
Microchip Technology - AT32UC3L032-D3HT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 32-Bit Single-Core

Speed 50MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 36

Program Memory Size 32KB (32K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 16K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 8x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 48-UFLGA Exposed Pad

Supplier Device Package 48-TLLGA (5.5x5.5)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at32uc3l032-d3ht

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at32uc3l032-d3ht-4433222
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

23
32099I–01/2012

AT32UC3L016/32/64

4.4 Programming Model

4.4.1 Register File Configuration
The AVR32UC register file is shown below.

Figure 4-3. The AVR32UC Register File

4.4.2 Status Register Configuration
The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 4-4
and Figure 4-5. The lower word contains the C, Z, N, V, and Q condition code flags and the R, T,
and L bits, while the upper halfword contains information about the mode and state the proces-
sor executes in. Refer to the AVR32 Architecture Manual for details.

Figure 4-4. The Status Register High Halfword

Application

Bit 0

Supervisor

Bit 31

PC

SR

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

INT0

SP_APP SP_SYS
R12
R11

R9
R10

R8

Exception NMIINT1 INT2 INT3

LRLR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Secure

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SEC
LR

SS_STATUS
SS_ADRF
SS_ADRR
SS_ADR0
SS_ADR1

SS_SP_SYS
SS_SP_APP

SS_RAR
SS_RSR

Bit 31

0 0 0

Bit 16

Interrupt Level 0 Mask
Interrupt Level 1 Mask

Interrupt Level 3 Mask
Interrupt Level 2 Mask

10 0 0 0 1 1 0 0 0 00 0

FE I0M GMM1- D M0 EM I2MDM - M2LC
1SS

Initial value

Bit nameI1M

Mode Bit 0
Mode Bit 1

-

Mode Bit 2
Reserved
Debug State

- I3M

Reserved

Exception Mask

Global Interrupt Mask

Debug State Mask

Secure State

67
32099I–01/2012

AT32UC3L016/32/64

7.7.23 Performance Channel 0 Write Max Latency
Name: PWLAT0

Access Type: Read/Write

Offset: 0x818

Reset Value: 0x00000000

• LAT: Maximum Transfer Initiation Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

This counter is saturating. The register is reset only when PCONTROL.CH0RES is written to one.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

LAT[15:8]

7 6 5 4 3 2 1 0

LAT[7:0]

95
32099I–01/2012

AT32UC3L016/32/64

• FSZ: Flash Size
The size of the flash. Not all device families will provide all flash sizes indicated in the table.

Table 8-10. Flash Size

FSZ Flash Size FSZ Flash Size

0 4 Kbyte 8 192 Kbyte

1 8 Kbyte 9 256 Kbyte

2 16 Kbyte 10 384 Kbyte

3 32 Kbyte 11 512 Kbyte

4 48 Kbyte 12 768 Kbyte

5 64 Kbyte 13 1024 Kbyte

6 96 Kbyte 14 2048 Kbyte

7 128 Kbyte 15 Reserved

104
32099I–01/2012

AT32UC3L016/32/64

9. Secure Access Unit (SAU)
Rev: 1.1.0.3

9.1 Features
• Remaps registers in memory regions protected by the MPU to regions not protected by the MPU
• Programmable physical address for each channel
• Two modes of operation: Locked and Open

– In Locked Mode, access to a channel must be preceded by an unlock action
• An unlocked channel remains open only for a specific amount of time, if no access is

performed during this time, the channel is relocked
• Only one channel can be open at a time, opening a channel while another one is open

locks the first one
• Access to a locked channel is denied, a bus error and optionally an interrupt is returned
• If a channel is relocked due to an unlock timeout, an interrupt can optionally be

generated
– In Open Mode, all channels are permanently unlocked

9.2 Overview
In many systems, erroneous access to peripherals can lead to catastrophic failure. An example
of such a peripheral is the Pulse Width Modulator (PWM) used to control electric motors. The
PWM outputs a pulse train that controls the motor. If the control registers of the PWM module
are inadvertently updated with wrong values, the motor can start operating out of control, possi-
bly causing damage to the application and the surrounding environment. However, sometimes
the PWM control registers must be updated with new values, for example when modifying the
pulse train to accelerate the motor. A mechanism must be used to protect the PWM control reg-
isters from inadvertent access caused by for example:

• Errors in the software code

• Transient errors in the CPU caused by for example electrical noise altering the execution path
of the program

