
Microchip Technology - ATMEGA323L-4AC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 4MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 32

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature 0°C ~ 70°C

Mounting Type Surface Mount

Package / Case 44-TQFP

Supplier Device Package 44-TQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega323l-4ac

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega323l-4ac-4425788
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Table 6 shows the start-up times from Reset. When the CPU wakes up from Power-
down or Power-save, only the clock counting part of the start-up time is used. The
Watchdog Oscillator is used for timing the Real Time part of the start-up time. The num-
ber WDT Oscillator cycles used for each time-out is shown in Table 7.

The frequency of the Watchdog Oscillator is voltage dependent as shown in the Electri-
cal Characteristics section. The device is shipped with CKSEL = “0010” (Internal RC
Oscillator, slowly rising power).

Note: 1. The BODLEVEL Fuse can be used to select start-up times even if the Brown-out
Detection is disabled (BODEN Fuse unprogrammed).

Power-on Reset A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detec-
tion level is defined in Table 5. The POR is activated whenever VCC is below the
detection level. The POR circuit can be used to trigger the Start-up Reset, as well as to
detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reach-
ing the Power-on Reset threshold voltage invokes a delay counter, which determines
the delay, for which the device is kept in RESET after VCC rise. The time-out period of
the delay counter can be defined by the user through the CKSEL Fuses. The different
selections for the delay period are presented in Table 6. The RESET signal is activated
again, without any delay, when the VCC decreases below detection level.

Figure 25. MCU Start-up, RESET Tied to VCC

Table 7. Number of Watchdog Oscillator Cycles

BODLEVEL(1) VCC Condition Time-out Number of Cycles

Unprogrammed 2.7V 30 µs 8

Unprogrammed 2.7V 130 µs 32

Unprogrammed 2.7V 4.2 ms 1K

Unprogrammed 2.7V 67 ms 16K

Programmed 4.0V 10 µs 8

Programmed 4.0V 35 µs 32

Programmed 4.0V 5.8 ms 4K

Programmed 4.0V 92 ms 64K

VCC

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST
28 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
• Bit 2 – TOV1: Timer/Counter1 Overflow Flag

The TOV1 is set (one) when an overflow occurs in Timer/Counter1. TOV1 is cleared by
hardware when executing the corresponding interrupt handling vector. Alternatively,
TOV1 is cleared by writing a logic one to the flag. When the I-bit in SREG, and TOIE1
(Timer/Counter1 Overf low Interrupt Enable), and TOV1 are set (one), the
Timer/Counter1 Overflow Interrupt is executed. In PWM mode, this bit is set when
Timer/Counter1 changes counting direction at $0000.

• Bit 1– OCF0: Output Compare Flag 0

The OCF0 bit is set (one) when a Compare Match occurs between the Timer/Counter0
and the data in OCR0 – Output Compare Register 0. OCF0 is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, OCF0 is
cleared by writing a logic one to the flag. When the I-bit in SREG, and OCIE0
(Timer/Counter0 Compare Match Interrupt Enable), and the OCF0 are set (one), the
Timer/Counter0 Compare Match Interrupt is executed.

• Bit 0 – TOV0: Timer/Counter0 Overflow Flag

The bit TOV0 is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared
by hardware when executing the corresponding interrupt handling vector. Alternatively,
TOV0 is cleared by writing a logic one to the flag. When the SREG I-bit, and TOIE0
(Timer/Counter0 Overf low Interrupt Enable), and TOV0 are set (one), the
Timer/Counter0 Overflow interrupt is executed. In PWM mode, this bit is set when
Timer/Counter0 changes counting direction at $00.

External Interrupts The External Interrupts are triggered by the INT0, INT1, and INT2 pins. Observe that, if
enabled, the interrupts will trigger even if the INT0..2 pins are configured as outputs.
This feature provides a way of generating a software interrupt. The External Interrupts
can be triggered by a falling or rising edge or a low level (INT2 is only an edge triggered
interrupt). This is set up as indicated in the specification for the MCU Control Register –
MCUCR and MCU Control and Status Register – MCUCSR. When the External Interrupt
is enabled and is configured as level triggered (only INT0/INT1), the interrupt will trigger
as long as the pin is held low.

MCU Control Register –
MCUCR

The MCU Control Register contains control bits for general MCU functions.

