

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/at32uc3l064-aur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.7.27 Perfor Name:	mance Cha PWDA	n nel 1 Write D a TA1	ata Cycles				
Access Type:	Read-o	only					
Offset:	0x828						
Reset Value:	0x0000	00000					
31	30	29	28	27	26	25	24
			DATA[[31:24]			
23	22	21	20	19	18	17	16
			DATA[23:16]			
15	14	13	12	11	10	9	8
			DATA	[15:8]			
7	6	5	4	3	2	1	0
			DATA	A[7:0]			

DATA: Data Cycles Counted Since Last Reset

Clock cycles are counted using the CLK_PDCA_HSB clock

8.8.6 Flash General Purpose Fuse Register High

Name:	FGPFRHI
Access Type:	Read-only
Offset:	0x14

-

Reset Value:

31	30	29	28	27	26	25	24
GPF63	GPF62	GPF61	GPF60	GPF59	GPF58	GPF57	GPF56
23	22	21	20	19	18	17	16
GPF55	GPF54	GPF53	GPF52	GPF51	GPF50	GPF49	GPF48
15	14	13	12	11	10	9	8
GPF47	GPF46	GPF45	GPF44	GPF43	GPF42	GPF41	GPF40
7	6	5	4	3	2	1	0
GPF39	GPF38	GPF37	GPF36	GPF35	GPF34	GPF33	GPF32

This register is only used in systems with more than 32 GP fuses.

• GPFxx: General Purpose Fuse xx

0: The fuse has a written/programmed state.

1: The fuse has an erased state.

12.7.8 Unlock Register

Name:	UNLOCK
Access Type:	Write-only
Offset:	0x058
Reset Value:	0x00000000

31	30	29	28	27	26	25	24
			K	ΞY			
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	ADDF	R[9:8]
7	6	5	4	3	2	1	0
	ADDR[7:0]						

To unlock a write protected register, first write to the UNLOCK register with the address of the register to unlock in the ADDR field and 0xAA in the KEY field. Then, in the next PB access write to the register specified in the ADDR field.

• KEY: Unlock Key

Write this bit field to 0xAA to enable unlock.

• ADDR: Unlock Address

Write the address of the register to unlock to this field.

12.7.11 Interrupt Mask Register

Name:	IMR
Access Type:	Read-only
Offset:	0x0C8
Reset Value:	0x0000000

31	30	29	28	27	26	25	24
AE	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	-	CKRDY	-	-	-	-	CFD

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

This bit is cleared when the corresponding bit in IDR is written to one.

This bit is set when the corresponding bit in IER is written to one.

13.6.19 Supply Monitor 33 Calibration Register

-

Name:	SM33
Access Type:	Read/Write

Reset Value:

31	30	29	28	27	26	25	24
-	-	-	-		SAMPI	FREQ	
23	22	21	20	19	18	17	16
-	-	-	-	-	ONSM	SFV	FCD
15	14	13	12	11	10	9	8
-	-	-	-		CAL	_IB	
7	6	5	4	3	2	1	0
FS	-	-	-		CTI	RL	

• SAMPFREQ: Sampling Frequency

Selects the sampling mode frequency of the 3.3V supply monitor. In sampling mode, the SM33 performs a measurement every $2^{(SAMPFREQ+5)}$ cycles of the internal 32kHz RC oscillator.

ONSM: Supply Monitor On Indicator

- 0: The supply monitor is disabled.
- 1: The supply monitor is enabled.

This bit is read-only. Writing to this bit has no effect.

• SFV: Store Final Value

- 0: The register is read/write
- 1: The register is read-only, to protect against further accidental writes.

This bit is cleared after a reset.

• FCD: Flash Calibration Done

This bit is cleared after a reset.

This bit is set when CALIB field has been updated after a reset.

- CALIB: Calibration Value
 - Calibration Value for the SM33.

