
Microchip Technology - ATMEGA323-8PI Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 8MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 32

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 4.5V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C

Mounting Type Through Hole

Package / Case 40-DIP (0.600", 15.24mm)

Supplier Device Package 40-PDIP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega323-8pi

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega323-8pi-4425787
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ATmega323(L)
The General Purpose
Register File

Figure 7 shows the structure of the 32 general purpose working registers in the CPU.

Figure 7. AVR CPU General Purpose Working Registers

Most register operating instructions in the instruction set have direct access to all regis-
ters, and most of them are single cycle instructions.

As shown in Figure 7, each register is also assigned a Data memory address, mapping
them directly into the first 32 locations of the user Data Space. Although not being phys-
ically implemented as SRAM locations, this memory organization provides great
flexibility in access of the registers, as the X-, Y-, and Z-registers can be set to index any
register in the file.

The X-register, Y-register, and
Z-register

The registers R26..R31 have some added functions to their general purpose usage.
These registers are address pointers for indirect addressing of the Data Space. The
three indirect address registers X, Y, and Z are defined as:

Figure 8. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed dis-
placement, automatic increment and decrement (see the descriptions for the different
instructions).

7 0 Addr.

R0 $00

R1 $01

R2 $02

…

R13 $0D

General R14 $0E

Purpose R15 $0F

Working R16 $10

Registers R17 $11

…

R26 $1A X-register Low Byte

R27 $1B X-register High Byte

R28 $1C Y-register Low Byte

R29 $1D Y-register High Byte

R30 $1E Z-register Low Byte

R31 $1F Z-register High Byte

15 XH XL 0

X - register 70 0 7 0

R27 ($1B) R26 ($1A)

15 YH YL 0

Y - register 70 0 7 0

R29 ($1D) R28 ($1C)

15 ZH ZL 0

Z - register 70 0 7 0

R31 ($1F) R30 ($1E)
11
1457G–AVR–09/03

Power-up Reset or wake-up from Power-down or Standby mode, the user should be
aware of the fact that this Oscillator might take as long as one second to stabilize. The
user is advised to wait for at least one second before using Timer/Counter2 after Power-
up or wake-up from Power-down or Standby mode. The contents of all Timer/Counter2
Registers must be considered lost after a wake-up from Power-down or Standby mode
due to unstable clock signal upon start-up, no matter whether the Oscillator is in use or a
clock signal is applied to the TOSC1 pin.

Description of wake up from Power-save or Extended Standby mode when the timer is
clocked asynchronously: When the interrupt condition is met, the wake up process is
started on the following cycle of the timer clock, that is, the timer is always advanced by
at least one before the processor can read the counter value. After wake-up, the MCU is
halted for four cycles, it executes the interrupt routine, and resumes execution from the
instruction following SLEEP.

During asynchronous operation, the synchronization of the Interrupt Flags for the asyn-
chronous timer takes three processor cycles plus one timer cycle. The timer is therefore
advanced by at least one before the processor can read the timer value causing the set-
ting of the Interrupt Flag. The Output Compare Pin is changed on the timer clock and is
not synchronized to the processor clock.

16-bit Timer/Counter1 Figure 36 shows the block diagram for Timer/Counter1.

Figure 36. Timer/Counter1 Block Diagram

The 16-bit Timer/Counter1 can select clock source from CK, prescaled CK, or an exter-
nal pin. In addition it can be stopped as described in section “Timer/Counter1 Control

8-
B

IT
 D

A
TA

 B
U

S

T/C1 CONTROL
REGISTER B (TCCR1B)

T/C1 CONTROL
REGISTER A (TCCR1A)

T/C1 INPUT CAPTURE REGISTER (ICR1)

16 BIT COMPARATOR 16 BIT COMPARATOR

TIMER/COUNTER1 OUTPUT COMPARE REGISTER A TIMER/COUNTER1 OUTPUT COMPARE REGISTER B

TIMER/COUNTER1 (TCNT1)

TIMER INT. FLAG
REGISTER (TIFR)

