
Microchip Technology - AT32UC3L064-D3HT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 32-Bit Single-Core

Speed 50MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 36

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 16K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 8x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 48-UFLGA Exposed Pad

Supplier Device Package 48-TLLGA (5.5x5.5)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at32uc3l064-d3ht

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at32uc3l064-d3ht-4433223
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

74
32099I–01/2012

AT32UC3L016/32/64

7.7.30 PDCA Version Register
Name: VERSION

Access Type: Read-only

Offset: 0x834

Reset Value: -

• VARIANT: Variant Number
Reserved. No functionality associated.

• VERSION: Version Number
Version number of the module. No functionality associated.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - VARIANT

15 14 13 12 11 10 9 8

- - - - VERSION[11:8]

7 6 5 4 3 2 1 0

VERSION[7:0]

127
32099I–01/2012

AT32UC3L016/32/64

To change from one kind of default master to another, the Bus Matrix user interface provides the
Slave Configuration Registers, one for each slave, that set a default master for each slave. The
Slave Configuration Register contains two fields: DEFMSTR_TYPE and FIXED_DEFMSTR. The
2-bit DEFMSTR_TYPE field selects the default master type (no default, last access master, fixed
default master), whereas the 4-bit FIXED_DEFMSTR field selects a fixed default master pro-
vided that DEFMSTR_TYPE is set to fixed default master. Please refer to the Bus Matrix user
interface description.

10.4.1.1 No Default Master
At the end of the current access, if no other request is pending, the slave is disconnected from
all masters. No Default Master suits low-power mode.

10.4.1.2 Last Access Master
At the end of the current access, if no other request is pending, the slave remains connected to
the last master that performed an access request.

10.4.1.3 Fixed Default Master
At the end of the current access, if no other request is pending, the slave connects to its fixed
default master. Unlike last access master, the fixed master does not change unless the user
modifies it by a software action (field FIXED_DEFMSTR of the related SCFG).

10.4.2 Arbitration
The Bus Matrix provides an arbitration mechanism that reduces latency when conflict cases
occur, i.e. when two or more masters try to access the same slave at the same time. One arbiter
per HSB slave is provided, thus arbitrating each slave differently.

The Bus Matrix provides the user with the possibility of choosing between 2 arbitration types for
each slave:

1. Round-Robin Arbitration (default)

2. Fixed Priority Arbitration

This is selected by the ARBT field in the Slave Configuration Registers (SCFG).

Each algorithm may be complemented by selecting a default master configuration for each
slave.

When a re-arbitration must be done, specific conditions apply. This is described in “Arbitration
Rules” .

10.4.2.1 Arbitration Rules
Each arbiter has the ability to arbitrate between two or more different master requests. In order
to avoid burst breaking and also to provide the maximum throughput for slave interfaces, arbitra-
tion may only take place during the following cycles:

1. Idle Cycles: When a slave is not connected to any master or is connected to a master
which is not currently accessing it.

2. Single Cycles: When a slave is currently doing a single access.

3. End of Burst Cycles: When the current cycle is the last cycle of a burst transfer. For
defined length burst, predicted end of burst matches the size of the transfer but is man-
aged differently for undefined length burst. This is described below.

4. Slot Cycle Limit: When the slot cycle counter has reached the limit value indicating that
the current master access is too long and must be broken. This is described below.

128
32099I–01/2012

AT32UC3L016/32/64

• Undefined Length Burst Arbitration

In order to avoid long slave handling during undefined length bursts (INCR), the Bus Matrix pro-
vides specific logic in order to re-arbitrate before the end of the INCR transfer. A predicted end
of burst is used as a defined length burst transfer and can be selected among the following five
possibilities:

1. Infinite: No predicted end of burst is generated and therefore INCR burst transfer will
never be broken.

2. One beat bursts: Predicted end of burst is generated at each single transfer inside the
INCP transfer.

3. Four beat bursts: Predicted end of burst is generated at the end of each four beat
boundary inside INCR transfer.

4. Eight beat bursts: Predicted end of burst is generated at the end of each eight beat
boundary inside INCR transfer.

5. Sixteen beat bursts: Predicted end of burst is generated at the end of each sixteen beat
boundary inside INCR transfer.