• FS: Force Sampling Mode

- 0: Sampling mode is enabled in DeepStop and Static mode only.
- 1: Sampling mode is always enabled.
- CTRL: Supply Monitor Control

	1
Register	Reset Value
OSC0VERSION	0x00000100
OSC32VERSION	0x00000101
DFLLIFVERSION	0x00000201
BODIFAVERSION	0x00000101
VREGIFBVERSION	0x00000101
RCOSCIFAVERSION	0x00000101
SM33IFAVERSION	0x00000100
TSENSEIFAVERSION	0x00000100
RC120MIFAVERSION	0x00000101
BRIFAVERSION	0x00000100
RC32KIFAVERSION	0x00000100
GCLKVERSION	0x00000100
VERSION	0x00000102

Table 13-13. Register Reset Values

AT32UC3L016/32/64

If ADD is '1', the prescaler frequency is increased:

$$f_{TUNED} = f_0 \left(1 + \frac{1}{\text{roundup}\left(\frac{256}{VALUE}\right) \cdot (2^{EXP}) - 1} \right)$$

Note that for these formulas to be within an error of 0.01%, it is recommended that the prescaler bit that is used as the clock for the counter (selected by CR.PSEL) or to trigger the periodic interrupt (selected by PIRn.INSEL) be bit 6 or higher.

14.5.8 Synchronization

As the prescaler and counter operate asynchronously from the user interface, the AST needs a few clock cycles to synchronize the values written to the CR, CV, SCR, WER, EVE, EVD, PIRn, ARn, and DTR registers. The Busy bit in the Status Register (SR.BUSY) indicates that the synchronization is ongoing. During this time, writes to these registers will be discarded and reading will return a zero value.

Note that synchronization takes place also if the prescaler is clocked from CLK_AST.

14.6.10	Alarm Register 1				
Name:		AR1			
Access T	ype:	Read/Write			
Offset:		0x24			
Reset Val	ue:	0x00000000			

31	30	29	28	27	26	25	24	
	VALUE[31:24]							
23	22	21	20	19	18	17	16	
	VALUE[23:16]							
15	14	13	12	11	10	9	8	
VALUE[15:8]								
7	6	5	4	3	2	1	0	
VALUE[7:0]								

When the SR.BUSY bit is set writes to this register will be discarded and this register will read as zero.

• VALUE: Alarm Value

When the counter reaches this value, an alarm is generated.

18.7.5 Peripheral Mux Register 0

Name: PMR0

Access: Read/Write, Set, Clear, Toggle

Offset: 0x010, 0x014, 0x018, 0x01C

-

Reset Value:

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0-31: Peripheral Multiplexer Select bit 0

19.7.7 Receiver Holding Register

0x18

Name:	RHR
Access Type:	Read-only

Offset:

Reset Value: 0x0000000

31	30	29	28	27	26	25	24
_	-	-	-	-	-	-	—
23	22	21	20	19	18	17	16
_	-	-	-	-	-	-	—
15	14	13	12	11	10	9	8
_	-	-	-	-	-	-	RXCHR[8]
7	6	5	4	3	2	1	0
RXCHR[7:0]							

• RXCHR: Received Character

Last received character.

21.9.11 Inte Name:	rrupt Mask Re IMR	gister					
Access Type:	Read-o	only					
Offset:	0x28						
Reset Value:	0x0000	00000					
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	STOP	PECERR	TOUT	SMBALERT	ARBLST	DNAK	ANAK
7	6	5	4	3	2	1	0
-	-	BUSFREE	IDLE	CCOMP	CRDY	TXRDY	RXRDY

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

This bit is cleared when the corresponding bit in IDR is written to one.

This bit is set when the corresponding bit in IER is written to one.

AT32UC3L016/32/64

Writing a one to this bit resets the TWIS.

• STREN: Clock Stretch Enable

- 0: Disables clock stretching if RHR/THR buffer full/empty. May cause over/underrun.
- 1: Enables clock stretching if RHR/THR buffer full/empty.

• GCMATCH: General Call Address Match

- 0: Causes the TWIS not to acknowledge the General Call Address.
- 1: Causes the TWIS to acknowledge the General Call Address.