• Bit 7 – SE: Sleep Enable

The SE bit must be set (one) to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the pro-
grammers purpose, it is recommended to set the Sleep Enable (SE) bit just before the
execution of the SLEEP instruction.

Bit 7 6 5 4 3 2 1 0

$37 ($57) SE SM2 SM1 SM0 ISC11 ISC10 ISC01 ISC00 MCUCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
37
1457G–AVR–09/03

Note: 1. n = 0 or 2
In overflow PWM mode, the table above is only valid for OCRn = $FF.

In up/down PWM mode, the Timer Overflow Flag, TOV0 or TOV2, is set when the
counter advances from $00. In overflow PWM mode, the Timer Overflow Flag is set as
in normal Timer/Counter mode. Timer Overflow Interrupt0 and 2 operate exactly as in
normal Timer/Counter mode, i.e., they are executed when TOV0 or TOV2 are set pro-
vided that Timer Overflow Interrupt and Global Interrupts are enabled. This does also
apply to the Timer Output Compare Flag and interrupt.

Asynchronous Status
Register – ASSR

• Bit 7..4 – Res: Reserved Bits

These bits are reserved bits in the ATmega323 and always read as zero.

• Bit 3 – AS2: Asynchronous Timer/Counter2

When AS2 is cleared (zero), Timer/Counter2 is clocked from the internal system clock,
CK. When AS2 is set (one), Timer/Counter2 is clocked from the TOSC1 pin. Pins PC6
and PC7 are connected to a crystal Oscillator and cannot be used as general I/O pins.
When the value of this bit is changed, the contents of TCNT2, OCR2, and TCCR2 might
be corrupted.

• Bit 2 – TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes
set (one). When TCNT2 has been updated from the temporary storage register, this bit
is cleared (zero) by hardware. A logical zero in this bit indicates that TCNT2 is ready to
be updated with a new value.

• Bit 1 – OCR2UB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2 is written, this bit becomes
set (one). When OCR2 has been updated from the temporary storage register, this bit is
cleared (zero) by hardware. A logical zero in this bit indicates that OCR2 is ready to be
updated with a new value.

• Bit 0 – TCR2UB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2 is written, this bit becomes
set (one). When TCCR2 has been updated from the temporary storage register, this bit
is cleared (zero) by hardware. A logical zero in this bit indicates that TCCR2 is ready to
be updated with a new value.

Table 16. PWM Outputs OCRn = $00 or $FF(1)

COMn1 COMn0 OCRn Output PWMn

1 0 $00 L

1 0 $FF H

1 1 $00 H

1 1 $FF L

Bit 7 6 5 4 3 2 1 0

$22 ($22) – – – – AS2 TCN2UB OCR2UB TCR2UB ASSR

Read/Write R R R R R/W R R R

Initial Value 0 0 0 0 0 0 0 0
52 ATmega323(L)
1457G–AVR–09/03

Figure 47. Synchronous Mode XCK Timing

The UCPOL bit UCRSC selects which XCK clock edge is used for data sampling and
which is used for data change. As Figure 47 shows, when UCPOL is zero the data will
be changed at falling XCK edge and sampled at rising XCK edge. If UCPOL is set, the
data will be changed at rising XCK edge and sampled at falling XCK edge.

Frame Formats A serial frame is defined to be one character of data bits with synchronization bits (start
and stop bits), and optionally a parity bit for error checking. The USART accept all 30
combinations of the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even, or odd parity bit

• 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next
data bits, up to a total of nine, are succeeding, ending with the most significant bit. If
enabled, the parity bit is inserted after the data bits, before the stop bits. When a com-
plete frame is transmitted, it can be directly followed by a new frame, or the
communication line can be set to a idle (high) state. Figure 48 illustrates the possible
combinations of the frame formats. Bits inside brackets are optional.

Figure 48. Frame Formats

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxD or TxD).
An IDLE line must be high.

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 1

UCPOL = 0

Sample

Sample

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME
78 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
Receiving Frames with 9 Data
Bits

If 9-bit characters are used (UCSZ=7) the ninth bit must be read from the RXB8 bit in
UCSRB before reading the low bits from the UDR. This rule applies to the FE, DOR,
and PE Status Flags as well. Read status from UCSRA, then data from UDR. Reading
the UDR I/O location will change the state of the receive buffer FIFO and consequently
the TXB8, FE, DOR and PE bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both
nine bit characters and the status bits.

