
Microchip Technology - AT32UC3L016-D3UR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 32-Bit Single-Core

Speed 50MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 36

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 8K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 8x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 48-UFLGA Exposed Pad

Supplier Device Package 48-TLLGA (5.5x5.5)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at32uc3l016-d3ur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at32uc3l016-d3ur-4432732
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

18
32099I–01/2012

AT32UC3L016/32/64

4. Processor and Architecture
Rev: 2.1.0.0

This chapter gives an overview of the AVR32UC CPU. AVR32UC is an implementation of the
AVR32 architecture. A summary of the programming model, instruction set, and MPU is pre-
sented. For further details, see the AVR32 Architecture Manual and the AVR32UC Technical
Reference Manual.

4.1 Features
• 32-bit load/store AVR32A RISC architecture

– 15 general-purpose 32-bit registers
– 32-bit Stack Pointer, Program Counter and Link Register reside in register file
– Fully orthogonal instruction set
– Privileged and unprivileged modes enabling efficient and secure operating systems
– Innovative instruction set together with variable instruction length ensuring industry leading

code density
– DSP extension with saturating arithmetic, and a wide variety of multiply instructions

• 3-stage pipeline allowing one instruction per clock cycle for most instructions
– Byte, halfword, word, and double word memory access
– Multiple interrupt priority levels

• MPU allows for operating systems with memory protection
• Secure State for supporting FlashVault technology

4.2 AVR32 Architecture
AVR32 is a new, high-performance 32-bit RISC microprocessor architecture, designed for cost-
sensitive embedded applications, with particular emphasis on low power consumption and high
code density. In addition, the instruction set architecture has been tuned to allow a variety of
microarchitectures, enabling the AVR32 to be implemented as low-, mid-, or high-performance
processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been com-
piled and analyzed to achieve the best code density in its class. In addition to lowering the
memory requirements, a compact code size also contributes to the core’s low power characteris-
tics. The processor supports byte and halfword data types without penalty in code size and
performance.

Memory load and store operations are provided for byte, halfword, word, and double word data
with automatic sign- or zero extension of halfword and byte data. The C-compiler is closely

43
32099I–01/2012

AT32UC3L016/32/64

7.4.4 Peripheral Events
The PDCA peripheral events are connected via the Peripheral Event System. Refer to the
Peripheral Event System chapter for details.

7.5 Functional Description

7.5.1 Basic Operation
The PDCA consists of multiple independent PDCA channels, each capable of handling DMA
requests in parallel. Each PDCA channels contains a set of configuration registers which must
be configured to start a DMA transfer.

In this section the steps necessary to configure one PDCA channel is outlined.

The peripheral to transfer data to or from must be configured correctly in the Peripheral Select
Register (PSR). This is performed by writing the Peripheral Identity (PID) value for the corre-
sponding peripheral to the PID field in the PSR register. The PID also encodes the transfer
direction, i.e. memory to peripheral or peripheral to memory. See Section 7.5.6.

The transfer size must be written to the Transfer Size field in the Mode Register (MR.SIZE). The
size must match the data size produced or consumed by the selected peripheral. See Section
7.5.7.

The memory address to transfer to or from, depending on the PSR, must be written to the Mem-
ory Address Register (MAR). For each transfer the memory address is increased by either a
one, two or four, depending on the size set in MR. See Section 7.5.2.

The number of data items to transfer is written to the TCR register. If the PDCA channel is
enabled, a transfer will start immediately after writing a non-zero value to TCR or the reload ver-
sion of TCR, TCRR. After each transfer the TCR value is decreased by one. Both MAR and TCR
can be read while the PDCA channel is active to monitor the DMA progress. See Section 7.5.3.

The channel must be enabled for a transfer to start. A channel is enable by writing a one to the
EN bit in the Control Register (CR).

7.5.2 Memory Pointer
Each channel has a 32-bit Memory Address Register (MAR). This register holds the memory
address for the next transfer to be performed. The register is automatically updated after each
transfer. The address will be increased by either one, two or four depending on the size of the
DMA transfer (byte, halfword or word). The MAR can be read at any time during transfer.

7.5.3 Transfer Counter
Each channel has a 16-bit Transfer Counter Register (TCR). This register must be written with
the number of transfers to be performed. The TCR register should contain the number of data
items to be transferred independently of the transfer size. The TCR can be read at any time dur-
ing transfer to see the number of remaining transfers.