This selection can be done through the ULBT field in the Master Configuration Registers
(MCFG).

• Slot Cycle Limit Arbitration

The Bus Matrix contains specific logic to break long accesses, such as very long bursts on a
very slow slave (e.g., an external low speed memory). At the beginning of the burst access, a
counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave
Configuration Register (SCFG) and decreased at each clock cycle. When the counter reaches
zero, the arbiter has the ability to re-arbitrate at the end of the current byte, halfword, or word
transfer.

10.4.2.2 Round-Robin Arbitration
This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave in a round-robin manner. If two or more master requests arise at the same time,
the master with the lowest number is first serviced, then the others are serviced in a round-robin
manner.

There are three round-robin algorithms implemented:

1. Round-Robin arbitration without default master

2. Round-Robin arbitration with last default master

3. Round-Robin arbitration with fixed default master

• Round-Robin Arbitration without Default Master

This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch
requests from different masters to the same slave in a pure round-robin manner. At the end of
the current access, if no other request is pending, the slave is disconnected from all masters.
This configuration incurs one latency cycle for the first access of a burst. Arbitration without
default master can be used for masters that perform significant bursts.

• Round-Robin Arbitration with Last Default Master

This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to
remove the one latency cycle for the last master that accessed the slave. At the end of the cur-

232
32099I–01/2012

AT32UC3L016/32/64

13.6.23 32kHz RC Oscillator Configuration Register

Name: RC32KCR

Access Type: Read/Write

Reset Value: 0x00000000

• EN: RC32K Enable
0: The 32 kHz RC oscillator is disabled.

1: The 32 kHz RC oscillator is enabled.

Note that this register is protected by a lock. To write to this register the UNLOCK register has to be written first. Please
refer to the UNLOCK register description for details.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - EN

257
32099I–01/2012

AT32UC3L016/32/64

If ADD is ‘1’, the prescaler frequency is increased:

Note that for these formulas to be within an error of 0.01%, it is recommended that the prescaler
bit that is used as the clock for the counter (selected by CR.PSEL) or to trigger the periodic inter-
rupt (selected by PIRn.INSEL) be bit 6 or higher.

14.5.8 Synchronization
As the prescaler and counter operate asynchronously from the user interface, the AST needs a
few clock cycles to synchronize the values written to the CR, CV, SCR, WER, EVE, EVD, PIRn,
ARn, and DTR registers. The Busy bit in the Status Register (SR.BUSY) indicates that the syn-
chronization is ongoing. During this time, writes to these registers will be discarded and reading
will return a zero value.

Note that synchronization takes place also if the prescaler is clocked from CLK_AST.

fTUNED f0 1 1

roundup 256
VALUE
--------------------⎝ ⎠
⎛ ⎞ 2EXP()⋅ 1–

--+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

487
32099I–01/2012

AT32UC3L016/32/64

21.9.14 Version Register (VR)
Name: VR

Access Type: Read-only

Offset: 0x34

Reset Value: -

• VARIANT: Variant Number
Reserved. No functionality associated.

• VERSION: Version Number
Version number of the module. No functionality associated.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - VARIANT

15 14 13 12 11 10 9 8

- - - - VERSION [11:8]

7 6 5 4 3 2 1 0

VERSION [7:0]

489
32099I–01/2012

AT32UC3L016/32/64

22. Two-wire Slave Interface (TWIS)
Rev.: 1.1.2.1

22.1 Features
• Compatible with I²C standard

– Transfer speeds of 100 and 400 kbit/s
– 7 and 10-bit and General Call addressing

• Compatible with SMBus standard
– Hardware Packet Error Checking (CRC) generation and verification with ACK response
– SMBALERT interface
– 25 ms clock low timeout delay
– 25 ms slave cumulative clock low extend time