0

0 0

0 0

0

7

7 7

7 7

7

8

8 8

8 8

8

15

15 15

15 15

15

CONTROL
LOGIC

C
O

M
1A

1

C
O

M
1B

1

C
S

12

T
O

V
1

T
O

V
1

T
O

V
0

O
C

F
1A

O
C

F
1A

O
C

F
1B

O
C

F
1B

IC
F

1
IC

F
1

C
O

M
1A

0

C
O

M
1B

0

C
S

11

C
T

C
1

P
W

M
11

P
W

M
10

IC
E

S
1

IC
N

C
1

C
S

10

CK

T/C1 COMPARE
MATCH A IRQ

T/C1 COMPARE
MATCH B IRQ

T/C1 INPUT
CAPTURE IRQ

T/C1 OVER-
FLOW IRQ

CAPTURE
TRIGGER

T/C CLOCK SOURCE

T/C CLEAR

UP/DOWN

TIMER INT. MASK
REGISTER (TIMSK)

T
O

IE
0

T
O

IE
1

O
C

IE
1A

O
C

IE
1B

T
IC

IE
1

T
O

IE
2

T
O

V
2

O
C

IE
2

O
C

F
2

F
O

C
1A

F
O

C
1B

PSR10

O
C

IE
0

O
C

F
0

T1
54 ATmega323(L)
1457G–AVR–09/03

When the prescaler is set to divide by 8, the timer will count like this:

... | C-1, C-1, C-1, C-1, C-1, C-1, C-1, C-1 | C, C, C, C, C, C, C, C | 0, 0, 0, 0, 0, 0, 0, 0
|1,1,1,1,1,1,1,1|...

In PWM mode, this bit has a different function. If the CTC1 bit is cleared in PWM mode,
the Timer/Counter1 acts as an up/down counter. If the CTC1 bit is set (one), the
Timer/Counter wraps when it reaches the TOP value. Refer to page 60 for a detailed
description.

• Bits 2..0 – CS12, CS11, CS10: Clock Select1, Bit 2, 1, and 0

The Clock Select1 bits 2, 1, and 0 define the prescaling source of Timer/Counter1.

The Stop condition provides a Timer Enable/Disable function. The prescaled modes are
scaled directly from the CK Oscillator clock. If the external pin modes are used for
Timer/Counter1, transitions on PB1/(T1) will clock the counter even if the pin is config-
ured as an output. This feature can give the user SW control of the counting.

Timer/Counter1 – TCNT1H
and TCNT1L

This 16-bit register contains the prescaled value of the 16-bit Timer/Counter1. To
ensure that both the high and Low Bytes are read and written simultaneously when the
CPU accesses these registers, the access is performed using an 8-bit temporary regis-
ter (TEMP). This temporary register is also used when accessing OCR1A, OCR1B, and
ICR1. If the main program and also interrupt routines perform access to registers using
TEMP, interrupts must be disabled during access from the main program and interrupt
routines.

Table 19. Clock 1 Prescale Select

CS12 CS11 CS10 Description

0 0 0 Stop, the Timer/Counter1 is Stopped.

0 0 1 CK

0 1 0 CK/8

0 1 1 CK/64

1 0 0 CK/256

1 0 1 CK/1024

1 1 0 External Pin T1, Falling Edge

1 1 1 External Pin T1, Rising Edge

Bit 15 14 13 12 11 10 9 8

$2D ($4D) MSB TCNT1H

$2C ($4C) LSB TCNT1L

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
58 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
The frame format used by the USART is set by the UCSZ2:0, UPM1:0 and USBS bits in
UCSRB and UCSRC. The Receiver and Transmitter uses the same setting. Note that
changing the setting of any of these bits will corrupt all ongoing communication for both
the Receiver and Transmitter.

The USART Character SiZe (UCSZ2:0) bits select the number of data bits in the frame.
The USART Parity Mode (UPM1:0) bits enable and set the type of parity bit. The selec-
tion between one or two stop bits is done by the USART Stop Bit Select (USBS) bit. The
Receiver ignores the second stop bit. An FE (Frame Error) will therefore only be
detected in the cases where the first stop bit is zero.

Parity Bit Calculation The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is
used, the result of the exclusive or is inverted. The relation between the parity bit and
data bits is as follows:

Peven Parity bit using even parity

Podd Parity bit using odd parity

dn Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial
frame.