To improve the security in a computer system, the AVR32UC implements a Memory Protection
Unit (MPU). The MPU can be set up to limit the accesses that can be performed to specific
memory addresses. The MPU divides the memory space into regions, and assigns a set of
access restrictions on each region. Access restrictions can for example be read/write if the CPU
is in supervisor mode, and read-only if the CPU is in application mode. The regions can be of dif-
ferent size, but each region is usually quite large, e.g. protecting 1 kilobyte of address space or
more. Furthermore, access to each region is often controlled by the execution state of the CPU,
i.e. supervisor or application mode. Such a simple control mechanism is often too inflexible (too
coarse-grained chunks) and with too much overhead (often requiring system calls to access pro-
tected memory locations) for simple or real-time systems such as embedded microcontrollers.

Usually, the Secure Access Unit (SAU) is used together with the MPU to provide the required
security and integrity. The MPU is set up to protect regions of memory, while the SAU is set up
to provide a secure channel into specific memory locations that are protected by the MPU.
These specific locations can be thought of as fine-grained overrides of the general coarse-
grained protection provided by the MPU.

164
32099I–01/2012

AT32UC3L016/32/64

12.7.2 CPU Clock Select

Name: CPUSEL

Access Type: Read/Write

Offset: 0x004

Reset Value: 0x00000000

• CPUDIV, CPUSEL: CPU Division and Clock Select
CPUDIV = 0: CPU clock equals main clock.
CPUDIV = 1: CPU clock equals main clock divided by 2(CPUSEL+1).

Note that if CPUDIV is written to 0, CPUSEL should also be written to 0 to ensure correct operation.

Also note that writing this register clears SR.CKRDY. The register must not be re-written until CKRDY is set.

Note that this register is protected by a lock. To write to this register the UNLOCK register has to be written first. Please
refer to the UNLOCK register description for details.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

CPUDIV - - - - CPUSEL

172
32099I–01/2012

AT32UC3L016/32/64

12.7.9 Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x0C0

Reset Value: 0x00000000

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will set the corresponding bit in IMR.

31 30 29 28 27 26 25 24

AE - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - CKRDY - - - - CFD

183
32099I–01/2012

AT32UC3L016/32/64

12.7.19 Configuration Register

Name: CONFIG

Access Type: Read-Only

Offset: 0x3F8

Reset Value: -

This register shows the configuration of the PM.

• HSBPEVC:HSB PEVC Clock Implemented
0: HSBPEVC not implemented.

1: HSBPEVC implemented.

• PBD: PBD Implemented
0: PBD not implemented.

1: PBD implemented.
• PBC: PBC Implemented

0: PBC not implemented.
1: PBC implemented.

• PBB: PBB Implemented
0: PBB not implemented.

1: PBB implemented.

• PBA: PBA Implemented
0: PBA not implemented.

1: PBA implemented.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

HSBPEVC - - - PBD PBC PBB PBA

189
32099I–01/2012

AT32UC3L016/32/64

13.5.3 Digital Frequency Locked Loop (DFLL) Operation
Rev: 2.0.1.1

The DFLL is controlled by the Digital Frequency Locked Loop Interface (DFLLIF). The DFLL is
disabled by default, but can be enabled to provide a high-frequency source clock for synchro-
nous and generic clocks.

Features:

• Internal oscillator with no external components

• 40-150MHz frequency in closed loop mode

• Can operate standalone as a high-frequency programmable oscillator in open loop mode

• Can operate as an accurate frequency multiplier against a known frequency in closed loop
mode

• Optional spread-spectrum clock generation

• Very high-frequency multiplication supported - can generate all frequencies from a 32KHz
clock

The DFLL can operate in both open loop mode and closed loop mode. In closed loop mode a
low frequency clock with high accuracy can be used as reference clock to get high accuracy on
the output clock (CLK_DFLL).

To prevent unexpected writes due to software bugs, write access to the configuration registers is
protected by a locking mechanism. For details please refer to the UNLOCK register description.

Figure 13-1. DFLLIF Block Diagram

13.5.3.1 Enabling the DFLL
The DFLL is enabled by writing a one to the Enable bit (EN) in the DFLLn Configuration Register
(DFLLnCONF). No other bits or fields in DFLLnCONF must be changed simultaneously, or
before the DFLL is enabled.