• Compatible with PMBus
• DMA interface for reducing CPU load
• Arbitrary transfer lengths, including 0 data bytes
• Optional clock stretching if transmit or receive buffers not ready for data transfer
• 32-bit Peripheral Bus interface for configuration of the interface

22.2 Overview
The Atmel Two-wire Slave Interface (TWIS) interconnects components on a unique two-wire
bus, made up of one clock line and one data line with speeds of up to 400 kbit/s, based on a
byte-oriented transfer format. It can be used with any Atmel Two-wire Interface bus, I²C, or
SMBus-compatible master. The TWIS is always a bus slave and can transfer sequential or sin-
gle bytes.

Below, Table 22-1 lists the compatibility level of the Atmel Two-wire Slave Interface and a full I²C
compatible device.

Note: 1. START + b000000001 + Ack + Sr

Table 22-1. Atmel TWIS Compatibility with I²C Standard

I²C Standard Atmel TWIS

Standard-mode (100 kbit/s) Supported

Fast-mode (400 kbit/s) Supported

7 or 10 bits Slave Addressing Supported

START BYTE(1) Not Supported

Repeated Start (Sr) Condition Supported

ACK and NAK Management Supported

Slope control and input filtering (Fast mode) Supported

Clock stretching Supported

495
32099I–01/2012

AT32UC3L016/32/64

In I²C mode:

• The address in CR.ADR is checked for address match if CR.SMATCH is one.

• The General Call address is checked for address match if CR.GCMATCH is one.

In SMBus mode:

• The address in CR.ADR is checked for address match if CR.SMATCH is one.

• The Alert Response Address is checked for address match if CR.SMAL is one.

• The Default Address is checked for address match if CR.SMDA is one.

• The Host Header Address is checked for address match if CR.SMHH is one.

22.8.2.4 Clock Stretching
Any slave or bus master taking part in a transfer may extend the TWCK low period at any time.
The TWIS may extend the TWCK low period after each byte transfer if CR.STREN is one and:

• Module is in slave transmitter mode, data should be transmitted, but THR is empty, or

• Module is in slave receiver mode, a byte has been received and placed into the internal
shifter, but the Receive Holding Register (RHR) is full, or

• Stretch-on-address-match bit CR.SOAM=1 and slave was addressed. Bus clock remains
stretched until all address match bits in the Status Register (SR) have been cleared.

If CR.STREN is zero and:

• Module is in slave transmitter mode, data should be transmitted but THR is empty: Transmit
the value present in THR (the last transmitted byte or reset value), and set SR.URUN.

• Module is in slave receiver mode, a byte has been received and placed into the internal
shifter, but RHR is full: Discard the received byte and set SR.ORUN.

22.8.2.5 Bus Errors
If a bus error (misplaced START or STOP) condition is detected, the SR.BUSERR bit is set and
the TWIS waits for a new START condition.

22.8.3 Slave Transmitter Mode
If the TWIS matches an address in which the R/W bit in the TWI address phase transfer is set, it
will enter slave transmitter mode and set the SR.TRA bit (note that SR.TRA is set one
CLK_TWIS cycle after the relevant address match bit in the same register is set).

After the address phase, the following actions are performed:

1. If SMBus mode and PEC is used, NBYTES must be set up with the number of bytes to
transmit. This is necessary in order to know when to transmit the PEC byte. NBYTES
can also be used to count the number of bytes received if using DMA.

2. Byte to transmit depends on I²C/SMBus mode and CR.PEC:

– If in I²C mode or CR.PEC is zero or NBYTES is non-zero: The TWIS waits until THR
contains a valid data byte, possibly stretching the low period of TWCK. After THR
contains a valid data byte, the data byte is transferred to a shifter, and then
SR.TXRDY is changed to one because the THR is empty again.

– SMBus mode and CR.PEC is one: If NBYTES is zero, the generated PEC byte is
automatically transmitted instead of a data byte from THR. TWCK will not be
stretched by the TWIS.