7.5.4 Reload Registers
Both the MAR and the TCR have a reload register, respectively Memory Address Reload Regis-
ter (MARR) and Transfer Counter Reload Register (TCRR). These registers provide the
possibility for the PDCA to work on two memory buffers for each channel. When one buffer has
completed, MAR and TCR will be reloaded with the values in MARR and TCRR. The reload logic
is always enabled and will trigger if the TCR reaches zero while TCRR holds a non-zero value.
After reload, the MARR and TCRR registers are cleared.

85
32099I–01/2012

AT32UC3L016/32/64

• Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.

• Lock Error: At least one lock region is protected, or BOOTPROT is different from 0. The erase
command has been aborted and no page has been erased. A “Unlock region containing
given page” (UP) command must be executed to unlock any locked regions.

8.5.3 Region Lock Bits
The flash memory has p pages, and these pages are grouped into 16 lock regions, each region
containing p/16 pages. Each region has a dedicated lock bit preventing writing and erasing
pages in the region. After production, the device may have some regions locked. These locked
regions are reserved for a boot or default application. Locked regions can be unlocked to be
erased and then programmed with another application or other data.

To lock or unlock a region, the commands Lock Region Containing Page (LP) and Unlock
Region Containing Page (UP) are provided. Writing one of these commands, together with the
number of the page whose region should be locked/unlocked, performs the desired operation.

One error can be detected in the FSR register after issuing the command:

• Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.

The lock bits are implemented using the lowest 16 general-purpose fuse bits. This means that
lock bits can also be set/cleared using the commands for writing/erasing general-purpose fuse
bits, see Section 8.6. The general-purpose bit being in an erased (1) state means that the region
is unlocked.

The lowermost pages in the flash can additionally be protected by the BOOTPROT fuses, see
Section 8.6.

8.6 General-purpose Fuse Bits
The flash memory has a number of general-purpose fuse bits that the application programmer
can use freely. The fuse bits can be written and erased using dedicated commands, and read

105
32099I–01/2012

AT32UC3L016/32/64

9.3 Block Diagram
Figure 9-1 presents the SAU integrated in an example system with a CPU, some memories,
some peripherals, and a bus system. The SAU is connected to both the Peripheral Bus (PB) and
the High Speed Bus (HSB). Configuration of the SAU is done via the PB, while memory
accesses are done via the HSB. The SAU receives an access on its HSB slave interface,
remaps it, checks that the channel is unlocked, and if so, initiates a transfer on its HSB master
interface to the remapped address.

The thin arrows in Figure 9-1 exemplifies control flow when using the SAU. The CPU wants to
read the RX Buffer in the USART. The MPU has been configured to protect all registers in the
USART from user mode access, while the SAU has been configured to remap the RX Buffer into
a memory space that is not protected by the MPU. This unprotected memory space is mapped
into the SAU HSB slave space. When the CPU reads the appropriate address in the SAU, the
SAU will perform an access to the desired RX buffer register in the USART, and thereafter return
the read results to the CPU. The return data flow will follow the opposite direction of the control
flow arrows in Figure 9-1.

Figure 9-1. SAU Block Diagram

SAU Channel

Bus master

MPU

CPU

Bus slave

USART

PWM

Bus slave Bus master

Bus slave

Flash

Bus slave

RAM

Bus bridge

SAU Configuration

Interrupt
request

High Speed Bus

SAU

P
er

ip
he

ra
l B

us

128
32099I–01/2012

AT32UC3L016/32/64

• Undefined Length Burst Arbitration

In order to avoid long slave handling during undefined length bursts (INCR), the Bus Matrix pro-
vides specific logic in order to re-arbitrate before the end of the INCR transfer. A predicted end
of burst is used as a defined length burst transfer and can be selected among the following five
possibilities:

1. Infinite: No predicted end of burst is generated and therefore INCR burst transfer will
never be broken.

2. One beat bursts: Predicted end of burst is generated at each single transfer inside the
INCP transfer.

3. Four beat bursts: Predicted end of burst is generated at the end of each four beat
boundary inside INCR transfer.

4. Eight beat bursts: Predicted end of burst is generated at the end of each eight beat
boundary inside INCR transfer.

5. Sixteen beat bursts: Predicted end of burst is generated at the end of each sixteen beat
boundary inside INCR transfer.

This selection can be done through the ULBT field in the Master Configuration Registers
(MCFG).

• Slot Cycle Limit Arbitration

The Bus Matrix contains specific logic to break long accesses, such as very long bursts on a
very slow slave (e.g., an external low speed memory). At the beginning of the burst access, a
counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave
Configuration Register (SCFG) and decreased at each clock cycle. When the counter reaches
zero, the arbiter has the ability to re-arbitrate at the end of the current byte, halfword, or word
transfer.