USART Initialization The USART has to be initialized before any communication can take place. The initial-
ization process normally consists of setting the baud rate, setting frame format and
enabling the Transmitter or the Receiver depending on the usage. For interrupt driven
USART operation, the Global Interrupt Flag should be cleared (and interrupts globally
disabled) when doing the initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that
there are no ongoing transmissions during the period the registers are changed. The
TXC Flag can be used to check that the Transmitter has completed all transfers, and the
RXC Flag can be used to check that there are no unread data in the Receive Buffer.
Note that the TXC Flag must be cleared before each transmission (before UDR is writ-
ten) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one
C function that is equal in functionality. The examples assume asynchronous operation
using polling (no interrupts enabled) and a fixed frame format. The baud rate is given as
a function parameter. For the assembly code, the baud rate parameter is assumed to be
stored in the r17:r16 Registers. When the function writes to the UCSRC Register, the
URSEL bit (MSB) must be set due to the sharing of I/O location by UBRRH and
UCSRC.

Peven dn 1– … d3 d2 d1 d0 0
Podd

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
dn 1– … d3 d2 d1 d0 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕

=
=

79
1457G–AVR–09/03

Note: 1. The example code assumes that the part specific header file is included.

More advanced initialization routines can be made that include frame format as parame-
ters, disable interrupts and so on. However, many applications use a fixed setting of the
Baud and Control Registers, and for these types of applications the initialization code
can be placed directly in the main routine, or be combined with initialization code for
other I/O modules.

Assembly Code Example(1)

USART_Init:

; Set baud rate

out UBRRH, r17

out UBRRL, r16

; Enable Receiver and Transmitter

ldi r16, (1<<RXEN)|(1<<TXEN)

out UCSRB,r16

; Set frame format: 8data, 2stop bit

ldi r16, (1<<URSEL)|(1<<USBS)|(3<<UCSZ0)

out UCSRC,r16

ret

C Code Example(1)

void USART_Init(unsigned int baud)

{

/* Set baud rate */

UBRRH = (unsigned char)(baud>>8);

UBRRL = (unsigned char)baud;

/* Enable Receiver and Transmitter */

UCSRB = (1<<RXEN)|(1<<TXEN);

/* Set frame format: 8data, 2stop bit */

UCSRC = (1<<URSEL)|(1<<USBS)|(3<<UCSZ0);

}

80 ATmega323(L)
1457G–AVR–09/03

USART Register
Description

USART I/O Data Register –
UDR

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers
share the same I/O address referred to as USART Data Register or UDR. The Transmit
Data Buffer Register (TXB) will be the destination for data written to the UDR Register
location. Reading the UDR Register location will return the contents of the Receive Data
Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter
and set to zero by the Receiver.

The transmit buffer can only be written when the UDRE Flag in the UCSRA Register is
set. Data written to UDR when the UDRE Flag is not set, will be ignored by the USART
Transmitter. When data is written to the transmit buffer, and the Transmitter is enabled,
the Transmitter will load the data into the Transmit Shift Register when the Shift Register
is empty. Then the data will be serially transmitted on the TxD pin.

The Receive Buffer consists of a two level FIFO. The FIFO will change its state when-
ever the Receive Buffer is accessed. Due to this behavior of the receive buffer, do not
use Read-Modify-Write instructions (SBI and CBI) on this location. Be careful when
using bit test instructions (SBIC and SBIS), since these also will change the state of the
FIFO.

USART Control and Status
Register A – UCSRA

• Bit 7 – RXC: USART Receive Complete

This flag bit is one when there are unread data in the receive buffer and zero when the
receive buffer is empty (i.e., does not contain any unread data). If the Receiver is dis-
abled, the receive buffer will be flushed and consequently the RXC bit will become zero.
The RXC Flag can be used to generate a Receive Complete interrupt (see description of
the RXCIE bit).

• Bit 6 – TXC: USART Transmit Complete

This flag bit is set one when the entire frame in the Transmit Shift Register has been
shifted out and there are no new data currently present in the transmit buffer (UDR). The
TXC Flag bit is automatically cleared when a transmit complete interrupt is executed, or
it can be cleared by writing a one to its bit location. The TXC Flag can generate a Trans-
mit Complete interrupt (see description of the TXCIE bit).

