
Microchip Technology - ATMEGA323L-4AI Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 4MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 32

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C

Mounting Type Surface Mount

Package / Case 44-TQFP

Supplier Device Package 44-TQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega323l-4ai

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega323l-4ai-4425789
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ATmega323(L)
The General Interrupt Control
Register – GICR

l

• Bit 7 – INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is activated. The Interrupt Sense Control1 bits 1/0 (ISC11 and
ISC10) in the MCU general Control Register (MCUCR) define whether the external
interrupt is activated on rising and/or falling edge of the INT1 pin or level sensed. Activity
on the pin will cause an interrupt request even if INT1 is configured as an output. The
corresponding interrupt of External Interrupt Request 1 is executed from the INT1 Inter-
rupt Vector. See also “External Interrupts” on page 37.

• Bit 6 – INT0: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is activated. The Interrupt Sense Control0 bits 1/0 (ISC01 and
ISC00) in the MCU general Control Register (MCUCR) define whether the external
interrupt is activated on rising or falling edge of the INT0 pin or level sensed. Activity on
the pin will cause an interrupt request even if INT0 is configured as an output. The corre-
sponding interrupt of External Interrupt Request 0 is executed from the INT0 Interrupt
Vector. See also “External Interrupts” on page 37.

• Bit 5 – INT2: External Interrupt Request 2 Enable

When the INT2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is activated. The Interrupt Sense Control2 bit (ISC02) in the
MCU Control and Status Register (MCUCSR) defines whether the external interrupt is
activated on rising or falling edge of the INT2 pin. Activity on the pin will cause an inter-
rupt request even if INT2 is configured as an output. The corresponding interrupt of
External Interrupt Request 2 is executed from the INT2 Interrupt Vector. See also
“External Interrupts” on page 37.

• Bits 4..2 – Res: Reserved Bits

These bits are reserved bits in the ATmega323 and always read as zero.

• Bit 1 – IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the
Flash memory. When this bit is set (one), the Interrupt Vectors are moved to the begin-
ning of the Boot Loader section of the Flash. The actual address to the start of the Boot
Flash section is determined by the BOOTSZ Fuses. Refer to the section “Boot Loader
Support” on page 177 for details. To avoid unintentional changes of Interrupt Vector
tables, a special write procedure must be followed to change the IVSEL bit:

1. Set the Interrupt Vector Change Enable (IVCE) bit.

2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will be automatically disabled while this sequence is executed. Interrupts are
disabled in the cycle IVCE is set, and they remain disabled until after the instruction fol-
lowing the write to IVSEL. If IVSEL is not written, interrupts remain disabled in four
cycles. The I-flag in the Status Register is unaffected by the automatic disabling.

Bit 7 6 5 4 3 2 1 0

$3B ($5B) INT1 INT0 INT2 – – – IVSEL IVCE GICR

Read/Write R/W R/W R/W R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
33
1457G–AVR–09/03

• Bits 6..4 – SM2..0: Sleep Mode Select Bits 2, 1 and 0

These bits select between the six available sleep modes as shown in Table 8.

Note: 1. Standby mode and Extended Standby mode are only available with external crystals
or resonators.

• Bits 3, 2 – ISC11, ISC10: Interrupt Sense Control 1 Bit 1 and Bit 0

The External Interrupt 1 is activated by the external pin INT1 if the SREG I-flag and the
corresponding interrupt mask in the GICR are set. The level and edges on the external
INT1 pin that activate the interrupt are defined in Table 9. The value on the INT1 pin is
sampled before detecting edges. If edge or toggle interrupt is selected, pulses that last
longer than one clock period will generate an interrupt. Shorter pulses are not guaran-
teed to generate an interrupt. If low level interrupt is selected, the low level must be held
until the completion of the currently executing instruction to generate an interrupt.

• Bit 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the
corresponding interrupt mask are set. The level and edges on the external INT0 pin that
activate the interrupt are defined in Table 10. The value on the INT0 pin is sampled
before detecting edges. If edge or toggle interrupt is selected, pulses that last longer
than one clock period will generate an interrupt. Shorter pulses are not guaranteed to
generate an interrupt. If low level interrupt is selected, the low level must be held until
the completion of the currently executing instruction to generate an interrupt.

Table 8. Sleep Mode Select

SM2 SM1 SM0 Sleep Mode

0 0 0 Idle

0 0 1 ADC Noise Reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby(1)

1 1 1 Extended Standby(1)

Table 9. Interrupt 1 Sense Control

ISC11 ISC10 Description

0 0 The low level of INT1 generates an interrupt request.

0 1 Any logical change on INT1 generates an interrupt request.

1 0 The falling edge of INT1 generates an interrupt request.