10.4.2.2 Round-Robin Arbitration
This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave in a round-robin manner. If two or more master requests arise at the same time,
the master with the lowest number is first serviced, then the others are serviced in a round-robin
manner.

There are three round-robin algorithms implemented:

1. Round-Robin arbitration without default master

2. Round-Robin arbitration with last default master

3. Round-Robin arbitration with fixed default master

• Round-Robin Arbitration without Default Master

This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch
requests from different masters to the same slave in a pure round-robin manner. At the end of
the current access, if no other request is pending, the slave is disconnected from all masters.
This configuration incurs one latency cycle for the first access of a burst. Arbitration without
default master can be used for masters that perform significant bursts.

• Round-Robin Arbitration with Last Default Master

This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to
remove the one latency cycle for the last master that accessed the slave. At the end of the cur-

166
32099I–01/2012

AT32UC3L016/32/64

12.7.4 PBx Clock Select

Name: PBxSEL

Access Type: Read/Write

Offset: 0x00C-0x010

Reset Value: 0x00000000

• PBDIV, PBSEL: PBx Division and Clock Select
PBDIV = 0: PBx clock equals main clock.
PBDIV = 1: PBx clock equals main clock divided by 2(PBSEL+1).

Note that if PBDIV is written to 0, PBSEL should also be written to 0 to ensure correct operation.

Also note that writing this register clears SR.CKRDY. The register must not be re-written until SR.CKRDY is set.

Note that this register is protected by a lock. To write to this register the UNLOCK register has to be written first. Please
refer to the UNLOCK register description for details.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

PBDIV - - - - PBSEL

199
32099I–01/2012

AT32UC3L016/32/64

13.5.10 120MHz RC Oscillator (RC120M)
Rev: 1.0.1.0

The 120MHz RC Oscillator can be used as source for the main clock in the device, as described
in the Power Manager chapter. The oscillator can also be used as source for the generic clocks,
as described in Generic Clock section. The RC120M must be enabled before it is used as a
source clock. To enable the clock, the user must write a one to the Enable bit in the 120MHz RC
Oscillator Control Register (RC120MCR.EN), and read back the RC120MCR register until the
EN bit reads one. The clock is disabled by writing a zero to RC120MCR.EN. The EN bit must be
read back as zero before the RC120M is re-enabled. If not, undefined behavior may occur.

The oscillator is automatically disabled in certain sleep modes to reduce power consumption, as
described in the Power Manager chapter.

13.5.11 Backup Registers (BR)
Rev: 1.0.0.1

Four 32-bit backup registers are available to store values when the device is in Shutdown
mode. These registers will keep their content even when the VDDCORE supply and the internal
regulator supply voltage supplies are removed. The backup registers can be accessed by read-
ing from and writing to the BR0, BR1, BR2, and BR3 registers.

After writing to one of the backup registers the user must wait until the Backup Register Interface
Ready bit in tne Power and Clocks Status Register (PCLKSR.BRIFARDY) is set before writing to
another backup register. Writes to the backup register while PCLKSR.BRIFARDY is zero will be
discarded. An interrupt can be generated on a zero-to-one transition on PCLKSR.BRIFARDY if
the BRIFARDY bit in the Interrupt Mask Register (IMR.BRIFARDY) is set. This bit is set by writ-
ing a one to the corresponding bit in the Interrupt Enable Register (IER.BRIFARDY).

After powering up the device the Backup Register Interface Valid bit in PCLKSR (PCLKSR.BRI-
FAVALID) is cleared, indicating that the content of the backup registers has not been written and
contains the reset value. After writing to one of the backup registers the PCLKSR.BRIFAVALID
bit is set. During writes to the backup registers (when BRIFARDY is zero) BRIFAVALID will be
zero. If a reset occurs when BRIFARDY is zero, BRIFAVALID will be cleared after the reset, indi-
cating that the content of the backup registers is not valid. If BRIFARDY is one when a reset
occurs, BRIFAVALID will be one and the content is the same as before the reset.

The user must ensure that BRIFAVALID and BRIFARDY are both set before reading the backup
register values.

13.5.12 32kHz RC Oscillator (RC32K)
Rev: 1.0.0.0

The RC32K can be used as source for the generic clocks, as described in The Generic Clocks
section.