Bit 7 6 5 4 3 2 1 0

$0C ($2C) Read RXB[7:0] UDR (Read)

$0C ($2C) Write TXB[7:0] UDR (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$0B ($2B) RXC TXC UDRE FE DOR PE U2X MPCM UCSRA

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0
94 ATmega323(L)
1457G–AVR–09/03

• Bit 2:1 – UCSZ1:0: Character Size

The UCSZ1:0 bits combined with the UCSZ2 bit in UCSRB sets the number of data bits
(character size) in a frame the Receiver and Transmitter uses.

• Bit 0 – UCPOL: Clock Polarity

This bit is used for synchronous mode only. Set this bit to zero when asynchronous
mode is used. The UCPOL bit sets the relationship between data output change and
data input sample, and the synchronous clock (XCK).

USART Baud Rate Registers –
UBRRL and UBRRHs

The UBRRH Register shares the same I/O location as the UCSRC Register. See the
“Accessing UBRRH/UCSRC Registers” on page 92 section which describes how to
access this register.

• Bit 15 – URSEL: Register Select

This bit selects between accessing the UBRRH or the UCSRC Register. It is read as
zero when reading UBRRH. The URSEL must be zero when writing the UBRRH.

• Bit 14:12 – Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit
must be set to zero when UBRRH is written.

Table 35. Character Size

UCSZ2 UCSZ1 UCSZ0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

UCPOL
Transmitted Data Changed (Output
of TxD Pin)

Received Data Sampled (Input on
RxD Pin)

0 Falling XCK Edge Rising XCK Edge

1 Rising XCK Edge Falling XCK Edge

Bit 15 14 13 12 11 10 9 8

$20 ($40) URSEL – – – UBRR[11:8] UBRRH

$09 ($29) UBRR[7:0] UBRRL

7 6 5 4 3 2 1 0

Read/Write R/W R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
98 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
Table 37. Miscellaneous States

Status Code
(TWSR)

Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face Hardware

Application Software Response

Next Action Taken by Two-wire Serial Interface Hard-
ware

To/from TWDR
To TWCR

STA STO TWINT TWEA

$08 A START condition has been
transmitted

Load SLA+W X 0 1 X SLA+W will be transmitted;
ACK or NOT ACK will be received

$10 A repeated START condition
has been transmitted

Load SLA+W or

Load SLA+R

X

X

0

0

1

1

X

X

SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+R will be transmitted;
Logic will switch to Master Receiver mode

$18 SLA+W has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

$20 SLA+W has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

$28 Data byte has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

$30 Data byte has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

$38 Arbitration lost in SLA+W or
data bytes

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

Two-wire Serial Bus will be released and not addressed
Slave mode entered
A START condition will be transmitted when the bus be-
comes free
111
1457G–AVR–09/03

The Analog
Comparator

The Analog Comparator compares the input values on the positive pin PB2 (AIN0) and
negative pin PB3 (AIN1). When the voltage on the positive pin PB2 (AIN0) is higher than
the voltage on the negative pin PB3 (AIN1), the Analog Comparator Output, ACO, is set
(one). The comparator’s output can be set to trigger the Timer/Counter1 Input Capture
function. In addition, the comparator can trigger a separate interrupt, exclusive to the
Analog Comparator. The user can select Interrupt triggering on comparator output rise,
fall or toggle. A block diagram of the comparator and its surrounding logic is shown in
Figure 59.

Figure 59. Analog Comparator Block Diagram

Note: See Figure 60 on page 128.

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME
ADEN

1)
124 ATmega323(L)
1457G–AVR–09/03

Figure 60. Analog to Digital Converter Block Schematic

Operation The ADC converts an analog input voltage to a 10-bit digital value through successive
approximation. The minimum value represents AGND and the maximum value repre-
sents the voltage on the AREF pin minus 1 LSB. Optionally, AVCC or an internal 2.56V
reference voltage may be connected to the AREF pin by writing to the REFSn bits in the
ADMUX Register. The internal voltage reference may thus be decoupled by an external
capacitor at the AREF pin to improve noise immunity.