Note: 1. The example code assumes that the part specific header file is included.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRA, RXC

rjmp USART_Receive

; Get status and ninth bit, then data from buffer

in r18, UCSRA

in r17, UCSRB

in r16, UDR

; If error, return -1

andi r18,(1<<FE)|(1<<DOR)|(1<<PE)

breq USART_ReceiveNoError

ldi r17, HIGH(-1)

ldi r16, LOW(-1)

USART_ReceiveNoError:

; Filter the ninth bit, then return

lsr r17

andi r17, 0x01

ret

C Code Example(1)

unsigned int USART_Receive(void)

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while (!(UCSRA & (1<<RXC))) {};

/* Get status and ninth bit, then data */

/* from buffer */

status = UCSRA;

resh = UCSRB;

resl = UDR;

/* If error, return -1 */

if (status & (1<<FE)|(1<<DOR)|(1<<PE))

return -1;

/* Filter the ninth bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

}

85
1457G–AVR–09/03

ATmega323(L)
ldi r16, 0xc8 ; Load SLA+W into TWDR Register

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start transmission
; of address

wait2: in r16, TWCR ; Wait for TWINT Flag set. This indicates that

sbrs r16, TWINT ; SLA+W has been transmitted, and ACK/NACK has

rjmp wait2 ; been received

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, MT_SLA_ACK ; different from MT_SLA_ACK, go to ERROR

brne ERROR

ldi r16, 0x33 ; Load data (here, data=0x33) into TWDR
; Register

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start transmission
; of data

wait3: in r16, TWCR ; Wait for TWINT Flag set. This indicates that

sbrs r16, TWINT ; data has been transmitted, and ACK/NACK has

rjmp wait3 ; been received

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, MT_DATA_ACK ; different from MT_DATA_ACK, go to ERROR

brne ERROR

ldi r16, 0x44 ; Load data (here, data = 0x44) into TWDR
; Register

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16 ; Clear TWINT bit in TWCR to start transmission
; of data

;<send more data bytes if needed>

wait4: in r16, TWCR ; Wait for TWINT Flag set. This indicates that

sbrs r16, TWINT ; data has been transmitted, and ACK/NACK has

rjmp wait4 ; been received

in r16, TWSR ; Check value of TWI Status Register. If status

cpi r16, MT_DATA_ACK ; different from MT_DATA_ACK, go to ERROR

brne ERROR

ldi r16, (1<<TWINT) | (1<<TWSTO) | (1<<TWEN)

out TWCR, r16 ; Transmit STOP condition
113
1457G–AVR–09/03

ATmega323(L)
Analog to Digital
Converter

Features • 10-bit Resolution
• 0.5 LSB Integral Non-linearity
• ±2 LSB Absolute Accuracy
• 65 - 260 µs Conversion Time
• Up to 15 kSPS at Maximum Resolution
• Up to 76 kSPS at 8-bit Resolution
• Eight Multiplexed Single Ended Input Channels
• Optional Left Adjustment for ADC Result Readout
• 0 - VCC ADC Input Voltage Range
• Selectable 2.56V ADC Reference Voltage
• Free Run or Single Conversion Mode
• Interrupt on ADC Conversion Complete
• Sleep Mode Noise Canceler

The ATmega323 features a 10-bit successive approximation ADC. The ADC is con-
nected to an 8-channel Analog Multiplexer which allows each pin of Port A to be used as
input for the ADC.

The ADC contains a Sample and Hold Amplifier which ensures that the input voltage to
the ADC is held at a constant level during conversion. A block diagram of the ADC is
shown in Figure 60.

The ADC has two separate analog supply voltage pins, AVCC and AGND. AGND must
be connected to GND, and the voltage on AVCC must not differ more than ±0.3V from
VCC. See the paragraph ADC Noise Canceling Techniques on how to connect these
pins.