1 1 The rising edge of INT1 generates an interrupt request.
38 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
Timer/Counters The ATmega323 provides three general purpose Timer/Counters – two 8-bit T/Cs and
one 16-bit T/C. Timer/Counter2 can optionally be asynchronously clocked from an exter-
nal Oscillator. This Oscillator is optimized for use with a 32.768 kHz watch crystal,
enabling use of Timer/Counter2 as a Real Time Counter (RTC). Timer/Counters 0 and 1
have individual prescaling selection from the same 10-bit prescaler. Timer/Counter2 has
its own prescaler. Both these prescalers can be reset by setting the corresponding con-
trol bits in the Special Functions IO Register (SFIOR). These Timer/Counters can either
be used as a timer with an internal clock time-base or as a counter with an external pin
connection which triggers the counting.

Timer/Counter
Prescalers

Figure 30. Prescaler for Timer/Counter0 and Timer/Counter1

For Timer/Counters 0 and 1, the four different prescaled selections are: CK/8, CK/64,
CK/256, and CK/1024, where CK is the Oscillator clock. For the two Timer/Counters0
and 1, CK, external source, and stop can also be selected as clock sources. Setting the
PSR10 bit in SFIOR Resets the prescaler. This allows the user to operate with a predict-
able prescaler. Note that Timer/Counter1 and Timer/Counter0 share the same prescaler
and a Prescaler Reset will affect both Timer/Counters.

PSR10

Clear

TCK1 TCK0
43
1457G–AVR–09/03

ATmega323(L)
Timer/Counter0 and 2 can also be used as 8-bit Pulse Width Modulators. In this mode,
the Timer/Counter and the Output Compare Register serve as a glitch-free, stand-alone
PWM with centered pulses. Refer to page 49 for a detailed description on this function.

Timer/Counter0 Control
Register – TCCR0

Timer/Counter2 Control
Register – TCCR2

• Bit 7 – FOC0/FOC2: Force Output Compare

Writing a logical one to this bit, forces a change in the Compare Match output pin PB3
(Timer/Counter0) and PD7 (Timer/Counter2) according to the values already set in
COMn1 and COMn0. If the COMn1 and COMn0 bits are written in the same cycle as
FOC0/FOC2, the new settings will not take effect until next Compare Match or Forced
Output Compare Match occurs. The Force Output Compare bit can be used to change
the output pin without waiting for a Compare Match in the timer. The automatic action
programmed in COMn1 and COMn0 happens as if a Compare Match had occurred, but
no interrupt is generated and the Timer/Counters will not be cleared even if CTC0/CTC2
is set. The corresponding I/O pin must be set as an output pin for the FOC0/FOC2 bit to
have effect on the pin. The FOC0/FOC2 bits will always be read as zero. Setting the
FOC0/FOC2 bits has no effect in PWM mode.

• Bit 6 – PWM0/PWM2: Pulse Width Modulator Enable

When set (one) this bit enables PWM mode for Timer/Counter0 or Timer/Counter2. This
mode is described on page 49.

• Bits 5, 4 – COM01, COM00/COM21, COM20: Compare Output Mode, Bits 1 and 0

The COMn1 and COMn0 control bits determine any output pin action following a com-
pare match in Timer/Counter0 or Timer/Counter2. Output pin actions affect pins
PB3(OC0) or PD7(OC2). This is an alternative function to an I/O port, and the corre-
sponding direction control bit must be set (one) to control an output pin. The control
configuration is shown in Table 12.

Notes: 1. In PWM mode, these bits have a different function. Refer to Table 15 for a
description.

2. n = 0 or 2

Bit 7 6 5 4 3 2 1 0

$33 ($53) FOC0 PWM0 COM01 COM00 CTC0 CS02 CS01 CS00 TCCR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$25 ($45) FOC2 PWM2 COM21 COM20 CTC2 CS22 CS21 CS20 TCCR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 12. Compare Mode Select(1)

COMn1(2) COMn0 Description

0 0 Timer/Counter Disconnected from Output Pin OCn

0 1 Toggle the OCn Output Line.

1 0 Clear the OCn Output Line (to Zero).

1 1 Set the OCn Output Line (to One).
47
1457G–AVR–09/03

ATmega323(L)
Serial Peripheral
Interface – SPI

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer
between the ATmega323 and peripheral devices or between several AVR devices. The
ATmega323 SPI includes the following features:
• Full-duplex, Three-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode

Figure 41. SPI Block Diagram

The interconnection between Master and Slave CPUs with SPI is shown in Figure 42.
The PB7(SCK) pin is the clock output in the Master mode and the clock input in the
Slave mode. Writing to the SPI Data Register of the Master CPU starts the SPI clock
generator, and the data written shifts out of the PB5(MOSI) pin and into the PB5(MOSI)
pin of the Slave CPU. After shifting one byte, the SPI clock generator stops, setting the
end of Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR
Register is set, an interrupt is requested. The Slave Select input, PB4(SS), is set low to
select an individual Slave SPI device. The two Shift Registers in the Master and the
Slave can be considered as one distributed 16-bit circular Shift Register. This is shown
in Figure 42. When data is shifted from the Master to the Slave, data is also shifted in
the opposite direction, simultaneously. During one shift cycle, data in the Master and the
Slave is interchanged.

