, and keep them well away from high-speed switching
digital tracks.

3. The AVCC pin on the ATmega323 should be connected to the digital VCC supply
voltage via an LC network as shown in Figure 65.

4. Use the ADC noise canceler function to reduce induced noise from the CPU.

5. If some Port A pins are used as digital outputs, it is essential that these do not
switch while a conversion is in progress.

Figure 65. ADC Power Connections

G
N

D

V
C

C

P
A

0
(A

D
C

0)

P
A

1
(A

D
C

1)

P
A

2
(A

D
C

2)

P
A

3
(A

D
C

3)

PA4 (ADC4)

PA5 (ADC5)

PA6 (ADC6)

PA7 (ADC7)

AREF

AVCC

AGND

PC7

10
µΗ

10
0n

F
A

na
lo

g
G

ro
un

d
P

la
ne

A
T

m
eg

a3
2

33

29

31

27

26

32

28

30

37 3536 343839
135
1457G–AVR–09/03

Notes: 1. Values are guidelines only. Actual values are TBD.
2. Minimum for AVCC is 2.7V.
3. Maximum for AVCC is 5.5V.

ADC Characteristics – Preliminary Data

Symbol Parameter Condition Min(2) Typ Max(3) Units

Resolution Single-ended Conversion 10 Bits

Absolute accuracy
VREF = 4V
ADC clock = 200 kHz

1 2 LSB

Absolute accuracy
VREF = 4V
ADC clock = 1 MHz

4 LSB

Absolute accuracy
VREF = 4V
ADC clock = 2 MHz

16 LSB

Integral Non-linearity VREF > 2V 0.5 LSB

Differential Non-linearity VREF > 2V 0.5 LSB

Zero Error (Offset) VREF > 2V 1 LSB

Conversion Time Free Running Conversion 65 260 µs

Clock Frequency 50 200 kHz

AVCC Analog Supply Voltage VCC - 0.3(2) VCC + 0.3(3) V

VREF Reference Voltage 2 V AVCC V

VINT Internal Voltage Reference 2.35 2.56 2.77 V

VBG Bandgap Voltage Reference 1.12 1.22 1.32 V

RREF Reference Input Resistance 6 10 13 kΩ

VIN Input Voltage AGND AREF V

RAIN Analog Input Resistance 100 MΩ
136 ATmega323(L)
1457G–AVR–09/03

Figure 80. Port D Schematic Diagram (Pin PD1)

Figure 81. Port D Schematic Diagram (Pins PD2 and PD3)

D
A

TA
 B

U
S

D

D

Q

Q

RESET

RESET

C

C

WD

WP

RD

RP

RL

MOS
PULL-
UP

PD1

R

R

WP:
WD:
RL:
RP:
RD:
TXD:
TXEN:

WRITE PORTD
WRITE DDRD
READ PORTD LATCH
READ PORTD PIN
READ DDRD
UART TRANSMIT DATA
UART TRANSMIT ENABLE

DDD1

PORTD1

TXEN

TXD

PUD

PUD: PULL-UP DISABLE

PUD

WP:
WD:
RL:
RP:
RD:

n:
m:

WRITE PORTD
WRITE DDRD
READ PORTD LATCH
READ PORTD PIN
READ DDRD

2, 3
0, 1

PUD: PULL-UP DISABLE
154 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
JTAG Interface and
the On-chip Debug
System

Features • JTAG (IEEE std. 1149.1 Compliant) Interface
• Boundary-Scan Capabilities According to the JTAG Standard
• Debugger Access to:

– All Internal Peripheral Units
– Internal and External RAM
– The Internal Register File
– Program Counter
– EEPROM and Flash Memories

• Extensive On-chip Debug Support for Break Conditions, Including
– Break on Change of Program Memory Flow
– Single Step Break
– Program Memory Break Points on Single Address or Address Range
– Data Memory Break Points on Single Address or Address Range

• Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
• On-chip Debugging Supported by AVR Studio®

Overview The AVR IEEE std. 1149.1 compliant JTAG interface can be used for

• Testing PCBs by using the JTAG Boundary-Scan Capability.

• Programming the Non-volatile Memories, Fuses and Lock bits.

• On-chip Debugging.

A brief description is given in the following sections. Detailed descriptions for Program-
ming via the JTAG interface, and using the Boundary-Scan Chain can be found in the
sections “Programming via the JTAG Interface” on page 202 and “IEEE 1149.1 (JTAG)
Boundary-Scan” on page 164, respectively. The On-chip Debug support is considered
being private JTAG instructions, and distributed within ATMEL and to selected third
party vendors only.

Figure 85 shows a block diagram of the JTAG interface and the On-chip Debug system.
The TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP
Controller selects either the JTAG Instruction Register or one of several Data Registers
as the scan chain (Shift Register) between the TDI – input and TDO – output. The
Instruction Register holds JTAG instructions controlling the behavior of a Data Register.