Internal reference voltages of nominally 2.56V or AVCC are provided On-chip. The
2.56V reference may be externally decoupled at the AREF pin by a capacitor for better
noise performance. See “Internal Voltage Reference” on page 31 for a description of the
internal voltage reference.
127
1457G–AVR–09/03

ATmega323(L)
Figure 69. Port B Schematic Diagram (Pin PB2)

Figure 70. Port B Schematic Diagram (Pin PB3)

D
A

TA
 B

U
S

D

D

Q

Q

RESET

RESET

C

C

WD

WP

RD

MOS
PULL-
UP

PB2

R

R

WP:
WD:
RL:
RP:
RD:

WRITE PORTB
WRITE DDRB
READ PORTB LATCH
READ PORTB PIN
READ DDRB

DDB2

PORTB2

RL

RP

D Q

C
R

ISC2

'1' INT2

SW CLEAR

HW CLEAR

PUD

PUD: PULL-UP DISABLE

AIN0
TO COMPARATOR

INT2 ENABLE

PWRDN

PB3

DDB3

PORTB3

COMP. MATCH 0

COM00
COM01

WP:
WD:
RL:
RP:
RD:

WRITE PORTB
WRITE DDRB
READ PORTB LATCH
READ PORTB PIN
READ DDRB

FOC0

PWM0
PUD: PULL-UP DISABLE

PUD

AIN1
TO COMPARATOR

PWRDN
143
1457G–AVR–09/03

ATmega323(L)
SIG_PRIVATE18 General Scan Cell 0

SIG_PRIVATE19 General Scan Cell 0

SIG_PRIVATE20 General Scan Cell 0

SIG_PRIVATE21 General Scan Cell 1

SIG_PRIVATE22 General Scan Cell 0

SIG_PRIVATE23 General Scan Cell 0

SIG_PRIVATE24 General Scan Cell 0

SIG_PRIVATE25 General Scan Cell 1

SIG_PRIVATE26 General Scan Cell 0

SIG_PRIVATE27 General Scan Cell 0

SIG_PRIVATE28 General Scan Cell 0

SIG_PRIVATE29 General Scan Cell 0

SIG_PRIVATE30 General Scan Cell 0

SIG_PRIVATE31 General Scan Cell 0

SIG_PRIVATE32 General Scan Cell 0

SIG_PRIVATE33 General Scan Cell 0

SIG_PRIVATE34 General Scan Cell 1

SIG_PRIVATE35 General Scan Cell 0

SIG_PRIVATE36 General Scan Cell 0

SIG_PRIVATE37 General Scan Cell 0

SIG_PRIVATE38 General Scan Cell 1

SIG_PRIVATE39 General Scan Cell 1

SIG_PRIVATE40 General Scan Cell 0

SIG_PRIVATE41 General Scan Cell 0

SIG_PRIVATE42 General Scan Cell 0

SIG_PRIVATE43 Observe Only X

SIG_PRIVATE44 Observe Only X

SIG_PRIVATE45 Observe Only X

SIG_PRIVATE46 Observe Only X

Table 57. Boundary-Scan signals for the ADC (Continued)

Signal Name Type of scan cell Recommended input when not in use
171
1457G–AVR–09/03

ATmega323(L)
Figure 93. Parallel Programming

Table 64. Pin Name Mapping

Signal Name in
Programming Mode

Pin
Name I/O Function

RDY/BSY PD1 O 0: Device is Busy Programming, 1: Device is
Ready for New Command

OE PD2 I Output Enable (Active Low)

WR PD3 I Write Pulse (Active Low)

BS1 PD4 I Byte Select 1 (“0” Selects Low Byte, “1” Selects
High Byte)

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

PAGEL PD7 I Program Memory Page Load

BS2 PA0 I Byte Select 2 (“0” Selects Low Byte, “1” Selects 2
nd High Byte)

DATA PB7 - 0 I/O Bidirectional Data Bus (Output When OE is Low)

Table 65. XA1 and XA0 Coding

XA1 XA0 Action When XTAL1 is Pulsed

0 0 Load Flash or EEPROM Address (High or Low Address Byte
Determined by BS1)

0 1 Load Data (High or Low Data Byte for Flash Determined by BS1)

1 0 Load Command

1 1 No Action, Idle

ATmega323

VCC

+5V

GND

XTAL1

PD1

PD2

PD3

PD4

PD5

PD6

 PB7 - PB0 DATA

RESET

PD7

+12 V

BS1

XA0

XA1

OE

RDY/BSY

PAGEL

PA0

WR

BS2
189
1457G–AVR–09/03

ATmega323(L)
Serial Downloading Both the Flash and EEPROM Memory arrays can be programmed using the serial SPI
bus while RESET is pulled to GND. The serial interface consists of pins SCK, MOSI
(input) and MISO (output). After RESET is set low, the Programming Enable instruction
needs to be executed first before program/erase operations can be executed.