S
P

I2
X

S
P

I2
X

DIVIDER
/2/4/8/16/32/64/128
69
1457G–AVR–09/03

ATmega323(L)
Table 29 contains equations for calculating the baud rate (in bits per second) and for
calculating the UBRR value for each mode of operation using an internally generated
clock source.

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps).
BAUD Baud rate (in bits per second, bps)
fOSC System Oscillator clock frequency
UBRR Contents of the UBRRH and UBRRL Registers, (0 - 4095)
Some examples of UBRR values for some system clock frequency are found in Table
36 (see page 99).

Double Speed Operation
(U2X)

The transfer rate can be doubled by setting the U2X bit in UCSRA. Setting this bit only
has effect for the asynchronous operation. Set this bit to zero when using synchronous
operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively
doubling the transfer rate for asynchronous communication. Note however that the
Receiver will in this case only use half the number of samples (reduced from 16 to 8) for
data sampling and clock recovery, and therefore a more accurate baud rate setting and
system clock are required when this mode is used. For the Transmitter, there are no
downsides.

External Clock External clocking is used by the Synchronous Slave modes of operation. The descrip-
tion in this section refers to Figure 46 for details.

External clock input from the XCK pin is sampled by a synchronization register to mini-
mize the chance of meta-stability. The output from the synchronization register must
then pass through an edge detector before it can be used by the Transmitter and
Receiver. This process introduces a two CPU clock period delay and therefore the max-
imum external XCK clock frequency is limited by the following equation:

Note that fosc depends on the stability of the system clock source. It is therefore recom-
mended to add some margin to avoid possible loss of data due to frequency variations.

Synchronous Clock Operation When synchronous mode is used (UMSEL = 1), the XCK pin will be used as either clock
input (Slave) or clock output (Master). The dependency between the clock edges and
data sampling or data change is the same. The basic principle is that data input (on
RxD) is sampled at the opposite XCK clock edge of the edge the data output (TxD) is
changed.

Table 29. Equations for Calculating Baud Rate Register Setting

Operating Mode
Equation for Calculating

Baud Rate(1)
Equation for Calculating

UBRR Value

Asynchronous Normal Mode
(U2X = 0)

Asynchronous Double Speed
Mode (U2X = 1)

Synchronous Master Mode

BAUD
fOSC

16 UBRR 1+()
--= UBRR

fOSC

16BAUD
------------------------ 1–=

BAUD
fOSC

8 UBRR 1+()
------------------------------------= UBRR

fOSC

8BAUD
--------------------- 1–=

BAUD
fOSC

2 UBRR 1+()
------------------------------------= UBRR

fOSC

2BAUD
--------------------- 1–=

fXCK

fOSC

4
-----------<
77
1457G–AVR–09/03

Figure 47. Synchronous Mode XCK Timing

The UCPOL bit UCRSC selects which XCK clock edge is used for data sampling and
which is used for data change. As Figure 47 shows, when UCPOL is zero the data will
be changed at falling XCK edge and sampled at rising XCK edge. If UCPOL is set, the
data will be changed at rising XCK edge and sampled at falling XCK edge.

Frame Formats A serial frame is defined to be one character of data bits with synchronization bits (start
and stop bits), and optionally a parity bit for error checking. The USART accept all 30
combinations of the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even, or odd parity bit

• 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next
data bits, up to a total of nine, are succeeding, ending with the most significant bit. If
enabled, the parity bit is inserted after the data bits, before the stop bits. When a com-
plete frame is transmitted, it can be directly followed by a new frame, or the
communication line can be set to a idle (high) state. Figure 48 illustrates the possible
combinations of the frame formats. Bits inside brackets are optional.

Figure 48. Frame Formats

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxD or TxD).
An IDLE line must be high.

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 1

UCPOL = 0

Sample

Sample

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME
78 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
Empty Interrupt, otherwise a new interrupt will occur once the interrupt routine
terminates.

The Transmit Complete (TXC) Flag bit is set one when the entire frame in the Transmit
Shift Register has been shifted out and there are no new data currently present in the
Transmit Buffer. The TXC Flag bit is automatically cleared when a Transmit Complete
Interrupt is executed, or it can be cleared by writing a one to its bit location. The TXC
Flag is useful in half-duplex communication interfaces (like the RS-485 standard), where
a transmitting application must enter Receive mode and free the communication bus
immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIE) bit in UCSRB is set, the USART
Transmit Complete Interrupt will be executed when the TXC Flag becomes set (pro-
vided that global interrupts are enabled). When the Transmit Complete Interrupt is used,
the interrupt handling routine does not have to clear the TXC Flag, this is done automat-
ically when the interrupt is executed.