Of the Data Registers, the ID-Register, Bypass Register, and the Boundary-Scan Chain
are used for board-level testing. The JTAG Programming Interface (actually consisting
of several physical and virtual Data Registers) is used for Serial Programming via the
JTAG interface. The Internal Scan Chain and Break Point Scan Chain are used for On-
chip debugging only.
157
1457G–AVR–09/03

ATmega323(L)
44 PD5.Data

Port D

43 PD5.Control

42 PD5.PuLLup_Disable

41 PD6.Data

40 PD6.Control

39 PD6.PuLLup_Disable

38 PD7.Data

37 PD7.Control

36 PD7.PuLLup_Disable

35 PC0.Data

Port C

34 PC0.Control

33 PC0.PuLLup_Disable

32 PC1.Data

31 PC1.Control

30 PC1.PuLLup_Disable

29 PC6.Data

28 PC6.Control

27 PC6.PuLLup_Disable

26 PC7.Data

25 PC7.Control

24 PC7.PuLLup_Disable

23 PA7.Data

Port A

22 PA7.Control

21 PA7.PuLLup_Disable

20 PA6.Data

19 PA6.Control

18 PA6.PuLLup_Disable

17 PA5.Data

16 PA5.Control

15 PA5.PuLLup_Disable

14 PA4.Data

13 PA4.Control

12 PA4.PuLLup_Disable

Table 58. ATmega323 Boundary-Scan Order (Continued)

Bit Number Signal Name Module
175
1457G–AVR–09/03

ATmega323(L)
Note: 1. “1” means unprogrammed, “0” means programmed

Note: 1. “1” means unprogrammed, “0” means programmed

Setting the Boot Loader Lock
Bits by SPM

To set the Boot Loader Lock bits, write the desired data to R0, write “00001001” to
SPMCR and execute SPM within four clock cycles after writing SPMCR. The only
accessible Lock bits are the Boot Lock bits that may prevent the Application and Boot
Loader section from any software update by the MCU.

If bits 5..2 in R0 are cleared (zero), the corresponding Boot Lock Bit will be programmed
if an SPM instruction is executed within four cycles after BLBSET and SPMEN are set in
SPMCR.

Table 61. Boot Lock Bit0 Protection Modes (Application Section)(1)

BLB0 Mode BLB02 BLB01 Protection

1 1 1 No restrictions for SPM or LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0 SPM is not allowed to write to the Application section, and
LPM executing from the Boot Loader section is not
allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

4 0 1 LPM executing from the Boot Loader section is not
allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

Table 62. Boot Lock Bit1 Protection Modes (Boot Loader Section)(1)

BLB1 mode BLB12 BLB11 Protection

1 1 1 No restrictions for SPM or LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0 SPM is not allowed to write to the Boot Loader section,
and LPM executing from the Application section is not
allowed to read from the Boot Loader section. If Interrupt
Vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.

4 0 1 LPM executing from the Application section is not allowed
to read from the Boot Loader section. If Interrupt Vectors
are placed in the Application section, interrupts are
disabled while executing from the Boot Loader section.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 1 1
181
1457G–AVR–09/03

Notes: 1. tWLRH is valid for the Write EEPROM, Write Fuse bits and Write Lock bits commands.
2. tWLRH_CE is valid for the Chip Erase command.
3. tWLRH_FLASH is valid for the Write Flash command.

Table 67. Parallel Programming Characteristics, TA = 25°C ± 10%, VCC = 5 V ± 10%

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 µA

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXHXL XTAL1 Pulse Width High 67 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 67 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 67 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tRHBX BS1 Hold after RDY/BSY High 67 ns

tWLWH WR Pulse Width Low 67 ns

tWLRL WR Low to RDY/BSY Low 0 2.5 µs

tWLRH
(1) WR Low to RDY/BSY High(1) 1 1.5 1.9 ms

tWLRH_CE
(2) WR Low to RDY/BSY High for Chip Erase(2) 16 23 30 ms

tWLRH_FLASH
(3) WR Low to RDY/BSY High for Write Flash(3) 8 12 15 ms

tXLOL XTAL1 Low to OE Low 67 ns

tOLDV OE Low to DATA Valid 20 ns

tOHDZ OE High to DATA Tri-stated 20 ns
196 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
Programming Times for Non-
volatile Memory

The internal RC Oscillator is used to control programming time when programming or
erasing Flash, EEPORM, Fuses and Lock bits. During Parallel or Serial Programming,
the device is in reset, and this Oscillator runs at its initial, uncalibrated frequency, which
may vary from 0.5 MHz to 1.0 MHz. In software it is possible to calibrate this Oscillator to
1.0 MHz (see “Calibrated Internal RC Oscillator” on page 41). Consequently, program-
ming times will be shorter and more accurate when programming or erasing non-volatile
memory from software, using SPM or the EEPROM interface. See Table 68 for a sum-
mary of programming times.