3. The data byte in the shifter is transmitted.

504
32099I–01/2012

AT32UC3L016/32/64

Writing a one to this bit resets the TWIS.
• STREN: Clock Stretch Enable

0: Disables clock stretching if RHR/THR buffer full/empty. May cause over/underrun.
1: Enables clock stretching if RHR/THR buffer full/empty.

• GCMATCH: General Call Address Match
0: Causes the TWIS not to acknowledge the General Call Address.

1: Causes the TWIS to acknowledge the General Call Address.

• SMATCH: Slave Address Match
0: Causes the TWIS not to acknowledge the Slave Address.

1: Causes the TWIS to acknowledge the Slave Address.

• SMEN: SMBus Mode Enable
0: Disables SMBus mode.

1: Enables SMBus mode.
• SEN: Slave Enable

0: Disables the slave interface.
1: Enables the slave interface.

568
32099I–01/2012

AT32UC3L016/32/64

24.7.5 Channel Register A
Name: RA

Access Type: Read-only if CMRn.WAVE = 0, Read/Write if CMRn.WAVE = 1

Offset: 0x14 + n * 0X40

Reset Value: 0x00000000

• RA: Register A
RA contains the Register A value in real time.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

RA[15:8]

7 6 5 4 3 2 1 0

RA[7:0]

605
32099I–01/2012

AT32UC3L016/32/64

26.9.3 ADC Configuration Register
Name: ACR

Access Type: Read/Write

Offset: 0x08

Reset Value: 0x00000000

• SHTIM: Sample & Hold Time for ADC Channels

• STARTUP: Startup Time

• PRESCAL: Prescaler Rate Selection

• RES: Resolution Selection
0: 8-bit resolution.

1: 10-bit resolution.

2: 11-bit resolution, interpolated.

3: 12-bit resolution, interpolated.

• SLEEP: ADC Sleep Mode
0: ADC Sleep Mode is disabled.

1: ADC Sleep Mode is enabled.

31 30 29 28 27 26 25 24

- - - - SHTIM

23 22 21 20 19 18 17 16

- STARTUP

15 14 13 12 11 10 9 8

- - PRESCAL

7 6 5 4 3 2 1 0

- - RES - - - SLEEP

TSAMPLE&HOLD SHTIM 3+() TCLK_ADC⋅=

TARTUP STARTUP 1+() 8⋅ TCLK_AD⋅=

TCLK_ADC PRESCAL 1+() 2⋅= TCLK_ADCIFB⋅

616
32099I–01/2012

AT32UC3L016/32/64

26.9.13 Parameter Register
Name: PARAMETER

Access Type: Read-only

Offset: 0x30

Reset Value: 0x00000000

• CHn: Channel n Implemented
0: The corresponding channel is not implemented.
1: The corresponding channel is implemented.

31 30 29 28 27 26 25 24

CH31 CH30 CH29 CH28 CH27 CH26 CH25 CH24

23 22 21 20 19 18 17 16

CH23 CH22 CH21 CH20 CH19 CH18 CH17 CH16

15 14 13 12 11 10 9 8

CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8

7 6 5 4 3 2 1 0

CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

654
32099I–01/2012

AT32UC3L016/32/64

Figure 28-4. CAT Acquisition and Processing Sequence

28.6.6 Spread Spectrum Sensor Drive
To reduce electromagnetic compatibility issues, the capacitive sensors can be driven with a
spread spectrum signal. To enable spread spectrum drive for a specific acquisition type, the
user must write a one to the SPREAD bit in the appropriate Configuration Register 1 (MGCFG1,
ATCFG1, TGACFG1, or TGBCFG1).

During spread spectrum operation, the length of each pulse within a burst is varied in a deter-
ministic pattern, so that the exact same burst pattern is used for a specific burst length. The
maximum spread is determined by the MAXDEV field in the Spread Spectrum Configuration
Register (SSCFG) register. The prescaler divisor is varied in a sawtooth pattern from
(2(DIV+1))-MAXDEV to (2(DIV+1))+MAXDEV and then back to (2(DIV+1))-MAXDEV. For exam-
ple, if DIV is 2 and MAXDEV is 3, the prescaler divisor will have the following sequence: 6, 7, 8,

Idle

Acquire
autonomous
touch count

Acquire counts

Update
autonomous

touch detection
algorithm

Wait for all
acquired counts
to be transferred

AISR written flag set?