Parity Generator The Parity Generator calculates the parity bit for the serial frame data. When parity bit is
enabled (UPM1 = 1), the Transmitter control logic inserts the parity bit between the last
data bit and the first stop bit of the frame that is sent.

Disabling the Transmitter The disabling of the Transmitter (setting the TXEN to zero) will not become effective
until ongoing and pending transmissions are completed, i.e., when the Transmit Shift
Register and Transmit Buffer Register does not contain data to be transmitted. When
disabled, the Transmitter will no longer override the TxD pin.
83
1457G–AVR–09/03

ATmega323(L)
Receiving Frames with 9 Data
Bits

If 9-bit characters are used (UCSZ=7) the ninth bit must be read from the RXB8 bit in
UCSRB before reading the low bits from the UDR. This rule applies to the FE, DOR,
and PE Status Flags as well. Read status from UCSRA, then data from UDR. Reading
the UDR I/O location will change the state of the receive buffer FIFO and consequently
the TXB8, FE, DOR and PE bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both
nine bit characters and the status bits.

Note: 1. The example code assumes that the part specific header file is included.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRA, RXC

rjmp USART_Receive

; Get status and ninth bit, then data from buffer

in r18, UCSRA

in r17, UCSRB

in r16, UDR

; If error, return -1

andi r18,(1<<FE)|(1<<DOR)|(1<<PE)

breq USART_ReceiveNoError

ldi r17, HIGH(-1)

ldi r16, LOW(-1)

USART_ReceiveNoError:

; Filter the ninth bit, then return

lsr r17

andi r17, 0x01

ret

C Code Example(1)

unsigned int USART_Receive(void)

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while (!(UCSRA & (1<<RXC))) {};

/* Get status and ninth bit, then data */

/* from buffer */

status = UCSRA;

resh = UCSRB;

resl = UDR;

/* If error, return -1 */

if (status & (1<<FE)|(1<<DOR)|(1<<PE))

return -1;

/* Filter the ninth bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

}

85
1457G–AVR–09/03

ATmega323(L)
The decision of the logic level of the received bit is taken by doing a majority voting of
the logic value to the three samples in the center of the received bit. The center samples
are emphasized on the figure by having the sample number inside boxes. The majority
voting process is done as follows: If two or all three samples have high levels, the
received bit is registered to be a logic 1. If two or all three samples have low levels, the
received bit is registered to be a logic 0. This majority voting process act as a low pass
filter for the incoming signal on the RxD pin. The recovery process is then repeated until
a complete frame is received. Including the first stop bit. Note that the Receiver only
uses the first stop bit of a frame.

Figure 51 shows the sampling of the stop bit and the earliest possible beginning of the
start bit of the next frame.

Figure 51. Stop Bit Sampling and Next Start Bit Sampling

The same majority voting is done to the stop bit as done for the other bits in the frame. If
the stop bit is registered to have a logic 0 value, the Frame Error (FE) Flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after
the last of the bits used for majority voting. For normal speed mode, the first low level
sample can be at point marked (A) in Figure 51. For double speed mode the first low
level must be delayed to (B). (C) marks a stop bit of full length. The early start bit detec-
tion influences the operational range of the Receiver.

Asynchronous Operational
Range

The operational range of the Receiver is dependent of the mismatch between the
received bit rate and the internally generated baud rate. If the Transmitter is sending
frames at too fast or too slow bit rates, or the internally generated baud rate of the
Receiver does not have exact base frequency, the Receiver will not be able to synchro-
nize the frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and
internal Receiver baud rate.

D Sum of character size and parity size (D = 5 to 10 bit).

S Samples per bit. S = 16 for Normal Speed mode and
S = 8 for Double Speed mode.

SF First sample number used for majority voting. SF = 8 for Normal Speed and
SF = 4 for Double Speed mode.

SM Middle sample number used for majority voting. SM = 9 for Normal Speed and
SM = 5 for Double Speed mode.

1 2 3 4 5 6 7 8 9 10 0/1 0/1 0/1

STOP 1

1 2 3 4 5 6 0/1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

(A) (B) (C)

Rslow
D 1+()S

S 1– D S⋅ SF+ +
---= Rfast

D 2+()S
D 1+()S SM+

-----------------------------------=
89
1457G–AVR–09/03

Two-wire Serial
Interface (Byte
Oriented)

The Two-wire Serial Interface supports bi-directional serial communication. It is
designed primarily for simple but efficient integrated circuit (IC) control. The system is
comprised of two lines, SCL (Serial Clock) and SDA (Serial Data) that carry information
between the ICs connected to them. Various communication configurations can be
designed using this bus. Figure 52 shows a typical Two-wire Serial Bus configuration.
Any device connected to the bus can be Master or Slave. Note that all AVR devices con-
nected to the bus must be powered to allow any bus operation.