The analog input channel is selected by writing to the MUX bits in ADMUX. Any of the
eight ADC input pins ADC7..0, as well as AGND and a fixed bandgap voltage reference
of nominally 1.22 V (VBG), can be selected as single ended inputs to the ADC.

The ADC can operate in two modes – Single Conversion and Free Running mode. In
Single Conversion mode, each conversion will have to be initiated by the user. In Free
Running mode, the ADC is constantly sampling and updating the ADC Data Register.
The ADFR bit in ADCSR selects between the two available modes.

ADC CONVERSION
COMPLETE IRQ

8-BIT DATA BUS

15 0

ADC MULTIPLEXER
SELECT (ADMUX)

ADC CTRL. & STATUS
REGISTER (ADCSR)

ADC DATA REGISTER
(ADCH/ADCL)

M
U

X
2

A
D

IE

A
D

F
R

A
D

S
C

A
D

E
N

A
D

IF
A

D
IF

M
U

X
1

M
U

X
0

A
D

P
S

0

A
D

P
S

1

A
D

P
S

2

CONVERSION LOGIC

10-BIT DAC

+
-

SAMPLE & HOLD
COMPARATOR

INTERNAL 2.56 V
REFERENCE

MUX DECODER

AVCC

R
E

F
S

0

R
E

F
S

1

A
D

LA
R

C
H

A
N

N
E

L
S

E
LE

C
T

IO
N

A
D

C
[9

:0
]

ADC MULTIPLEXER
OUTPUT

AREF

PRESCALER

ADC7

ADC6

ADC5

ADC4

ADC3

ADC2

ADC1

ADC0

1.22 V BANDGAP
REFERENCE

AGND

INPUT
MUX

M
U

X
3

M
U

X
4

128 ATmega323(L)
1457G–AVR–09/03

keeps running for as long as the ADEN bit is set, and is continuously reset when ADEN
is low.

When initiating a conversion by setting the ADSC bit in ADCSR, the conversion starts at
the following rising edge of the ADC clock cycle.

A normal conversion takes 13 ADC clock cycles. In certain situations, the ADC needs
more clock cycles to initialization and minimize offset errors. Extended conversions take
25 ADC clock cycles and occur as the first conversion after the ADC is switched on
(ADEN in ADCSR is set). Additionally, when changing voltage reference, the user may
improve accuracy by disregarding the first conversion result after the reference or MUX
setting was changed.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal
conversion and 13.5 ADC clock cycles after the start of an extended conversion. When
a conversion is complete, the result is written to the ADC Data Registers, and ADIF is
set. In Single Conversion mode, ADSC is cleared simultaneously. The software may
then set ADSC again, and a new conversion will be initiated on the first rising ADC clock
edge. In Free Running mode, a new conversion will be started immediately after the
conversion completes, while ADSC remains high. Using Free Running mode and an
ADC clock frequency of 200 kHz gives the lowest conversion time with a maximum res-
olution, 65 µs, equivalent to 15 kSPS. For a summary of conversion times, see Table
43.

Figure 62. ADC Timing Diagram, Extended Conversion (Single Conversion Mode)

Figure 63. ADC Timing Diagram, Single Conversion

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

Sample & Hold

ADIF

ADCH

ADCL

Cycle Number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

Extended Conversion
Next
Conversion

3

MUX and REFS
Update

MUX and REFS
Update

Conversion
Complete

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

3

Sample & Hold

MUX and REFS
Update

Conversion
Complete

MUX and REFS
Update
130 ATmega323(L)
1457G–AVR–09/03

Notes: 1. Values are guidelines only. Actual values are TBD.
2. Minimum for AVCC is 2.7V.
3. Maximum for AVCC is 5.5V.