The 32kHz RC oscillator (RC32K) is forced on after reset, and output on PA20. The clock is
available on the pad until the PPCR.FRC32 bit in the Power Manager has been cleared or a dif-
ferent peripheral function has been chosen on PA20 (PA20 will start with peripheral function F
by default). Note that the forcing will only enable the clock output. To be able to use the RC32K
normally the oscillator must be enabled as described below.

229
32099I–01/2012

AT32UC3L016/32/64

13.6.20 Temperature Sensor Configuration Register

Name: TSENS

Access Type: Read/Write

Reset Value: 0x00000000

• EN: Temperature Sensor Enable
0: The Temperature Sensor is disabled.

1: The Temperature Sensor is enabled.

Note that this register is protected by a lock. To write to this register the UNLOCK register has to be written first. Please
refer to the UNLOCK register description for details.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - EN

253
32099I–01/2012

AT32UC3L016/32/64

14.5.1.2 Changing the source clock
The CLK_AST_PRSC must be disabled before switching to another source clock. The Clock
Busy bit in the Status Register (SR.CLKBUSY) indicates whether the clock is busy or not. This
bit is set when the CEN bit in the CLOCK register is changed, and cleared when the CLOCK reg-
ister can be changed.

To change the clock:

• Write a zero to CLOCK.CEN to disable the clock, without changing CLOCK.CSSEL

• Wait until SR.CLKBUSY reads as zero

• Write the selected value to CLOCK.CSSEL

• Wait until SR.CLKBUSY reads as zero

• Write a one to CLOCK.CEN to enable the clock, without changing the CLOCK.CSSEL

• Wait until SR.CLKBUSY reads as zero

14.5.2 Basic Operation

14.5.2.1 Prescaler
When the AST is enabled, the 32-bit prescaler will increment on the rising edge of
CLK_AST_PRSC. The prescaler value cannot be read or written, but it can be reset by writing a
one to the Prescaler Clear bit in the Control Register (CR.PCLR).

The Prescaler Select field in the Control Register (CR.PSEL) selects the prescaler bit PSEL as
source clock for the counter (CLK_AST_CNT). This results in a counter frequency of:

where fPRSC is the frequency of the internal prescaler clock CLK_AST_PRSC.

14.5.2.2 Counter operation
When enabled, the AST will increment on every 0-to-1 transition of the selected prescaler tap-
ping. When the Calender bit in the Control Register (CR.CAL) is zero, the counter operates in
counter mode. It will increment until it reaches the top value of 0xFFFFFFFF, and then wrap to
0x00000000. This sets the status bit Overflow in the Status Register (SR.OVF). Optionally, the
counter can also be reset when an alarm occurs (see Section 14.5.3.2 on page 255. This will
also set the OVF bit.

The AST counter value can be read from or written to the Counter Value (CV) register. Note that
due to synchronization, continuous reading of the CV register with the lowest prescaler setting
will skip every third value. In addition, if CLK_AST_PRSC is as fast as, or faster than, the
CLK_AST, the prescaler value must be 3 or higher to be able to read the CV without skipping
values.

fCNT
fPRSC

2
PSEL 1+

-----------------------=

259
32099I–01/2012

AT32UC3L016/32/64

14.6.1 Control Register
Name: CR

Access Type: Read/Write

Offset: 0x00

Reset Value: 0x00000000

When the SR.BUSY bit is set, writes to this register will be discarded and this register will read as zero.

• PSEL: Prescaler Select
Selects prescaler bit PSEL as source clock for the counter.

• CAn: Clear on Alarm n
0: The corresponding alarm will not clear the counter.

1: The corresponding alarm will clear the counter.

• CAL: Calendar Mode
0: The AST operates in counter mode.

1: The AST operates in calendar mode.
• PCLR: Prescaler Clear

Writing a zero to this bit has no effect.
Writing a one to this bit clears the prescaler.

This bit always reads as zero.

• EN: Enable
0: The AST is disabled.

1: The AST is enabled.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - PSEL

15 14 13 12 11 10 9 8

- - - - - - CA1 CA0

7 6 5 4 3 2 1 0

- - - - - CAL PCLR EN

293
32099I–01/2012

AT32UC3L016/32/64

16. External Interrupt Controller (EIC)
Rev: 3.0.1.0

16.1 Features
• Dedicated interrupt request for each interrupt
• Individually maskable interrupts
• Interrupt on rising or falling edge
• Interrupt on high or low level
• Asynchronous interrupts for sleep modes without clock
• Filtering of interrupt lines
• Non-Maskable NMI interrupt

16.2 Overview
The External Interrupt Controller (EIC) allows pins to be configured as external interrupts. Each
external interrupt has its own interrupt request and can be individually masked. Each external
interrupt can generate an interrupt on rising or falling edge, or high or low level. Every interrupt
input has a configurable filter to remove spikes from the interrupt source. Every interrupt pin can
also be configured to be asynchronous in order to wake up the part from sleep modes where the
CLK_SYNC clock has been disabled.