YesNo

Clear AISR
written flag

No Yes

Autonomous touch
enabled (ATEN)?

688
32099I–01/2012

AT32UC3L016/32/64

28.8 Module Configuration
The specific configuration the CAT module is listed in the following tables.The module bus
clocks listed here are connected to the system bus clocks. Please refer to the Power Manager
chapter for details.

28.8.1 Resistive Drive
By default, the CAT pins are driven with normal I/O drive properties. Some of the CSA and CSB
pins can optionally drive with a 1k output resistance for improved EMC.

To enable resistive drive on a pin, the user must write a one to the corresponding bit in the CSA
Resistor Control Register (CSARES) or CSB Resistor Control Register (CSBRES) register.

Table 28-4. CAT Configuration

Feature CAT

Number of touch sensors/Size of matrix
Allows up to 17 touch sensors, or up to 16 by 8
matrix sensors to be interfaced.

Table 28-5. CAT Clocks

Clock Name Description

CLK_CAT Clock for the CAT bus interface

GCLK The generic clock used for the CAT is GCLK4

Table 28-6. Register Reset Values

Register Reset Value

VERSION 0x00000200

PARAMETER 0x0001FFFF

710
32099I–01/2012

AT32UC3L016/32/64

30.7.7 Receive Holding Register
Name: RHR

Access Type: Read-only

Offset: 0x18

Reset Value: 0x00000000

• RXDATA: Received Data
The last byte received.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

RXDATA

714
32099I–01/2012

AT32UC3L016/32/64

30.7.11 Clock Request Register
Name: CLKR

Access Type: Read/Write

Offset: 0x28

Reset Value: 0x00000000

• CLKEN: Clock Enable
0: The aWire clock is disabled.

1: The aWire clock is enabled.

Writing a zero to this bit will disable the aWire clock.
Writing a one to this bit will enable the aWire clock.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - CLKEN

724
32099I–01/2012

AT32UC3L016/32/64

31.3.7.1 Cyclic Redundancy Check (CRC)
The MSU can be used to automatically calculate the CRC of a block of data in memory. The
MSU will then read out each word in the specified memory block and report the CRC32-value in
an MSU register.

31.3.7.2 NanoTrace
The MSU additionally supports NanoTrace. This is a 32-bit AVR-specific feature, in which trace
data is output to memory instead of the AUX port. This allows the trace data to be extracted by
the debugger through the SAB, enabling trace features for aWire- or JTAG-based debuggers.
The user must write MSU registers to configure the address and size of the memory block to be
used for NanoTrace. The NanoTrace buffer can be anywhere in the physical address range,
including internal and external RAM, through an EBI, if present. This area may not be used by
the application running on the CPU.

31.3.8 AUX-based Debug Features
Utilizing the Auxiliary (AUX) port gives access to a wide range of advanced debug features. Of
prime importance are the trace features, which allow an external debugger to receive continuous
information on the program execution in the CPU. Additionally, Event In and Event Out pins
allow external events to be correlated with the program flow.

Debug tools utilizing the AUX port should connect to the device through a Nexus-compliant Mic-
tor-38 connector, as described in the AVR32UC Technical Reference manual. This connector
includes the JTAG signals and the RESET_N pin, giving full access to the programming and
debug features in the device.

738
32099I–01/2012

AT32UC3L016/32/64

31.5.2 Public JTAG Instructions
The JTAG standard defines a number of public JTAG instructions. These instructions are
described in the sections below.

31.5.2.1 IDCODE
This instruction selects the 32 bit Device Identification register (DID) as Data Register. The DID
register consists of a version number, a device number, and the manufacturer code chosen by
JEDEC. This is the default instruction after a JTAG reset. Details about the DID register can be
found in the module configuration section at the end of this chapter.