Figure 98. Serial Programming and Verify

When programming the EEPROM, an auto-erase cycle is built into the self-timed pro-
gramming operation (in the serial mode ONLY) and there is no need to first execute the
Chip Erase instruction. The Chip Erase operation turns the content of every memory
location in both the Program and EEPROM arrays into $FF.

The Program and EEPROM Memory arrays have separate address spaces:

$0000 to $3FFF for Program memory and $0000 to $03FF for EEPROM Memory.

The device can be clocked by any clock option during Low Voltage Serial Programming.
The minimum low and high periods for the serial clock (SCK) input are defined as
follows:

Low: > 2 CPU clock cycles

High: > 2 CPU clock cycles

Serial Programming
Algorithm

When writing serial data to the ATmega323, data is clocked on the rising edge of SCK.

When reading data from the ATmega323, data is clocked on the falling edge of SCK.
See Figure 99, Figure 100, and Table 70 for timing details.

To program and verify the ATmega323 in the Serial Programming mode, the following
sequence is recommended (See four byte instruction formats in Table 69):

1. Power-up sequence:

Apply power between VCC and GND while RESET and SCK are set to “0”. The
RESET and SCK are set to “0”. In accordance with the setting of CKSEL Fuses,
apply a crystal/resonator, external clock or RC network, or let the device run on the
internal RC Oscillator. In some systems, the programmer can not guarantee that
SCK is held low during Power-up. In this case, RESET must be given a positive
pulse of at least two XTAL1 cycles duration after SCK has been set to “0”.

2. Wait for at least 20 ms and enable Serial Programming by sending the Program-
ming Enable serial instruction to pin MOSI/PB5.

ATmega323

VCC

2.7 - 5.5V

GND

PB6

PB7

PB5

SCK

MISO

MOSI

RESET
197
1457G–AVR–09/03

ATmega323(L)
Table 71. JTAG Programming Instruction Set

Instruction TDI sequence TDO sequence Notes

1a. Chip erase
0100011_10000000

0110001_10000000

0110011_10000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

1b. Poll for chip erase complete 0110011_10000000 xxxxxox_xxxxxxxx (2)

2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx

2b. Load Address High Byte 0000111_00aaaaaa xxxxxxx_xxxxxxxx

2c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

2d. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

2e. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx

2f. Latch Data
0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2g. Write Page

0110111_00000000

0110101_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2h. Poll for Page Write complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx

3b. Load Address High Byte 0000111_00aaaaaa xxxxxxx_xxxxxxxx

3c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

3d. Read Data Low and High Byte
0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

xxxxxxx_oooooooo

Low Byte

High Byte

4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx

4b. Load Address High Byte 0000111_000000aa xxxxxxx_xxxxxxxx

4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

4e. Write EEPROM byte
0110011_00000000

0110001_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4f. Poll for Byte Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx

5b. Load Address High Byte 0000111_000000aa xxxxxxx_xxxxxxxx

5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

5d. Read Data Byte

0110011_bbbbbbbb

0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

6a. Enter Fuse Write 0100011_01000000 xxxxxxx_xxxxxxxx

6b. Load Data High Byte 0010011_IH11GFED xxxxxxx_xxxxxxxx (3)
205
1457G–AVR–09/03

ATmega323(L)
Virtual Flash Page Read
Register

The Virtual Flash Page Read Register is a virtual scan chain with length equal to the
number of bits in one Flash page plus eight, 1,032 in total. Internally the Shift Register is
8-bit, and the data are automatically transferred from the Flash data page byte-by-byte.
The first eight cycles are used to transfer the first byte to the internal Shift Register, and
the bits that are shifted out during these eight cycles should be ignored. Following this
initialization, data are shifted out starting with the LSB of the instruction with page
address 0 and ending with the MSB of the instruction with page address 3F. This pro-
vides an efficient way to read one full Flash page to verify programming.