Notes: 1. Includes variation over voltage and temperature after RC Oscillator has been cali-
brated to 1.0 MHz

2. Parallel EEPROM programming takes 1K cycles

Figure 99. Serial Programming Waveforms

Table 68. Maximum Programming Times for Non-volatile Memory

Operation Symbol

Number of
RC Oscillator

Cycles

Parallel/Serial
Programming Self-

programming
(1)2.7V 5.0V

Chip Erase tWD_CE 16K 32 ms 30 ms 17 ms

Flash Write tWD_FLASH 8K 16 ms 15 ms 8.5 ms

EEPROM
Write(2) tWD_EEPROM

2K 4 ms 3.8 ms 2.2 ms

Fuse/Lock
bit write

tWD_FUSE
1K 2 ms 1.9 ms 1.1 ms

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
PB7(SCK)

SERIAL DATA INPUT
PB5 (MOSI)

PB6 (MISO)

SAMPLE

SERIAL DATA OUTPUT
199
1457G–AVR–09/03

Note: 1. “Max” means the highest value where the pin is guaranteed to be read as low

2. “Min” means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (20mA at Vcc = 5V, 10mA at Vcc = 3V) under steady state

conditions (non-transient), the following must be observed – PDIP Package:
1] The sum of all IOL, for all ports, should not exceed 200 mA.
2] The sum of all IOL, for port A0 - A7, should not exceed 100 mA.
3] The sum of all IOL, for ports B0 - B7,C0 - C7, D0 - D7 and XTAL2, should not exceed 100 mA – TQFP Package:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports A0 - A7, should not exceed 100 mA.
3] The sum of all IOL, for ports B0 - B3, should not exceed 100 mA.
4] The sum of all IOL, for ports B4 - B7, should not exceed 100 mA.
5] The sum of all IOL, for ports C0 - C3, should not exceed 100 mA.
6] The sum of all IOL, for ports C4 - C7, should not exceed 100 mA.
7] The sum of all IOL, for ports D0 - D3 and XTAL2, should not exceed 100 mA.
8] The sum of all IOL, for ports D4 - D7, should not exceed 100 mA
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (3mA at Vcc = 5V, 1.5mA at Vcc = 3V) under steady state
conditions (non-transient), the following must be observed – PDIP Package:
1] The sum of all IOH, for all ports, should not exceed 200 mA.
2] The sum of all IOH, for port A0 - A7, should not exceed 100 mA.
3] The sum of all IOH, for ports B0 - B7,C0 - C7, D0 - D7 and XTAL2, should not exceed 100 mA – TQFP Package:
1] The sum of all IOH, for all ports, should not exceed 400 mA.
2] The sum of all IOH, for ports A0 - A7, should not exceed 100 mA.
3] The sum of all IOH, for ports B0 - B3, should not exceed 100 mA.
4] The sum of all IOH, for ports B4 - B7, should not exceed 100 mA.
5] The sum of all IOH, for ports C0 - C3, should not exceed 100 mA.
6] The sum of all IOH, for ports C4 - C7, should not exceed 100 mA.
7] The sum of all IOH, for ports D0 - D3 and XTAL2, should not exceed 100 mA.
8] The sum of all IOH, for ports D4 - D7, should not exceed 100 mA
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. Minimum VCC for Power-down is 2.5V.

ICC

Power Supply Current

Active 4 MHz, VCC = 3V

(ATmega323L)
5 mA

Active 8 MHz, VCC = 5V

(ATmega323)
15 mA

Idle 4 MHz, VCC = 3V

(ATmega323L)
2.5 mA

Idle 8 MHz, VCC = 5V

(ATmega323)
8 mA

Power-down mode(5)
WDT enabled, VCC = 3V 9 15.0 µA

WDT disabled, VCC = 3V <1 4.0 µA

VACIO
Analog Comparator
Input Offset Voltage

VCC = 5V

Vin = VCC/2
40 mV

IACLK
Analog Comparator
Input Leakage Current

VCC = 5V
Vin = VCC/2

-50 50 nA

tACID
Analog Comparator
Initialization Delay

VCC = 2.7V
VCC = 4.0V

750
500

ns

DC Characteristics (Continued)

TA = -40°C to 85°C, VCC = 2.7V to 5.5V (Unless Otherwise Noted)

Symbol Parameter Condition Min Typ Max Units
214 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
Figure 125. Pull-Up Resistor Current vs. Input Voltage

Figure 126. Pull-Up Resistor Current vs. Input Voltage

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
V = 5Vcc

I
 (

µA
)

O
P

V (V)OP

T = 85˚CA

T = 25˚CA

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3

PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

I
 (

µA
)

O
P

V (V)OP

V = 2.7Vcc

T = 85˚CA

T = 25˚CA
227
1457G–AVR–09/03

ATmega323(L)
CLH Clear Half Carry Flag in SREG H ← 0 H 1

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

Mnemonics Operands Description Operation Flags #Clocks
235
1457G–AVR–09/03