Figure 52. Two-wire Serial Bus Configuration

The Two-wire Serial Interface supports Master/Slave and Transmitter/Receiver opera-
tion at up to 400 kHz bus clock rate. The Two-wire Serial Interface has hardware
support for 7-bit addressing. When the Two-wire Serial Interface is enabled (TWEN in
TWCR is set), a glitch filter is enabled for the input signals from the pins PC0 (SCL) and
PC1 (SDA), and the output from these pins is slew-rate controlled. The Two-wire Serial
Interface is byte oriented. The operation of the Two-wire Serial Bus is shown as a pulse
diagram in Figure 53, including the START and STOP conditions and generation of ACK
signal by the bus Receiver.

Figure 53. Two-wire Serial Bus Timing Diagram

The block diagram of the Two-wire Serial Interface is shown in Figure 54.

Device 1 Device 2 Device 3 Device n.......

V
CC

R1 R2

SCL

SDA

SDA

SCL

MSB R/W
BIT

STOP CONDITION

START
CONDITION

REPEATED START CONDIT

1 2 7 8 9 1 2 8 9
ACK ACK

ACKNOWLEDGE
FROM RECEIVER
102 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
Figure 85. Block Diagram

TAP
CONTROLLER

TDI
TDO
TCK
TMS

FLASH
MEMORY

AVR CPU

DIGITAL
PERIPHERAL

UNITS

JTAG / AVR CORE
COMMUNICATION

INTERFACE

BREAKPOINT
UNIT

FLOW CONTROL
UNIT

OCD STATUS
AND CONTROL

INTERNAL
SCAN
CHAIN

M
U
X

INSTRUCTION
REGISTER

ID
REGISTER

BYPASS
REGISTER

JTAG PROGRAMMING
INTERFACE

PC
Instruction

Address
Data

BREAKPOINT
SCAN CHAIN

ADDRESS
DECODER

ANALOG
PERIPHERIAL

UNITS

PORT A

PORT B

BOUNDARY SCAN CHAIN

A
n

a
lo

g
 in

p
u

ts
C

o
n

tr
o

l &
 C

lo
ck

 li
n

e
s

DEVICE BOUNDARY
159
1457G–AVR–09/03

ATmega323 Boundary-
Scan Order

Table 64 shows the Scan order between TDI and TDO when the Boundary-Scan chain
is selected as data path. Bit 0 is the LSB; The first bit scanned in, and the first bit
scanned out. The scan order follows the pinout order as far as possible. Therefore, the
bits of Port A is scanned in the opposite bit order of the other ports. Exceptions from the
rules are the Scan chains for the analog circuits, which constitute the most significant
bits of the scan chain regardless of which physical pin they are connected to. In Figure
89, PXn.Data corresponds to FF0, PXn.Control corresponds to FF1, and PXn.
Pullup_dissable corresponds to FF2. Bit 2, 3, 4, and 5 of Port C is not in the scan chain,
since these pins constitute the TAP pins when the JTAG is enabled

Table 58. ATmega323 Boundary-Scan Order

Bit Number Signal Name Module

131 SIG_PRIVATE0

Private Section 1
130 SIG_PRIVATE1

129 SIG_PRIVATE2

128 SIG_PRIVATE3

127 SIG_PRIVATE4

Private Section 2

126 SIG_PRIVATE5

125 SIG_PRIVATE6

124 SIG_PRIVATE7

123 SIG_PRIVATE8

122 SIG_PRIVATE9

121 SIG_PRIVATE10

120 SIG_PRIVATE11

119 SIG_PRIVATE12

118 SIG_PRIVATE13

117 SIG_PRIVATE14

116 SIG_PRIVATE15

115 SIG_PRIVATE16

114 SIG_PRIVATE17

113 SIG_PRIVATE18

112 SIG_PRIVATE19

111 SIG_PRIVATE20

110 SIG_PRIVATE21

109 SIG_PRIVATE22

108 SIG_PRIVATE23

107 SIG_PRIVATE24

106 SIG_PRIVATE25

105 SIG_PRIVATE26
172 ATmega323(L)
1457G–AVR–09/03

Perform a Page Write To execute page write, set up the address in the Z-pointer, write “00101” to the five LSB
in SPMCR and execute SPM within four clock cycles after writing SPMCR. The data in
R1 and R0 is ignored. The page address must be written to Z14:Z7. During this opera-
tion, Z6:Z0 must be zero to ensure that the page is written correctly. It is recommended
that the interrupts are disabled during the page write operation.