Figure 105. Virtual Flash Page Read Register

Programming algorithm All references below of type “1a”, “1b”, and so on, refer to Table 71.

Entering programming mode 1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

2. Enter instruction PROG_ENABLE and shift 1010_0011_0111_0000 in the Pro-
gramming Enable Register.

Leaving Programming Mode 1. Enter JTAG instruction PROG_COMMANDS.

2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0000_0000_0000_0000 in the pro-
gramming Enable Register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

If PROG_ENABLE instruction is not followed by the AVR_RESET instruction, the follow-
ing algorithm should be used:

1. Enter JTAG instruction PROG_COMMANDS.

2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0000_0000_0000_0000 in the Pro-
gramming Enable Register.

4. Enter instruction PROG_ENABLE and shift 0000_0000_0000_0000 in the Pro-
gramming Enable Register.

5. Wait until the selected Oscillator has started before applying more commands.

TDI

TDO

D
A
T
A

Flash
EEPROM

Fuses
Lock Bits

STROBES

ADDRESS

State
machine
209
1457G–AVR–09/03

Performing Chip Erase 1. Enter JTAG instruction PROG_COMMANDS.

2. Start chip erase using programming instruction 1a.

3. Poll for chip erase complete using programming instruction 1b, or wait for
tWLRH_CE (refer to Table 67 on page 196).

Programming the Flash 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load address using programming instructions 2b and 2c.

4. Load data using programming instructions 2d, 2e and 2f.

5. Repeat step 3 and 4 for all 64 instruction words in the page.

6. Write the page using programming instruction 2g.

7. Poll for Flash write complete using programming instruction 2h, or wait for
tWLRH_FLASH (refer to Table 67 on page 196).

8. Repeat steps 3 to 7 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD
instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2b and 2c. The 6 LSB
are used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page, starting with
the LSB of the first instruction in the page and ending with the MSB of the last
instruction in the page.

6. Enter JTAG instruction PROG_COMMANDS.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for
tWLRH_FLASH (refer to Table 67 on page 196).

9. Repeat steps 3 to 8 until all data have been programmed.

Reading the Flash 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load address using programming instructions 3b and 3c.

4. Read data using programming instruction 3d.

5. Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD
instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load the page address using programming instructions 3b and 3c. The 6 LSB
are used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGEREAD.

5. Read the entire page by shifting out all instruction words in the page, starting
with the LSB of the instruction with page address 0 and ending with the MSB of
the instruction with page address 3F. Remember that the first eight bits should be
ignored.
210 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
communicate at full speed (400 kHz) with other ATmega323 devices, as well as any other device with a proper tLOW accep-
tance margin.

Figure 107. Two-wire Serial Bus timing

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT tSU;STO

tBUF

SCL

SDA
217
1457G–AVR–09/03

ATmega323(L)
Figure 121. Analog Comparator Offset voltage vs. Common Mode Voltage

Figure 122. Analog Comparator Input Leakage Current

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3

ANALOG COMPARATOR OFFSET VOLTAGE vs.
COMMON MODE VOLTAGE

Common Mode Voltage (V)

O
ffs

et
 V

ol
ta

ge
 (

m
V

)

V = 2.7Vcc

T = 85˚CA

T = 25˚CA

60

50

40

30

20

10

0

-10
0 0.5 1.51 2 2.5 3.53 4 4.5 5 6 6.5 75.5

ANALOG COMPARATOR INPUT LEAKAGE CURRENT
T = 25˚CA

I
 (

nA
)

A
C

LK

V (V)IN

V = 6VCC
225
1457G–AVR–09/03

ATmega323(L)
Figure 125. Pull-Up Resistor Current vs. Input Voltage

Figure 126. Pull-Up Resistor Current vs. Input Voltage

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
V = 5Vcc

I
 (

µA
)

O
P

V (V)OP

T = 85˚CA

T = 25˚CA

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3

PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

I
 (

µA
)

O
P

V (V)OP

V = 2.7Vcc

T = 85˚CA

T = 25˚CA
227
1457G–AVR–09/03

ATmega323(L)
Packaging Information

44A

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.
44M1, 44-pad, 7 x 7 x 1.0 mm Body, Lead Pitch 0.50 mm
Micro Lead Frame Package (MLF) C44M1

01/15/03

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

A 0.80 0.90 1.00

A1 – 0.02 0.05

A3 0.25 REF

b 0.18 0.23 0.30

D 7.00 BSC

D2 5.00 5.20 5.40

E 7.00 BSC

E2 5.00 5.20 5.40

e 0.50 BSC

L 0.35 0.55 0.75
Notes: 1. JEDEC Standard MO-220, Fig. 1 (SAW Singulation) VKKD-1.