ADC Characteristics – Preliminary Data

Symbol Parameter Condition Min(2) Typ Max(3) Units

Resolution Single-ended Conversion 10 Bits

Absolute accuracy
VREF = 4V
ADC clock = 200 kHz

1 2 LSB

Absolute accuracy
VREF = 4V
ADC clock = 1 MHz

4 LSB

Absolute accuracy
VREF = 4V
ADC clock = 2 MHz

16 LSB

Integral Non-linearity VREF > 2V 0.5 LSB

Differential Non-linearity VREF > 2V 0.5 LSB

Zero Error (Offset) VREF > 2V 1 LSB

Conversion Time Free Running Conversion 65 260 µs

Clock Frequency 50 200 kHz

AVCC Analog Supply Voltage VCC - 0.3(2) VCC + 0.3(3) V

VREF Reference Voltage 2 V AVCC V

VINT Internal Voltage Reference 2.35 2.56 2.77 V

VBG Bandgap Voltage Reference 1.12 1.22 1.32 V

RREF Reference Input Resistance 6 10 13 kΩ

VIN Input Voltage AGND AREF V

RAIN Analog Input Resistance 100 MΩ
136 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
I/O Ports All AVR ports have true Read-Modify-Write functionality when used as general digital
I/O ports. This means that the direction of one port pin can be changed without uninten-
tionally changing the direction of any other pin with the SBI and CBI instructions. The
same applies for changing drive value (if configured as output) or enabling/disabling of
pull-up resistors (if configured as input).

Port A Port A is an 8-bit bi-directional I/O port with optional internal pull-ups.

Three I/O Memory address locations are allocated for Port A, one each for the Data
Register – PORTA, $1B($3B), Data Direction Register – DDRA, $1A($3A) and the Port
A Input Pins – PINA, $19($39). The Port A Input Pins address is read only, while the
Data Register and the Data Direction Register are read/write.

All port pins have individually selectable pull-up resistors. The Port A output buffers can
sink 20 mA and thus drive LED displays directly. When pins PA0 to PA7 are used as
inputs and are externally pulled low, they will source current if the internal pull-up resis-
tors are activated.

Port A has an alternate function as analog inputs for the ADC. If some Port A pins are
configured as outputs, it is essential that these do not switch when a conversion is in
progress. This might corrupt the result of the conversion.

During Power-down mode, the Schmitt Trigger of the digital input is disconnected. This
allows analog signals that are close to VCC/2 to be present during Power-down without
causing excessive power consumption.

The Port A Data Register –
PORTA

The Port A Data Direction
Register – DDRA

The Port A Input Pins Address
– PINA

The Port A Input Pins address – PINA – is not a register, and this address enables
access to the physical value on each Port A pin. When reading PORTA the Port A Data
Latch is read, and when reading PINA, the logical values present on the pins are read.

Bit 7 6 5 4 3 2 1 0

$1B ($3B) PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 PORTA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$1A ($3A) DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 DDRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$19 ($39) PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 PINA

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
137
1457G–AVR–09/03

Figure 84. Port D Schematic Diagram (Pin PD7)

PUD

PUD: PULL-UP DISABLE

WP:
WD:
RL:
RP:
RD:

WRITE PORTD
WRITE DDRD
READ PORTD LATCH
READ PORTD PIN
READ DDRD
156 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
104 SIG_PRIVATE27

Private Section 2 (Cont.)

103 SIG_PRIVATE28

102 SIG_PRIVATE29

101 SIG_PRIVATE30

100 SIG_PRIVATE31

99 SIG_PRIVATE32

98 SIG_PRIVATE33

97 SIG_PRIVATE34

96 SIG_PRIVATE35

95 SIG_PRIVATE36

94 SIG_PRIVATE37

93 SIG_PRIVATE38

92 SIG_PRIVATE39

91 SIG_PRIVATE40

90 SIG_PRIVATE41

89 SIG_PRIVATE42

88 PB0.Data

Port B

87 PB0.Control

86 PB0.PuLLup_Disable

85 PB1.Data

84 PB1.Control

83 PB1.PuLLup_Disable

82 PB2.Data

81 PB2.Control

80 PB2.PuLLup_Disable

79 PB3.Data

78 PB3.Control

77 PB3.PuLLup_Disable

76 PB4.Data

75 PB4.Control

74 PB4.PuLLup_Disable

Table 58. ATmega323 Boundary-Scan Order (Continued)

Bit Number Signal Name Module
173
1457G–AVR–09/03

Boundary-Scan
Description Language
Files

Boundary-Scan Description Language (BSDL) files describe Boundary-Scan capable
devices in a standard format used by automated test-generation software. The order
and function of bits in the Boundary-Scan Data Register are included in this description.
A BSDL file for ATmega323 is available.