DFLL

COARSE

FINE

8

9

CLK_DFLL

IMUL
FMUL

32
CLK_DFLLIF_REF

FREQUENCY
TUNER

DFLLLOCKC
DFLLLOCKLOSTC

DFLLLOCKF
DFLLLOCKLOSTF

DFLLLOCKA
DFLLLOCKLOSTA

CSTEP
FSTEP

8+9 CLK_DFLLIF_DITHER

254
32099I–01/2012

AT32UC3L016/32/64

14.5.2.3 Calendar operation
When the CAL bit in the Control Register is one, the counter operates in calendar mode. Before
this mode is enabled, the prescaler should be set up to give a pulse every second. The date and
time can then be read from or written to the Calendar Value (CALV) register.

Time is reported as seconds, minutes, and hours according to the 24-hour clock format. Date is
the numeral date of month (starting on 1). Month is the numeral month of the year (1 = January,
2 = February, etc.). Year is a 6-bit field counting the offset from a software-defined leap year
(e.g. 2000). The date is automatically compensated for leap years, assuming every year divisible
by 4 is a leap year.

All peripheral events and interrupts work the same way in calendar mode as in counter mode.
However, the Alarm Register (ARn) must be written in time/date format for the alarm to trigger
correctly.

14.5.3 Interrupts
The AST can generate five separate interrupt requests:

• OVF: OVF

• PER: PER0, PER1
• ALARM: ALARM0, ALARM1
• CLKREADY

• READY

This allows the user to allocate separate handlers and priorities to the different interrupt types.

The generation of the PER interrupt is described in Section 14.5.3.1., and the generation of the
ALARM interrupt is described in Section 14.5.3.2. The OVF interrupt is generated when the
counter overflows, or when the alarm value is reached, if the Clear on Alarm bit in the Control
Register is one. The CLKREADY interrupt is generated when SR.CLKBUSY has a 1-to-0 transi-
tion, and indicates that the clock synchronization is completed. The READY interrupt is
generated when SR.BUSY has a 1-to-0 transition, and indicates that the synchronization
described in Section 14.5.8 is completed.

An interrupt request will be generated if the corresponding bit in the Interrupt Mask Register
(IMR) is set. Bits in IMR are set by writing a one to the corresponding bit in the Interrupt Enable
Register (IER), and cleared by writing a one to the corresponding bit in the Interrupt Disable
Register (IDR). The interrupt request remains active until the corresponding bit in SR is cleared
by writing a one to the corresponding bit in the Status Clear Register (SCR).

The AST interrupts can wake the CPU from any sleep mode where the source clock and the
interrupt controller is active.

14.5.3.1 Periodic interrupt
The AST can generate periodic interrupts. If the PERn bit in the Interrupt Mask Register (IMR) is
one, the AST will generate an interrupt request on the 0-to-1 transition of the selected bit in the

341
32099I–01/2012

AT32UC3L016/32/64

Note: 1. The reset values for these registers are device specific. Please refer to the Module Configuration section at the end of this
chapter.

0x0C0 Glitch Filter Enable Register Read/Write GFER Read/Write -(1) N N

0x0C4 Glitch Filter Enable Register Set GFERS Write-only N N

0x0C8 Glitch Filter Enable Register Clear GFERC Write-only N N

0x0CC Glitch Filter Enable Register Toggle GFERT Write-only N N

0x0D0 Interrupt Flag Register Read IFR Read-only -(1) N N

0x0D4 Interrupt Flag Register - - - N N

0x0D8 Interrupt Flag Register Clear IFRC Write-only N N

0x0DC Interrupt Flag Register - - - N N

0x180 Event Enable Register Read EVER Read/Write -(1) N N

0x184 Event Enable Register Set EVERS Write-only N N

0x188 Event Enable Register Clear EVERC Write-only N N

0x18C Event Enable Register Toggle EVERT Write-only N N

0x1A0 Lock Register Read/Write LOCK Read/Write -(1) N Y

0x1A4 Lock Register Set LOCKS Write-only N N

0x1A8 Lock Register Clear LOCKC Write-only N Y

0x1AC Lock Register Toggle LOCKT Write-only N Y

0x1E0 Unlock Register Read/Write UNLOCK Write-only N N

0x1E4 Access Status Register Read/Write ASR Read/Write N

0x1F8 Parameter Register Read PARAMETER Read-only -(1) N N

0x1FC Version Register Read VERSION Read-only -(1) N N

Table 18-2. GPIO Register Memory Map

Offset Register Function Register Name Access Reset
Config.