TOP VIEW

SIDE VIEW

BOTTOM VIEW

D

E

Marked Pin# 1 ID

E2

D2

b e

Pin #1 Corner
L

A1

A3

A

SEATING PLANE
237
1457G–AVR–09/03

3. TWI is Speed Limited in Slave Mode

When the Two-wire Serial Interface operates in Slave mode, frames may be unde-
tected if the CPU frequency is less than 64 times the bus frequency.

Problem Fix/Workaround

Ensure that the CPU frequency is at least 64 times the TWI bus frequency.

2. Problems with UBRR Settings

The baud rate corresponding to the previous UBRR setting is used for the first trans-
mitted/received bit when either UBRRH or UBRRL is written. This will disturb
communication if the UBRR is changed from a very high to a very low baud rate set-
ting, as the internal baud rate counter will have to count down to zero before using
the new setting.

In addition, writing to UBRRL incorrectly clears the UBRRH setting.

Problem Fix/Workaround

UBRRH must be written after UBRRL because setting UBRRL clears UBRRH. By
doing an additional dummy write to UBRRH, the baud rate is set correctly. The fol-
lowing is an example on how to set UBRR. UBRRH is updated first for upward
compatibility with corrected devices.

ldi r17, HIGH(baud)

ldi r16, LOW(baud)

out UBRRH, r17 ; Added for upward compatibility

out UBRRL, r16 ; Set new UBRRL, UBRRH incorrectly cleared

out UBRRH, r17 ; Set new UBRRH

out UBRRH, r17 ; Loads the baud rate counter with new (correct) value

1. Missing OverRun Flag and Fake Frame Error in USART

When the USART has received three characters without any of them been read, the
USART FIFO is full. If the USART detects the start bit of a fourth character, the Data
OverRun (DOR) Flag will be set for the third character. However, if a read from the
USART Data Register is performed just after the start bit of the fourth byte is
received, a Frame Error is generated for character three. If the USART Data Regis-
ter is read between the reception of the first data bit and the end of the fourth
character, the Data OverRun Flag of character three will be lost.

Problem Fix/Workaround

The user should design the application to never completely fill the USART FIFO. If
this is not possible, the user must use a high-level protocol to be able to detect if any
characters were lost and request a retransmission if this happens.

The following is not errata for ATmega323, all revisions. However, a proposal for solving
problems regarding the JTAG instruction IDCODE is presented below.

IDCODE masks data from TDI input

The public but optional JTAG instruction IDCODE is not implemented correctly
according to IEEE1149.1; a logic one is scanned into the shift register instead of the
TDI input while shifting the Device ID Register. Hence, captured data from the pre-
ceding devices in the boundary scan chain are lost and replaced by all-ones, and
data to succeeding devices are replaced by all-ones during Update-DR.

If ATmega323 is the only device in the scan chain, the problem is not visible.
240 ATmega323(L)
1457G–AVR–09/03

Datasheet Change
Log for ATmega323

This document contains a log on the changes made to the datasheet for ATmega323.

Changes from Rev.
1457F – 09/02 to Rev.
1457G – 09/03

1. Removed “Preliminary” from the .

2. Updated “The Test Access Port – TAP” on page 158 regarding JTAGEN.

3. Updated description for the JTD bit on page 30.

4. Added extra information regarding the JTAGEN interface to “Fuse Bits” on
page 187.

5. Updated some values in “Electrical Characteristics” on page 213.

5. Added a proposal for solving problems regarding the JTAG instruction
IDCODE in “Errata for ATmega323 Rev. B” on page 239.

Changes from Rev.
1457E – 11/01 to Rev.
1457F – 09/02

1. Added watermark: “Not recommended for new designs. Use ATmega32”.

2. Added “Errata for ATmega323 Rev. B” on page 239.
242 ATmega323(L)
1457G–AVR–09/03