• SMATCH: Slave Address Match

- 0: Causes the TWIS not to acknowledge the Slave Address.
- 1: Causes the TWIS to acknowledge the Slave Address.

• SMEN: SMBus Mode Enable

- 0: Disables SMBus mode.
- 1: Enables SMBus mode.

• SEN: Slave Enable

- 0: Disables the slave interface.
- 1: Enables the slave interface.

Figure 24-7. WAVSEL= 0 With Trigger

24.6.3.3 WAVSEL = 2

When CMRn.WAVSEL is two, the value of CVn is incremented from zero to the value of RC, then automatically reset on a RC Compare. Once the value of CVn has been reset, it is then incremented and so on. See Figure 24-8 on page 553.

It is important to note that CVn can be reset at any time by an external event or a software trigger if both are programmed correctly. See Figure 24-9 on page 553.

In addition, RC Compare can stop the counter clock (CMRn.CPCSTOP) and/or disable the counter clock (CMRn.CPCDIS = 1).

24.7.8 Channel Status Register

Name:	SR
Access Type:	Read-only
Offset:	0x20 + n * 0x40
Reset Value:	0x00000000

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	MTIOB	MTIOA	CLKSTA
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
ETRGS	LDRBS	LDRAS	CPCS	CPBS	CPAS	LOVRS	COVFS

Note: Reading the Status Register will also clear the interrupt bit for the corresponding interrupts.

• MTIOB: TIOB Mirror

1: TIOB is high. If CMRn.WAVE is zero, this means that TIOB pin is high. If CMRn.WAVE is one, this means that TIOB is driven high.

0: TIOB is low. If CMRn.WAVE is zero, this means that TIOB pin is low. If CMRn.WAVE is one, this means that TIOB is driven low.

• MTIOA: TIOA Mirror

1: TIOA is high. If CMRn.WAVE is zero, this means that TIOA pin is high. If CMRn.WAVE is one, this means that TIOA is driven high.

0: TIOA is low. If CMRn.WAVE is zero, this means that TIOA pin is low. If CMRn.WAVE is one, this means that TIOA is driven low.

• CLKSTA: Clock Enabling Status

- 1: This bit is set when the clock is enabled.
- 0: This bit is cleared when the clock is disabled.

• ETRGS: External Trigger Status

- 1: This bit is set when an external trigger has occurred.
- 0: This bit is cleared when the SR register is read.

• LDRBS: RB Loading Status

- 1: This bit is set when an RB Load has occurred and CMRn.WAVE is zero.
- 0: This bit is cleared when the SR register is read.

• LDRAS: RA Loading Status

- 1: This bit is set when an RA Load has occurred and CMRn.WAVE is zero.
- 0: This bit is cleared when the SR register is read.

• CPCS: RC Compare Status

- 1: This bit is set when an RC Compare has occurred.
- 0: This bit is cleared when the SR register is read.

24.7.11 Channel Interrupt Mask Register

Name:	IMR
Access Type:	Read-only
Offset:	0x2C + n * 0x40
Reset Value:	0x0000000

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
ETRGS	LDRBS	LDRAS	CPCS	CPBS	CPAS	LOVRS	COVFS

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

A bit in this register is cleared when the corresponding bit in IDR is written to one.

A bit in this register is set when the corresponding bit in IER is written to one.

28.7.5 Autonomous Touch Configuration Register 1

Name:	ATCFG1
Access Type:	Read/Write
Offset:	0x14
Reset Value:	0x00000000

31	30	29	28	27	26	25	24
	-	DISI	HIFT	-		SYNC	SPREAD
23	22	21	20	19	18	17	16
			DIL	EN			
15	14	13	12	11	10	9	8
MAX[15:8]							
7	6	5	4	3	2	1	0
MAX[7:0]							

• DISHIFT: Discharge Shift

For the autonomous QTouch sensor, specifies how many bits the DILEN field should be shifted before using it to determine the discharge time.