Protection
Access

Protection

473
32099I–01/2012

AT32UC3L016/32/64

21.9.2 Clock Waveform Generator Register
Name: CWGR

Access Type: Read/Write

Offset: 0x04

Reset Value: 0x00000000

• EXP: Clock Prescaler
Used to specify how to prescale the TWCK clock. Counters are prescaled according to the following formula

• DATA: Data Setup and Hold Cycles
Clock cycles for data setup and hold count. Prescaled by CWGR.EXP. Used to time THD_DAT, TSU_DAT.

• STASTO: START and STOP Cycles
Clock cycles in clock high count. Prescaled by CWGR.EXP. Used to time THD_STA, TSU_STA, TSU_STO

• HIGH: Clock High Cycles
Clock cycles in clock high count. Prescaled by CWGR.EXP. Used to time THIGH.

• LOW: Clock Low Cycles
Clock cycles in clock low count. Prescaled by CWGR.EXP. Used to time TLOW, TBUF.

31 30 29 28 27 26 25 24

- EXP DATA

23 22 21 20 19 18 17 16

STASTO

15 14 13 12 11 10 9 8

HIGH

7 6 5 4 3 2 1 0

LOW

fPRESCALER

fCLK_TWIM

2 EXP 1+()--------------------------=

500
32099I–01/2012

AT32UC3L016/32/64

22.8.7 Wakeup from Sleep Modes by TWI Address Match
The TWIS is able to wake the device up from a sleep mode upon an address match, including
sleep modes where CLK_TWIS is stopped. After detecting the START condition on the bus, The
TWIS will stretch TWCK until CLK_TWIS has started. The time required for starting CLK_TWIS
depends on which sleep mode the device is in. After CLK_TWIS has started, the TWIS releases
its TWCK stretching and receives one byte of data on the bus. At this time, only a limited part of
the device, including the TWIS, receives a clock, thus saving power. The TWIS goes on to
receive the slave address. If the address phase causes a TWIS address match, the entire
device is wakened and normal TWIS address matching actions are performed. Normal TWI
transfer then follows. If the TWIS is not addressed, CLK_TWIS is automatically stopped and the
device returns to its original sleep mode.

22.8.8 Identifying Bus Events
This chapter lists the different bus events, and how these affects the bits in the TWIS registers.
This is intended to help writing drivers for the TWIS.

Table 22-5. Bus Events

Event Effect

Slave transmitter has sent a
data byte

SR.THR is cleared.

SR.BTF is set.
The value of the ACK bit sent immediately after the data byte is given
by CR.ACK.

Slave receiver has received
a data byte

SR.RHR is set.

SR.BTF is set.
SR.NAK updated according to value of ACK bit received from master.

Start+Sadr on bus, but
address is to another slave

None.

Start+Sadr on bus, current
slave is addressed, but
address match enable bit in
CR is not set

None.

Start+Sadr on bus, current
slave is addressed,
corresponding address
match enable bit in CR set

Correct address match bit in SR is set.
SR.TRA updated according to transfer direction (updating is done one
CLK_TWIS cycle after address match bit is set)
Slave enters appropriate transfer direction mode and data transfer
can commence.

Start+Sadr on bus, current
slave is addressed,
corresponding address
match enable bit in CR set,
SR.STREN and SR.SOAM
are set.

Correct address match bit in SR is set.

SR.TRA updated according to transfer direction (updating is done one
CLK_TWIS cycle after address match bit is set).

Slave stretches TWCK immediately after transmitting the address
ACK bit. TWCK remains stretched until all address match bits in SR
have been cleared.

Slave enters appropriate transfer direction mode and data transfer
can commence.

Repeated Start received
after being addressed

SR.REP set.

SR.TCOMP unchanged.

Stop received after being
addressed

SR.STO set.

SR.TCOMP set.

636
32099I–01/2012

AT32UC3L016/32/64

27.9.5 Interrupt Mask Register
Name: IMR

Access Type: Read-only

Offset: 0x18

Reset Value: 0x00000000

• WFINTn: Window Mode Interrupt Mask
0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

This bit is cleared when the corresponding bit in IDR is written to one.
This bit is set when the corresponding bit in IER is written to one.

• SUTINTn: ACn Startup Time Interrupt Mask
0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

This bit is cleared when the corresponding bit in IDR is written to one.
This bit is set when the corresponding bit in IER is written to one.