11 PA3.Data

Port A

10 PA3.Control

9 PA3.PuLLup_Disable

8 PA2.Data

7 PA2.Control

6 PA2.PuLLup_Disable

5 PA1.Data

4 PA1.Control

3 PA1.PuLLup_Disable

2 PA0.Data

1 PA0.Control

0 PA0.PuLLup_Disable

Table 58. ATmega323 Boundary-Scan Order (Continued)

Bit Number Signal Name Module
176 ATmega323(L)
1457G–AVR–09/03

Figure 94. Programming the Flash Waveforms

Figure 95. Programming the Flash Waveforms (continued)

Programming the EEPROM The programming algorithm for the EEPROM Data memory is as follows (refer to “Pro-
gramming the Flash” on page 190 for details on Command, Address and Data loading):

1. A: Load Command “0001 0001”.

2. H: Load Address High Byte ($00 - $03)

3. B: Load Address Low Byte ($00 - $FF)

4. C: Load Data Low Byte ($00 - $FF)

K: Write Data Low Byte

1. Set BS1 to “0”. This selects low data.

2. Give WR a negative pulse. This starts programming of the data byte. RDY/BSY
goes low.

$10 ADDR. LOW ADDR. HIGH DATA LOWDATA

XA1

XA2

BS1

XTAL1

RDY/BSY

RESET

WR

OE

+12V

BS2

PAGEL

DA TA HIGHDATA

XA1

XA0

BS1

XTAL1

WR

RDY/BSY

RESET +12V

OE

BS2

PAGEL
192 ATmega323(L)
1457G–AVR–09/03

3. The Serial Programming instructions will not work if the communication is out of
synchronization. When in sync. the second byte ($53), will echo back when issu-
ing the third byte of the Programming Enable instruction. Whether the echo is
correct or not, all four bytes of the instruction must be transmitted. If the $53 did
not echo back, give SCK a positive pulse and issue a new Programming Enable
command. If the $53 is not seen within 32 attempts, there is no functional device
connected.

4. If a chip erase is performed (must be done to erase the Flash), wait 2•tWD_FLASH
after the instruction, give RESET a positive pulse, and start over from Step 2.
See Table 68 for the tWD_FLASH figure.

5. The Flash is programmed one page at a time. The memory page is loaded one
byte at a time by supplying the 6 LSB of the address and data together with the
Load Program memory Page instruction. The Program memory Page is stored
by loading the Write Program memory Page instruction with the 8 MSB of the
address. If polling is not used, the user must wait at least tWD_FLASH before issu-
ing the next page. (Please refer to Table 68). Accessing the Serial Programming
interface before the Flash write operation completes can result in incorrect
programming.

6. The EEPROM array is programmed one byte at a time by supplying the address
and data together with the appropriate Write instruction. An EEPROM Memory
location is first automatically erased before new data is written. If polling is not
used, the user must wait at least tWD_EEPROM before issuing the next byte. (Please
refer to Table 68). In a chip erased device, no $FFs in the data file(s) need to be
programmed.

7. Any memory location can be verified by using the Read instruction which returns
the content at the selected address at serial output MISO/PB6.

8. At the end of the programming session, RESET can be set high to commence
normal operation.

9. Power-off sequence (if needed):
Set XTAL1 to “0” (if a crystal is not used).
Set RESET to “1”.
Turn VCC power off

Data Polling Flash When a page is being programmed into the Flash, reading an address location within
the page being programmed will give the value $FF. At the time the device is ready for a
new page, the programmed value will read correctly. This is used to determine when the
next page can be written. Note that the entire page is written simultaneously and any
address within the page can be used for polling. Data polling of the Flash will not work
for the value $FF, so when programming this value, the user will have to wait for at least
tWD_FLASH before programming the next page. As a Chip Erased device contains $FF in
all locations, programming of addresses that are meant to contain $FF, can be skipped.
See Table 68 tWD_FLASH.