A Non-Maskable Interrupt (NMI) is also supported. This has the same properties as the other
external interrupts, but is connected to the NMI request of the CPU, enabling it to interrupt any
other interrupt mode.

The EIC can wake up the part from sleep modes without triggering an interrupt. In this mode,
code execution starts from the instruction following the sleep instruction.

16.3 Block Diagram

Figure 16-1. EIC Block Diagram

Edge/Level
D etector

M ask IR Q n

EXTIN Tn
N M I

IN TnLEVEL
M O D E
ED G E

IER
ID R

IC R
C TR L

ISR IM R

F ilter

FILTER

Polarity
contro l

LEVEL
M O D E
ED G E

Asynchronus
detector

E IC _W AKE

Enable

EN
D IS

C TR L

C LK_SYNC
W ake
detect

ASYN C

365
32099I–01/2012

AT32UC3L016/32/64

19.6 Functional Description

19.6.1 Baud Rate Generator
The baud rate generator provides the bit period clock named the Baud Rate Clock to both
receiver and transmitter. It is based on a 16-bit divider, which is specified in the Clock Divider
field in the Baud Rate Generator Register (BRGR.CD). A non-zero value enables the generator,
and if CD is one, the divider is bypassed and inactive. The Clock Selection field in the Mode
Register (MR.USCLKS) selects clock source between:

• CLK_USART (internal clock)

• CLK_USART/DIV (a divided CLK_USART, refer to Module Configuration section)

• CLK (external clock, available on the CLK pin)

If the external CLK clock is selected, the duration of the low and high levels of the signal pro-
vided on the CLK pin must be at least 4.5 times longer than those provided by CLK_USART.

Figure 19-2. Baud Rate Generator

19.6.1.1 Baud Rate in Asynchronous Mode
If the USART is configured to operate in an asynchronous mode, the selected clock is divided by
the CD value before it is provided to the receiver as a sampling clock. Depending on the Over-
sampling Mode bit (MR.OVER) value, the clock is then divided by either 8 (OVER=1), or 16
(OVER=0). The baud rate is calculated with the following formula:

This gives a maximum baud rate of CLK_USART divided by 8, assuming that CLK_USART is
the fastest clock possible, and that OVER is one.

19.6.1.2 Baud Rate Calculation Example
Table 19-3 shows calculations based on the CD field to obtain 38400 baud from different source
clock frequencies. This table also shows the actual resulting baud rate and error.

16-bit Counter

CDUSCLKS

CDCLK_USART

CLK_USART/DIV

Reserved
CLK

SYNC

SYNC

USCLKS= 3

FIDI
OVER

Sampling
Divider

BaudRate
Clock

Sampling
Clock

1

00

CLK0
1

2

3
>1

1

1

0

0

BaudRate SelectedClock
8 2 OVER–()CD()

--=

536
32099I–01/2012

AT32UC3L016/32/64

23.7.10 Parameter Register
Name: PARAMETER

Access Type: Read-only

Offset: 0x24

Reset Value: -

• CHANNELS: Channels Implemented
This field contains the number of channels implemented on the device.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

CHANNELS

624
32099I–01/2012

AT32UC3L016/32/64

The signal names corresponds to the groups A and B of analog comparators. For normal mode,
the mapping from input signal names in the block diagram to the signal names is given in Table
27-3.

27.5 Product Dependencies
In order to use this module, other parts of the system must be configured correctly, as described
below.

27.5.1 I/O Lines
The ACIFB pins are multiplexed with other peripherals. The user must first program the I/O Con-
troller to give control of the pins to the ACIFB.

27.5.2 Power Management
If the CPU enters a sleep mode that disables clocks used by the ACIFB, the ACIFB will stop
functioning and resume operation after the system wakes up from sleep mode.

27.5.3 Clocks
The clock for the ACIFB bus interface (CLK_ACIFB) is generated by the Power Manager. This
clock is enabled at reset, and can be disabled in the Power Manager. It is recommended to dis-
able the ACIFB before disabling the clock, to avoid freezing the ACIFB in an undefined state.