• ACINTn: ACn Interrupt Mask
0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

This bit is cleared when the corresponding bit in IDR is written to one.
This bit is set when the corresponding bit in IER is written to one.

31 30 29 28 27 26 25 24

- - - - WFINT3 WFINT2 WFINT1 WFINT0

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

SUTINT7 ACINT7 SUTINT6 ACINT6 SUTINT5 ACINT5 SUTINT4 ACINT4

7 6 5 4 3 2 1 0

SUTINT3 ACINT3 SUTINT2 ACINT2 SUTINT1 ACINT1 SUTINT0 ACINT0

653
32099I–01/2012

AT32UC3L016/32/64

28.6.4 Autonomous QTouch
For autonomous QTouch, a complete detection algorithm is implemented within the CAT mod-
ule. The additional parameters needed to control the autonomous QTouch detection algorithm
must be specified by the user in the ATCFG2 and ATCFG3 registers.

Autonomous QTouch sensitivity and out-of-touch sensitivity can be adjusted with the SENSE
and OUTSENS fields, respectively, in ATCFG2. Each field accepts values from one to 255
where 255 is the least sensitive setting. The value in the OUTSENS field should be smaller than
the value in the SENSE field.

To avoid false positives a detect integration filtering technique can be used. The number of suc-
cessive detects required is specified in the FILTER field of the ATCFG2 register.

To compensate for changes in capacitance the CAT can recalibrate the autonomous QTouch
sensor periodically. The timing of this calibration is done with the NDRIFT and PDRIFT fields in
the Configuration register, ATCFG3. It is recommended that the PDRIFT value is smaller than
the NDRIFT value.

The autonomous QTouch sensor will also recalibrate if the count value goes too far positive
beyond a threshold. This positive recalibration threshold is specified by the PTHR field in the
ATCFG3 register.

The following block diagram shows the sequence of acquisition and processing operations used
by the CAT module. The AISR written bit is internal and not visible in the user interface.

28.6.5 Peripheral Events
The peripheral event from the AST is used to trigger one iteration of autonomous touch detec-
tion when the device is in a sleep mode that has disabled CLK_CAT. When CLK_CAT is
disabled and the peripheral event from the AST becomes active, a request will automatically be
made to enable CLK_CAT. When CLK_CAT is enabled, the CAT will perform one iteration of the
autonomous touch detection algorithm. After this, the CLK_CAT will be disabled, and the CAT
module will remain in a frozen state until the next AST peripheral event.

The eight peripheral events from the analog comparators are automatically used by the CAT
when performing QMatrix acquisition. The CAT will automatically use the negative peripheral
events from the AC Interface on every Y pin in QMatrix mode. When QMatrix acquisition is used
the analog comparator corresponding to the selected Y pins must be enabled and converting
continuously, using the Y pin as the positive reference and the ACREFN as negative reference.

654
32099I–01/2012

AT32UC3L016/32/64

Figure 28-4. CAT Acquisition and Processing Sequence

28.6.6 Spread Spectrum Sensor Drive
To reduce electromagnetic compatibility issues, the capacitive sensors can be driven with a
spread spectrum signal. To enable spread spectrum drive for a specific acquisition type, the
user must write a one to the SPREAD bit in the appropriate Configuration Register 1 (MGCFG1,
ATCFG1, TGACFG1, or TGBCFG1).

During spread spectrum operation, the length of each pulse within a burst is varied in a deter-
ministic pattern, so that the exact same burst pattern is used for a specific burst length. The
maximum spread is determined by the MAXDEV field in the Spread Spectrum Configuration
Register (SSCFG) register. The prescaler divisor is varied in a sawtooth pattern from
(2(DIV+1))-MAXDEV to (2(DIV+1))+MAXDEV and then back to (2(DIV+1))-MAXDEV. For exam-
ple, if DIV is 2 and MAXDEV is 3, the prescaler divisor will have the following sequence: 6, 7, 8,

Idle

Acquire
autonomous
touch count

Acquire counts

Update
autonomous

touch detection
algorithm

Wait for all
acquired counts
to be transferred

AISR written flag set?

YesNo

Clear AISR
written flag

No Yes

Autonomous touch
enabled (ATEN)?

717
32099I–01/2012

AT32UC3L016/32/64

31.2.2 SAB Security Restrictions
The Service Access bus can be restricted by internal security measures. A short description of
the security measures are found in the table below.