• SYNC: Sync Pin

٠

For the autonomous QTouch sensor, specifies that acquisition shall begin when a falling edge is received on the SYNC line.

SPREAD: Spread Spectrum Sensor Drive

For the autonomous QTouch sensor, specifies that spread spectrum sensor drive shall be used.

• DILEN: Discharge Length

For the autonomous QTouch sensor, specifies how many sample clock cycles the CAT should use to discharge the capacitors before charging them.

• MAX: Maximum Count

For the autonomous QTouch sensor, specifies how many counts the maximum acquisition should be.

31.4 JTAG and Boundary-scan (JTAG)

Rev: 2.2.1.4

31.4.1 Features

- IEEE1149.1 compliant JTAG Interface
- · Boundary-scan Chain for board-level testing
- Direct memory access and programming capabilities through JTAG Interface

31.4.2 Overview

The JTAG Interface offers a four pin programming and debug solution, including boundary-scan support for board-level testing.

Figure 31-5 on page 729 shows how the JTAG is connected in an 32-bit AVR device. The TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP Controller selects either the JTAG Instruction Register or one of several Data Registers as the scan chain (shift register) between the TDI-input and TDO-output.

The Instruction Register holds JTAG instructions controlling the behavior of a Data Register. The Device Identification Register, Bypass Register, and the boundary-scan chain are the Data Registers used for board-level testing. The Reset Register can be used to keep the device reset during test or programming.

The Service Access Bus (SAB) interface contains address and data registers for the Service Access Bus, which gives access to On-Chip Debug, programming, and other functions in the device. The SAB offers several modes of access to the address and data registers, as described in Section 31.4.11.

Section 31.5 lists the supported JTAG instructions, with references to the description in this document.

Instructions	Details			
DR Size	Device specific.			
DR input value	Device specific.			
DR output value	Device specific.			

Table 31-26. AVR_RESET Details (Continued)

31.5.3.9 CHIP_ERASE

This instruction allows a programmer to completely erase all nonvolatile memories in a chip. This will also clear any security bits that are set, so the device can be accessed normally. In devices without non-volatile memories this instruction does nothing, and appears to complete immediately.

The erasing of non-volatile memories starts as soon as the CHIP_ERASE instruction is selected. The CHIP_ERASE instruction selects a 1 bit bypass data register.

A chip erase operation should be performed as:

- 1. Reset the system and stop the CPU from executing.
- 2. Select the IR Scan path.
- 3. In Capture-IR: The IR output value is latched into the shift register.
- 4. In Shift-IR: The instruction register is shifted by the TCK input.
- 5. Check the busy bit that was scanned out during Shift-IR. If the busy bit was set goto 2.
- 6. Return to Run-Test/Idle.

Table 31-27. CHIP_ERASE Details

Instructions	Details
IR input value	01111 (0x0F)
IR output value	p0b01 Where b is the <i>busy</i> bit.
DR Size	1 bit
DR input value	x
DR output value	0

31.5.3.10 HALT

This instruction allows a programmer to easily stop the CPU to ensure that it does not execute invalid code during programming.

This instruction selects a 1-bit halt register. Setting this bit to one halts the CPU. Setting this bit to zero releases the CPU to run normally. The value shifted out from the data register is one if the CPU is halted. Before releasing the halt command the CPU needs to be reset to ensure that it will start at the reset startup address.

The HALT instruction can be used in the following way:

- 1. Select the IR Scan path.
- 2. In Capture-IR: The IR output value is latched into the shift register.
- 3. In Shift-IR: The instruction register is shifted by the TCK input.
- 4. Return to Run-Test/Idle.
- 5. Select the DR Scan path.