Consideration while Updating
the Boot Loader Section

Special care must be taken if the user allows the Boot Loader section to be updated by
leaving Boot Lock bit 11 unprogrammed. An accidental write to the Boot Loader itself
can corrupt the entire Boot Loader, and further software updates might be impossible. If
it is not necessary to change the Boot Loader software itself, it is recommended to pro-
gram the Boot Lock bit 11 to protect the Boot Loader software from any internal software
changes.

Wait for SPM Instruction to
Complete

Though the CPU is halted during Page Write, Page Erase or Lock bit write, for future
compatibility, the user software must poll for SPM complete by reading the SPMCR
Register and loop until the SPMEN bit is cleared after a programming operation. See
“Assembly code example for a Boot Loader” on page 185 for a code example.

Instruction Word Read after
Page Erase, Page Write, and
Lock Bit Write

To ensure proper instruction pipelining after programming action (Page Erase, Page
Write, or Lock bit write), the SPM instruction must be followed with the sequence (.dw
$FFFF - NOP) as shown below:

spm

.dw $FFFF

nop

If not, the instruction following SPM might fail. It is not necessary to add this sequence
when the SPM instruction only loads the temporary buffer.

Avoid Reading the Application
Section During Self-
programming

During Self-programming (either Page Erase or Page Write), the user software should
not read the application section. The user software itself must prevent addressing this
section during the Self-programming operations. This implies that interrupts must be dis-
abled or moved to the Boot Loader section. Before addressing the application section
after the programming is completed, for future compatibility, the user software must
write”10001” to the five LSB in SPMCR and execute SPM within four clock cycles. Then
the user software should verify that the ASB bit is cleared. See “Assembly code exam-
ple for a Boot Loader” on page 185 for an example. Though the ASB and ASRE bits
have no special function in this device, it is important for future code compatibility that
they are treated as described above.

Boot Loader Lock Bits ATmega323 has two separate sets of Boot Lock bits which can be set independently.
This gives the user a unique flexibility to select different levels of protection.

The user can select:

• To protect the entire Flash from a software update by the MCU.

• To only protect the Boot Loader Flash section from a software update by the MCU.

• To only protect application Flash section from a software update by the MCU.

• Allowing software update in the entire Flash.

See Table 61 for further details. The Boot Lock bits can be set in software and in Serial
or Parallel Programming mode, but they can only be cleared by a chip erase command.
180 ATmega323(L)
1457G–AVR–09/03

Reading the Fuse and Lock
Bits from Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits,
load the Z-pointer with $0001 and set the BLBSET and SPMEN bits in SPMCR. When
an LPM instruction is executed within five CPU cycles after the BLBSET and SPMEN
bits are set in SPMCR, the value of the Lock bits will be loaded in the destination regis-
ter. The BLBSET and SPMEN bits will auto-clear upon completion of reading the Lock
bits or if no SPM, or LPM, instruction is executed within four, respectively five, CPU
cycles. When BLBSET and SPMEN are cleared, LPM will work as described in “Con-
stant Addressing Using the LPM and SPM Instructions” on page 16 and in the
Instruction set Manual.

The algorithm for reading the Fuse Low bits is similar to the one described above for
reading the Lock bits. To read the Fuse Low bits, load the Z-pointer with $0000 and set
the BLBSET and SPMEN bits in SPMCR. When an LPM instruction is executed within
five cycles after the BLBSET and SPMEN bits are set in the SPMCR, the value of the
Fuse Low bits will be loaded in the destination register as shown below.

Similarly, when reading the Fuse High bits, load $0003 in the Z-pointer. When an LPM
instruction is executed within five cycles after the BLBSET and SPMEN bits are set in
the SPMCR, the value of the Fuse High bits will be loaded in the destination register as
shown below.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that
are unprogrammed, will be read as one.

In all cases, the read value of unused bit positions are undefined.

EEPROM Write Prevents
Writing to SPMCR

Note that an EEPROM write operation will block all software programming to Flash.
Reading the Fuses and Lock bits from software will also be prevented during the
EEPROM write operation. It is recommended that the user checks the status bit (EEWE)
in the EECR Register and verifies that the bit is cleared before writing to the SPMCR
Register. If EEPROM writing is performed inside an interrupt routine, the user software
should disable that interrupt before checking the EEWE status bit.

Addressing the Flash During
Self-programming

The Z-pointer is used to address the SPM commands.

Z15 always ignored

Z14:Z7 page select, for page erase and page write

Z6:Z1 word select, for filling temp buffer (must be zero during page write operation)

Z0 should be zero for all SPM commands, byte select for the LPM instruction.

The only operation that does not use the Z-pointer is Setting the Boot Loader Lock bits.
The content of the Z-pointer is ignored and will have no effect on the operation.