31.2.2.1 Security measure and control location
A security measure is a mechanism to either block or allow SAB access to a certain address or
address range. A security measure is enabled or disabled by one or several control signals. This
is called the control location for the security measure.

These security measures can be used to prevent an end user from reading out the code pro-
grammed in the flash, for instance.

Below follows a more in depth description of what locations are accessible when the security
measures are active.

Note: 1. Second Word of the User Page, refer to the Fuses Settings section for details.

HSB 0x5
Alternative mapping for HSB space, for compatibility with
other 32-bit AVR devices.

Memory Service
Unit

0x6 Memory Service Unit registers

Reserved Other Unused

Table 31-1. SAB Slaves, Addresses and Descriptions

Slave Address [35:32] Description

Table 31-2. SAB Security Measures

Security Measure Control Location Description

Secure mode
FLASHCDW

SECURE bits set
Allocates a portion of the flash for secure code. This code
cannot be read or debugged. The User page is also locked.

Security bit
FLASHCDW

security bit set
Programming and debugging not possible, very restricted
access.

User code
programming

FLASHCDW
UPROT + security

bit set

Restricts all access except parts of the flash and the flash
controller for programming user code. Debugging is not
possible unless an OS running from the secure part of the
flash supports it.

Table 31-3. Secure Mode SAB Restrictions

Name Address Start Address End Access

Secure flash area 0x580000000
0x580000000 +

(USERPAGE[15:0] << 10)
Blocked

Secure RAM area 0x500000000
0x500000000 +

(USERPAGE[31:16] << 10)
Blocked

User page 0x580800000 0x581000000 Read

Other accesses - - As normal

725
32099I–01/2012

AT32UC3L016/32/64

Figure 31-4. AUX+JTAG Based Debugger

31.3.8.1 Trace Operation
Trace features are enabled by writing OCD registers by the debugger. The OCD extracts the
trace information from the CPU, compresses this information and formats it into variable-length
messages according to the Nexus standard. The messages are buffered in a 16-frame transmit
queue, and are output on the AUX port one frame at a time.

The trace features can be configured to be very selective, to reduce the bandwidth on the AUX
port. In case the transmit queue overflows, error messages are produced to indicate loss of
data. The transmit queue module can optionally be configured to halt the CPU when an overflow
occurs, to prevent the loss of messages, at the expense of longer run-time for the program.

31.3.8.2 Program Trace
Program trace allows the debugger to continuously monitor the program execution in the CPU.
Program trace messages are generated for every branch in the program, and contains com-
pressed information, which allows the debugger to correlate the message with the source code
to identify the branch instruction and target address.

31.3.8.3 Data Trace
Data trace outputs a message every time a specific location is read or written. The message
contains information about the type (read/write) and size of the access, as well as the address
and data of the accessed location. The AT32UC3L016/32/64 contains two data trace channels,

A V R 3 2

A U X + J T A G
d e b u g to o l

J T A GA U X
h ig h s p e e d

M ic t o r 3 8

T r a c e b u f f e r

P C

740
32099I–01/2012

AT32UC3L016/32/64

31.5.2.4 INTEST
This instruction selects the boundary-scan chain as Data Register for testing internal logic in the
device. The logic inputs are determined by the boundary-scan chain, and the logic outputs are
captured by the boundary-scan chain. The device output pins are driven from the boundary-scan
chain.

Starting in Run-Test/Idle, the INTEST instruction is accessed the following way:

1. Select the IR Scan path.

2. In Capture-IR: The IR output value is latched into the shift register.

3. In Shift-IR: The instruction register is shifted by the TCK input.

4. In Update-IR: The data from the boundary-scan chain is applied to the internal logic
inputs.

5. Return to Run-Test/Idle.

6. Select the DR Scan path.

7. In Capture-DR: The data on the internal logic is sampled into the boundary-scan chain.

8. In Shift-DR: The boundary-scan chain is shifted by the TCK input.

9. In Update-DR: The data from the boundary-scan chain is applied to internal logic
inputs.

10. Return to Run-Test/Idle.

31.5.2.5 CLAMP
This instruction selects the Bypass register as Data Register. The device output pins are driven
from the boundary-scan chain.