The ACIFB uses a GCLK as clock source for the Analog Comparators. The user must set up this
GCLK at the right frequency. The CLK_ACIFB clock of the interface must be at least 4x the
GCLK frequency used in the comparators. The GCLK is used both for measuring the startup
time of a comparator, and to give a frequency for the comparisons done in Continuous Measure-
ment Mode, see Section 27.6.

Refer to the Electrical Characteristics chapter for GCLK frequency limitations.

ACBPn Positive reference pin for Analog Comparator B n Analog

ACBNn Negative reference pin for Analog Comparator B n Analog

ACREFN Reference Voltage for all comparators selectable for INN Analog

Table 27-3. Signal Name Mapping

Pin Name Channel Number Normal Mode

ACAP0/ACAN0 0 ACP0/ACN0

ACBP0/ACBN0 1 ACP1/ACN1

ACAP1/ACAN1 2 ACP2/ACN2

ACBP1/ACBN1 3 ACP3/ACN3

ACAP2/ACAN2 4 ACP4/ACN4

ACBP2/ACBN2 5 ACP5/ACN5

ACAP3/ACAN3 6 ACP6/ACN6

ACBP3/ACBN3 7 ACP7/ACN7

Table 27-2. I/O Line Description

Pin Name Pin Description Type

682
32099I–01/2012

AT32UC3L016/32/64

28.7.24 CSB Resistor Control Register
Name: CSBRES

Access Type: Read/Write

Offset: 0x68

Reset Value: 0x00000000

• RES: Resistive Drive Enable
When RES[n] is 0, CSB[n] has the same drive properties as normal I/O pads.

When RES[n] is 1, CSB[n] has a nominal output resistance of 1kOhm during the burst phase.

31 30 29 28 27 26 25 24

-

23 22 21 20 19 18 17 16

- RES[16]

15 14 13 12 11 10 9 8

RES[15:8]

7 6 5 4 3 2 1 0

RES[7:0]

704
32099I–01/2012

AT32UC3L016/32/64

30.7.2 Status Register
Name: SR

Access Type: Read-only

Offset: 0x04

Reset Value: 0x00000000

• TRMIS: Transmit Mismatch
0: No transfers mismatches.

1: The transceiver was active when receiving.

This bit is set when the transceiver is active when receiving.
This bit is cleared when corresponding bit in SCR is written to one.

• OVERRUN: Data Overrun
0: No data overwritten in RHR.

1: Data in RHR has been overwritten before it has been read.

This bit is set when data in RHR is overwritten before it has been read.
This bit is cleared when corresponding bit in SCR is written to one.

• DREADYINT: Data Ready Interrupt
0: No new data in the RHR.

1: New data received and placed in the RHR.

This bit is set when new data is received and placed in the RHR.
This bit is cleared when corresponding bit in SCR is written to one.

• READYINT: Ready Interrupt
0: The interface has not generated an ready interrupt.

1: The interface has had a transition from busy to not busy.

This bit is set when the interface has transition from busy to not busy.
This bit is cleared when corresponding bit in SCR is written to one.

• CENABLED: Clock Enabled
0: The aWire clock is not enabled.

1: The aWire clock is enabled.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - TRMIS - - OVERRUN DREADYINT READYINT

7 6 5 4 3 2 1 0

- - - - - CENABLED - BUSY

725
32099I–01/2012

AT32UC3L016/32/64

Figure 31-4. AUX+JTAG Based Debugger

31.3.8.1 Trace Operation
Trace features are enabled by writing OCD registers by the debugger. The OCD extracts the
trace information from the CPU, compresses this information and formats it into variable-length
messages according to the Nexus standard. The messages are buffered in a 16-frame transmit
queue, and are output on the AUX port one frame at a time.

The trace features can be configured to be very selective, to reduce the bandwidth on the AUX
port. In case the transmit queue overflows, error messages are produced to indicate loss of
data. The transmit queue module can optionally be configured to halt the CPU when an overflow
occurs, to prevent the loss of messages, at the expense of longer run-time for the program.

31.3.8.2 Program Trace
Program trace allows the debugger to continuously monitor the program execution in the CPU.
Program trace messages are generated for every branch in the program, and contains com-
pressed information, which allows the debugger to correlate the message with the source code
to identify the branch instruction and target address.

31.3.8.3 Data Trace
Data trace outputs a message every time a specific location is read or written. The message
contains information about the type (read/write) and size of the access, as well as the address
and data of the accessed location. The AT32UC3L016/32/64 contains two data trace channels,

A V R 3 2