Data Polling EEPROM When a new byte has been written and is being programmed into EEPROM, reading the
address location being programmed will give the value $FF. At the time the device is
ready for a new byte, the programmed value will read correctly. This is used to deter-
mine when the next byte can be written. This will not work for the value $FF, but the user
should have the following in mind: As a Chip Erased device contains $FF in all locations,
programming of addresses that are meant to contain $FF, can be skipped. This does
not apply if the EEPROM is re-programmed without Chip Erasing the device. In this
case, data polling cannot be used for the value $FF, and the user will have to wait at
least tWD_EEPROM before programming the next byte. See Table 68 for tWD_EEPROM.
198 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
Packaging Information

44A

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.
44M1, 44-pad, 7 x 7 x 1.0 mm Body, Lead Pitch 0.50 mm
Micro Lead Frame Package (MLF) C44M1

01/15/03

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

A 0.80 0.90 1.00

A1 – 0.02 0.05

A3 0.25 REF

b 0.18 0.23 0.30

D 7.00 BSC

D2 5.00 5.20 5.40

E 7.00 BSC

E2 5.00 5.20 5.40

e 0.50 BSC

L 0.35 0.55 0.75
Notes: 1. JEDEC Standard MO-220, Fig. 1 (SAW Singulation) VKKD-1.

TOP VIEW

SIDE VIEW

BOTTOM VIEW

D

E

Marked Pin# 1 ID

E2

D2

b e

Pin #1 Corner
L

A1

A3

A

SEATING PLANE
237
1457G–AVR–09/03

3. TWI is Speed Limited in Slave Mode

When the Two-wire Serial Interface operates in Slave mode, frames may be unde-
tected if the CPU frequency is less than 64 times the bus frequency.

Problem Fix/Workaround

Ensure that the CPU frequency is at least 64 times the TWI bus frequency.

2. Problems with UBRR Settings

The baud rate corresponding to the previous UBRR setting is used for the first trans-
mitted/received bit when either UBRRH or UBRRL is written. This will disturb
communication if the UBRR is changed from a very high to a very low baud rate set-
ting, as the internal baud rate counter will have to count down to zero before using
the new setting.

In addition, writing to UBRRL incorrectly clears the UBRRH setting.

Problem Fix/Workaround

UBRRH must be written after UBRRL because setting UBRRL clears UBRRH. By
doing an additional dummy write to UBRRH, the baud rate is set correctly. The fol-
lowing is an example on how to set UBRR. UBRRH is updated first for upward
compatibility with corrected devices.

ldi r17, HIGH(baud)

ldi r16, LOW(baud)

out UBRRH, r17 ; Added for upward compatibility

out UBRRL, r16 ; Set new UBRRL, UBRRH incorrectly cleared

out UBRRH, r17 ; Set new UBRRH

out UBRRH, r17 ; Loads the baud rate counter with new (correct) value

1. Missing OverRun Flag and Fake Frame Error in USART

When the USART has received three characters without any of them been read, the
USART FIFO is full. If the USART detects the start bit of a fourth character, the Data
OverRun (DOR) Flag will be set for the third character. However, if a read from the
USART Data Register is performed just after the start bit of the fourth byte is
received, a Frame Error is generated for character three. If the USART Data Regis-
ter is read between the reception of the first data bit and the end of the fourth
character, the Data OverRun Flag of character three will be lost.

Problem Fix/Workaround

The user should design the application to never completely fill the USART FIFO. If
this is not possible, the user must use a high-level protocol to be able to detect if any
characters were lost and request a retransmission if this happens.

The following is not errata for ATmega323, all revisions. However, a proposal for solving
problems regarding the JTAG instruction IDCODE is presented below.

IDCODE masks data from TDI input

The public but optional JTAG instruction IDCODE is not implemented correctly
according to IEEE1149.1; a logic one is scanned into the shift register instead of the
TDI input while shifting the Device ID Register. Hence, captured data from the pre-
ceding devices in the boundary scan chain are lost and replaced by all-ones, and
data to succeeding devices are replaced by all-ones during Update-DR.

If ATmega323 is the only device in the scan chain, the problem is not visible.
240 ATmega323(L)
1457G–AVR–09/03