AT32UC3L016/32/64

- 1. 0x55 (sync)
- 2. 0xC1 (command)
- 3. 0x00 (length MSB)
- 4. 0x07 (length LSB)
- 5. 0xCA (Data MSB)
- 6. 0xFE
- 7. 0xBA
- 8. 0xBE (Data LSB)
- 9. 0x00 (Status byte)
- 10. 0x00 (Bytes remaining MSB)
- 11. 0x00 (Bytes remaining LSB)
- 12. 0xXX (CRC MSB)
- 13. 0xXX (CRC LSB)

The status is 0x00 and all data read are valid. An unsuccessful four byte read can look like this:

- 1. 0x55 (sync)
- 2. 0xC1 (command)
- 3. 0x00 (length MSB)
- 4. 0x07 (length LSB)
- 5. 0xCA (Data MSB)
- 6. 0xFE
- 7. 0xXX (An error has occurred. Data read is undefined. 5 bytes remaining of the Data field)
- 8. 0xXX (More undefined data)
- 9. 0x02 (Status byte)
- 10. 0x00 (Bytes remaining MSB)
- 11. 0x05 (Bytes remaining LSB)
- 12. 0xXX (CRC MSB)
- 13. 0xXX (CRC LSB)

The error occurred after reading 2 bytes on the SAB. The rest of the bytes read are undefined. The status byte indicates the error and the bytes remaining indicates how many bytes were remaining to be sent of the data field of the packet when the error occurred.

Table 31-53. MEMDATA Status Byte

status byte	Description
0x00	Read successful
0x01	SAB busy
0x02	Bus error (wrong address)
Other	Reserved

Table 31-54. MEMDATA Details

Response	Details
Response value	0xC1
Additional data	Data read, status byte, and byte count (2 bytes)

35.2.11 ADCIFB

1. Using STARTUPTIME larger than 0x1F will freeze the ADC

Writing a value larger than 0x1F to the Startup Time field in the ADC Configuration Register (ACR.STARTUP) will freeze the ADC, and the Busy Status bit in the Status Register (SR.BUSY) will never be cleared. **Fix/Workaround**

Do not write values larger than 0x1F to ACR.STARTUP.

35.2.12 CAT

1. CAT asynchronous wake will be delayed by one AST event period

If the CAT detects a condition the should asynchronously wake the device in static mode, the asynchronous wake will not occur until the next AST event. For example, if the AST is generating events to the CAT every 50ms, and the CAT detects a touch at t=9200ms, the asynchronous wake will occur at t=9250ms.

Fix/Workaround

None.

2. CAT QMatrix sense capacitors discharged prematurely

At the end of a QMatrix burst charging sequence that uses different burst count values for different Y lines, the Y lines may be incorrectly grounded for up to n-1 periods of the peripheral bus clock, where n is the ratio of the PB clock frequency to the GCLK_CAT frequency. This results in premature loss of charge from the sense capacitors and thus increased variability of the acquired count values.

Fix/Workaround

Enable the 1 kOhm drive resistors on all implemented QMatrix Y lines (CSA 1, 3, 5, 7, 9, 11, 13, and/or 15) by writing ones to the corresponding odd bits of the CSARES register.

3. CAT module does not terminate QTouch burst on detect

The CAT module does not terminate a QTouch burst when the detection voltage is reached on the sense capacitor. This can cause the sense capacitor to be charged more than necessary. Depending on the dielectric absorption characteristics of the capacitor, this can lead to unstable measurements.

Fix/Workaround

Use the minimum possible value for the MAX field in the ATCFG1, TG0CFG1, and TG1CFG1 registers.

4. Autonomous CAT acquisition must be longer than AST source clock period

When using the AST to trigger CAT autonomous touch acquisition in sleep modes where the CAT bus clock is turned off, the CAT will start several acquisitions if the period of the AST source clock is larger than one CAT acquisition. One AST clock period after the AST trigger, the CAT clock will automatically stop and the CAT acquisition can be stopped prematurely, ruining the result.

Fix/Workaround

Always ensure that the ATCFG1.max field is set so that the duration of the autonomous touch acquisition is greater than one clock period of the AST source clock.

35.2.13 aWire

1. aWire CPU clock speed robustness

The aWire memory speed request command counter warps at clock speeds below approximately 5kHz. **Fix/Workaround**

AIMEL