Starting in Run-Test/Idle, the Device Identification register is accessed in the following way:

1. Select the IR Scan path.

2. In Capture-IR: The IR output value is latched into the shift register.

3. In Shift-IR: The instruction register is shifted by the TCK input.

4. Return to Run-Test/Idle.

5. Select the DR Scan path.

6. In Capture-DR: The IDCODE value is latched into the shift register.

7. In Shift-DR: The IDCODE scan chain is shifted by the TCK input.

8. Return to Run-Test/Idle.

31.5.2.2 SAMPLE_PRELOAD
This instruction takes a snap-shot of the input/output pins without affecting the system operation,
and pre-loading the scan chain without updating the DR-latch. The boundary-scan chain is
selected as Data Register.

Starting in Run-Test/Idle, the Device Identification register is accessed in the following way:

DR Size
Shows the number of bits in the data register chain when this instruction is active.

Example: 34 bits

DR input value

Shows which bit pattern to shift into the data register in the Shift-DR state when this
instruction is active. Multiple such lines may exist, e.g., to distinguish between
reads and writes.

Example: aaaaaaar xxxxxxxx xxxxxxxx xxxxxxxx xx

DR output value

Shows the bit pattern shifted out of the data register in the Shift-DR state when this
instruction is active. Multiple such lines may exist, e.g., to distinguish between
reads and writes.
Example: xx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxeb

Table 31-11. Instruction Description (Continued)

Instruction Description

Table 31-12. IDCODE Details

Instructions Details

IR input value 00001 (0x01)

IR output value p0001

DR Size 32

DR input value xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

DR output value Device Identification Register

825
32099I–01/2012

AT32UC3L016/32/64

Fix/Workaround
If the target frequency is below 30MHz, use a max step size (DFLL0MAXSTEP.MAXSTEP)
of seven or lower.

7. Generic clock sources are kept running in sleep modes
If a clock is used as a source for a generic clock when going to a sleep mode where clock
sources are stopped, the source of the generic clock will be kept running. Please refer to
Power Manager chapter for details about sleep modes.
Fix/Workaround
Disable generic clocks before going to sleep modes where clock sources are stopped to
save power.

8. DFLL clock is unstable with a fast reference clock
The DFLL clock can be unstable when a fast clock is used as a reference clock in closed
loop mode.
Fix/Workaround
Use the 32KHz crystal oscillator clock, or a clock with a similar frequency, as DFLLIF refer-
ence clock.

9. DFLLIF indicates coarse lock too early
The DFLLIF might indicate coarse lock too early, the DFLL will lose coarse lock and regain it
later.
Fix/Workaround
Use max step size (DFLL0MAXSTEP.MAXSTEP) of 4 or higher.

10. DFLLIF dithering does not work
The DFLLIF dithering does not work.
Fix/Workaround
None.

11. DFLLIF might lose fine lock when dithering is disabled
When dithering is disabled and fine lock has been acquired, the DFLL might lose the fine
lock resulting in up to 20% over-/undershoot.
Fix/Workaround
Solution 1: When the DFLL is used as main clock source, the target frequency of the DFLL
should be 20% below the maximum operating frequency of the CPU. Don’t use the DFLL as
clock source for frequency sensitive applications.
Solution 2: Do not use the DFLL in closed loop mode.

12. GCLK5 is non-functional
GCLK5 is non-functional.
Fix/Workaround
None.

13. BRIFA is non-functional
BRIFA is non-functional.
Fix/Workaround
None.

14. SCIF VERSION register reads 0x100
SCIFVERSION register reads 0x100 instead of 0x102.
Fix/Workaround
None.

ix
32099I–01/2012

AT32UC3L016/32/64

36.6 Rev. D - 06/2010 ...838

36.7 Rev. C - 06/2010 ...838

36.8 Rev. B - 05/2010 ..838

36.9 Rev. A – 06/2009 ...839

Table of Contents... i