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd BODLEVEL BODEN – – CKSEL3 CKSEL2 CKSEL1 CKSEL0

Bit 7 6 5 4 3 2 1 0

Rd OCDEN JTAGEN SPIEN – EESAVE BOOTSZ1 BOOTSZ0 BOOTRST

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0
182 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
Note: 1. Program the Fuse bits before programming the Lock bits.

Fuse Bits The ATmega323 has 13 Fuse bits, divided in two groups. The Fuse High bits are
OCDEN, JTAGEN, SPIEN, EESAVE, BOOTSZ1..0, and BOOTRST, and the Fuse Low
bits are BODLEVEL, BODEN, and CKSEL3..0. All Fuses are accessible in Parallel Pro-
gramming mode and when programming via the JTAG interface. In Serial Programming
mode, all but the SPIEN Fuse is accessible.

• When the OCDEN Fuse is programmed, the On-chip debug system is enabled if the
JTAGEN Fuse is programmed. If the JTAGEN Fuse is unprogrammed, the OCDEN
Fuse has no visible effect.Never ship a product with the OCDEN Fuse programmed.
Regardless of the setting of Lock bits and the JTAGEN Fuse, a programmed
OCDEN Fuse enables some parts of the clock system be running in all sleep
modes. This may increase the power consumption. Default value is unprogrammed
(“1”).

• When the JTAGEN Fuse is programmed, the JTAG interface is enabled on port C
pins PC5..2. Default value is programmed (“0”).

• If the JTAG interface is left unconnected, the JTAGEN fuse should if possible be
disabled. This to avoid static current at the TDO pin in the JTAG interface.

• When the SPIEN Fuse is programmed (“0”), Serial Program and Data Downloading
are enabled. Default value is programmed (“0”). The SPIEN Fuse is not accessible
in SPI Serial Programming mode.

• When EESAVE is programmed, the EEPROM Memory is preserved through the
Chip Erase cycle. Default value is unprogrammed (“1”). The EESAVE Fuse bit can
not be programmed if any of the Lock bits are programmed.

• BOOTSZ1..0 select the size and start address of the Boot Flash section according
to Table on page 177. Default value is “11” (both unprogrammed).

• When BOOTRST is programmed (“0”), the Reset Vector is set to the start address of
the Boot Flash section, as selected by the BOOTSZ Fuses according to Table 59 on
page 177. If the BOOTRST is unprogrammed (“1”), the Reset Vector is set to
address $0000. Default value is unprogrammed (“1”).

• The BODLEVEL Fuse selects the Brown-out Detection Level and changes the Start-
up times, according to Table 5 on page 26 and Table 6 on page 27, respectively.
Default value is unprogrammed (“1”).

1 1 1 No restrictions for SPM or LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0 SPM is not allowed to write to the Boot Loader section,
and LPM executing from the Application section is not
allowed to read from the Boot Loader section. If Interrupt
Vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.

4 0 1 LPM executing from the Application section is not allowed
to read from the Boot Loader section. If Interrupt Vectors
are placed in the Application section, interrupts are
disabled while executing from the Boot Loader section.

Table 63. Lock Bit Protection Modes

Memory Lock Bits

Protection TypeLB mode LB2 LB1
187
1457G–AVR–09/03

Reading the Signature Bytes 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Signature byte read using programming instruction 9a.

3. Load address $00 using programming instruction 9b.

4. Read first signature byte using programming instruction 9c.

5. Repeat steps 3 and 4 with address $01 and address $02 to read the second and
third signature bytes, respectively.

Reading the Calibration Byte 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Calibration byte read using programming instruction 10a.

3. Load address $00 using programming instruction 10b.

4. Read the calibration byte using programming instruction 10c.
212 ATmega323(L)
1457G–AVR–09/03

Figure 115. Idle Supply Current vs. VCC, Device Clocked by External 32kHz Crystal

Figure 116. Power-down Supply Current vs. VCC

0

10

20

30

40

50

60

70

80

90

100

2.5 3 3.5 4 4.5 5 5.5 6

IDLE SUPPLY CURRENT vs. Vcc
DEVICE CLOCKED BY 32KHz CRYSTAL

I
cc

 (µ
A

)

Vcc(V)

T = 85˚CA

T = 25˚CA

0

1

2

3

4

5

6

7

8

2.5 3 3.5 4 4.5 5 5.5 6

POWER DOWN SUPPLY CURRENT vs. Vcc
WATCHDOG TIMER DISABLED

I
cc

 (µ
A

)

Vcc(V)

T = 25˚CA

T = 45˚CA

T = 70˚CA

T = 85˚CA
222 ATmega323(L)
1457G–AVR–09/03

ATmega323(L)
Figure 125. Pull-Up Resistor Current vs. Input Voltage

Figure 126. Pull-Up Resistor Current vs. Input Voltage

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
V = 5Vcc

I
 (

µA
)