Starting in Run-Test/Idle, the CLAMP instruction is accessed the following way:

1. Select the IR Scan path.

2. In Capture-IR: The IR output value is latched into the shift register.

3. In Shift-IR: The instruction register is shifted by the TCK input.

4. In Update-IR: The data from the boundary-scan chain is applied to the output pins.

5. Return to Run-Test/Idle.

6. Select the DR Scan path.

7. In Capture-DR: A logic ‘0’ is loaded into the Bypass Register.

8. In Shift-DR: Data is scanned from TDI to TDO through the Bypass register.

Table 31-15. INTEST Details

Instructions Details

IR input value 00100 (0x04)

IR output value p0001

DR Size Depending on boundary-scan chain, see BSDL-file.

DR input value Depending on boundary-scan chain, see BSDL-file.

DR output value Depending on boundary-scan chain, see BSDL-file.

808
32099I–01/2012

AT32UC3L016/32/64

35. Errata

35.1 Rev. E

35.1.1 Processor and Architecture

1. Hardware breakpoints may corrupt MAC results
Hardware breakpoints on MAC instructions may corrupt the destination register of the MAC
instruction.
Fix/Workaround
Place breakpoints on earlier or later instructions.

2. Privilege violation when using interrupts in application mode with protected system
stack
If the system stack is protected by the MPU and an interrupt occurs in application mode, an
MPU DTLB exception will occur.
Fix/Workaround
Make a DTLB Protection (Write) exception handler which permits the interrupt request to be
handled in privileged mode.

35.1.2 FLASHCDW

1. Flash self programming may fail in one wait state mode
Writes in flash and user pages may fail if executing code is located in address space
mapped to flash, and the flash controller is configured in one wait state mode (the Flash
Wait State bit in the Flash Control Register (FCR.FWS) is one).
Fix/Workaround
Solution 1: Configure the flash controller in zero wait state mode (FCR.FWS=0).
Solution 2: Configure the HMATRIX master 1 (CPU Instruction) to use the unlimited burst
length transfer mode (MCFG1.ULBT=0), and the HMATRIX slave 0 (FLASHCDW) to use
the maximum slot cycle limit (SCFG0.SLOT_CYCLE=255).

35.1.3 Power Manager

1. Clock sources will not be stopped in Static mode if the difference between CPU and
PBx division factor is larger than 4
If the division factor between the CPU/HSB and PBx frequencies is more than 4 when enter-
ing a sleep mode where the system RC oscillator (RCSYS) is turned off, the high speed
clock sources will not be turned off. This will result in a significantly higher power consump-
tion during the sleep mode.
Fix/Workaround
Before going to sleep modes where RCSYS is stopped, make sure the division factor
between CPU/HSB and PBx frequencies is less than or equal to 4.

2. Clock Failure Detector (CFD) can be issued while turning off the CFD
While turning off the CFD, the CFD bit in the Status Register (SR) can be set. This will
change the main clock source to RCSYS.
Fix/Workaround
Solution 1: Enable CFD interrupt. If CFD interrupt is issues after turning off the CFD, switch
back to original main clock source.
Solution 2: Only turn off the CFD while running the main clock on RCSYS.

3. Sleepwalking in idle and frozen sleep mode will mask all other PB clocks

iv
32099I–01/2012

AT32UC3L016/32/64

16 External Interrupt Controller (EIC) ... 293

16.1 Features ..293

16.2 Overview ..293

16.3 Block Diagram ...293

16.4 I/O Lines Description ...294

16.5 Product Dependencies ..294

16.6 Functional Description ...294

16.7 User Interface ..298

16.8 Module Configuration ..314

17 Frequency Meter (FREQM) .. 315

17.1 Features ..315

17.2 Overview ..315

17.3 Block Diagram ...315

17.4 Product Dependencies ..315

17.5 Functional Description ...316

17.6 User Interface ..318

17.7 Module Configuration ..329

18 General-Purpose Input/Output Controller (GPIO) 331

18.1 Features ..331

18.2 Overview ..331

18.3 Block Diagram ...331

18.4 I/O Lines Description ...332

18.5 Product Dependencies ..332

18.6 Functional Description ...333

18.7 User Interface ..338

18.8 Module Configuration ..361

19 Universal Synchronous Asynchronous Receiver Transmitter (USART)
362

19.1 Features ..362

19.2 Overview ..362

19.3 Block Diagram ...363

19.4 I/O Lines Description ..364

19.5 Product Dependencies ..364

19.6 Functional Description ...365

19.7 User Interface ..391