O
P

V (V)OP

T = 85˚CA

T = 25˚CA

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3

PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

I
 (

µA
)

O
P

V (V)OP

V = 2.7Vcc

T = 85˚CA

T = 25˚CA
227
1457G–AVR–09/03

ATmega323(L)
Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

$3F ($5F) SREG I T H S V N Z C page 21

$3E ($5E) SPH – – – – SP11 SP10 SP9 SP8 page 22

$3D ($5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 page 22

$3C ($5C) OCR0 Timer/Counter0 Output Compare Register page 47

$3B ($5B) GICR INT1 INT0 INT2 – – – IVSEL IVCE page 33

$3A ($5A) GIFR INTF1 INTF0 INTF2 – – – – – page 34

$39 ($59) TIMSK OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0 page 36

$38 ($58) TIFR OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0 page 36

$37 ($57) SPMCR – ASB – ASRE BLBSET PGWRT PGERS SPMEN page 183

$36 ($56) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE page 104

$35 ($55) MCUCR SE SM2 SM1 SM0 ISC11 ISC10 ISC01 ISC00 page 37

$34 ($54) MCUCSR JTD ISC2 – JTRF WDRF BORF EXTRF PORF page 30

$33 ($53) TCCR0 FOC0 PWM0 COM01 COM00 CTC0 CS02 CS01 CS00 page 47

$32 ($52) TCNT0 Timer/Counter0 (8 Bits) page 49

$31 ($51)
OSCCAL Oscillator Calibration Register page 41

OCRD On-chip Debug Register page 161

$30 ($50) SFIOR – – – – ACME PUD PSR2 PSR10 page 45

$2F ($4F) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B PWM11 PWM10 page 56

$2E ($4E) TCCR1B ICNC1 ICES1 – – CTC1 CS12 CS11 CS10 page 57

$2D ($4D) TCNT1H Timer/Counter1 – Counter Register High Byte page 58

$2C ($4C) TCNT1L Timer/Counter1 – Counter Register Low Byte page 58

$2B ($4B) OCR1AH Timer/Counter1 – Output Compare Register A High Byte page 59

$2A ($4A) OCR1AL Timer/Counter1 – Output Compare Register A Low Byte page 59

$29 ($49) OCR1BH Timer/Counter1 – Output Compare Register B High Byte page 59

$28 ($48) OCR1BL Timer/Counter1 – Output Compare Register B Low Byte page 59

$27 ($47) ICR1H Timer/Counter1 – Input Capture Register High Byte page 60

$26 ($46) ICR1L Timer/Counter1 – Input Capture Register Low Byte page 60

$25 ($45) TCCR2 FOC2 PWM2 COM21 COM20 CTC2 CS22 CS21 CS20 page 47

$24 ($44) TCNT2 Timer/Counter2 (8 Bits) page 49

$23 ($43) OCR2 Timer/Counter2 Output Compare Register page 49

$22 ($42) ASSR – – – – AS2 TCN2UB OCR2UB TCR2UB page 52

$21 ($41) WDTCR – – – WDTOE WDE WDP2 WDP1 WDP0 page 64

$20 ($40)
UBRRH URSEL – – – UBRR[11:8] page 98

UCSRC URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL page 97

$1F ($3F) EEARH – – – – – – EEAR9 EEAR8 page 66

$1E ($3E) EEARL EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 page 66

$1D ($3D) EEDR EEPROM Data Register page 66

$1C ($3C) EECR – – – – EERIE EEMWE EEWE EERE page 67

$1B ($3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 page 137

$1A ($3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 page 137

$19 ($39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 page 137

$18 ($38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 page 139

$17 ($37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 page 139

$16 ($36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 page 139

$15 ($35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 page 146

$14 ($34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 page 146

$13 ($33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 page 146

$12 ($32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 page 151

$11 ($31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 page 151

$10 ($30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 page 151

$0F ($2F) SPDR SPI Data Register page 73

$0E ($2E) SPSR SPIF WCOL – – – – – SPI2X page 72

$0D ($2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 page 71

$0C ($2C) UDR USART I/O Data Register page 94

$0B ($2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM page 94

$0A ($2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 page 96

$09 ($29) UBRRL USART Baud Rate Register Low Byte page 98

$08 ($28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 page 125

$07 ($27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 page 132

$06 ($26) ADCSR ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0 page 133

$05 ($25) ADCH ADC Data Register High Byte page 134

$04 ($24) ADCL ADC Data Register Low Byte page 134

$03 ($23) TWDR Two-wire Serial Interface Data Register page 106

$02 ($22) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE page 107
231
1457G–AVR–09/03

