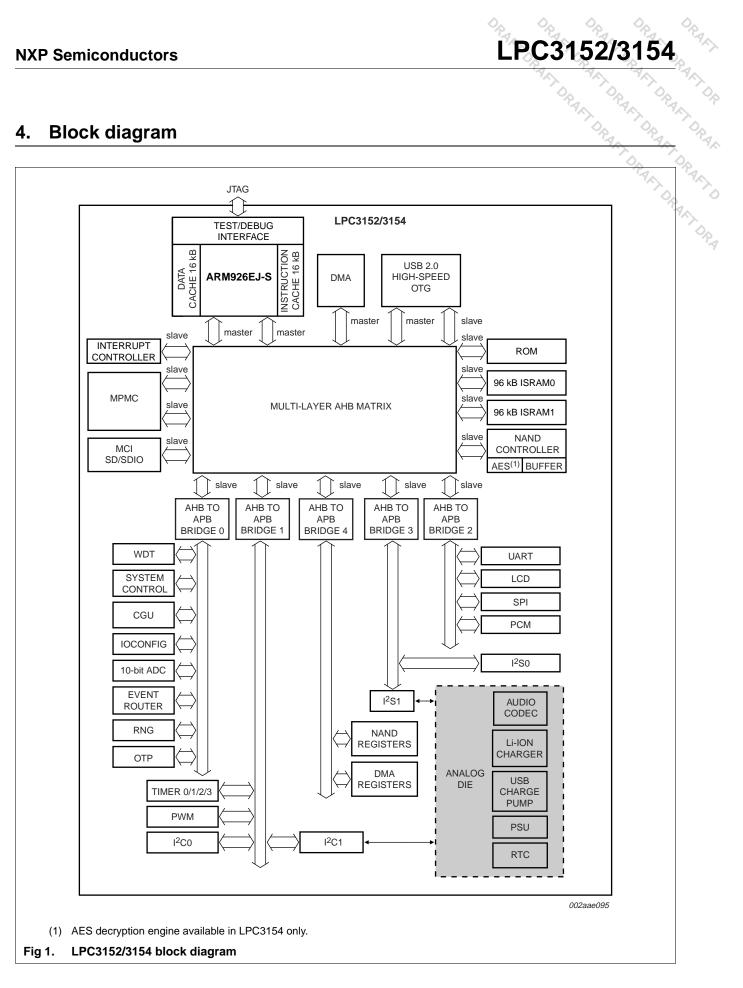


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Obsolete
Core Processor	ARM9®
Core Size	16/32-Bit
Speed	180MHz
Connectivity	EBI/EMI, I ² C, IrDA, Memory Card, PCM, SPI, UART/USART, USB OTG
Peripherals	DMA, I ² S, LCD, PWM, WDT
Number of I/O	10
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	192K x 8
Voltage - Supply (Vcc/Vdd)	1.1V ~ 3.6V
Data Converters	A/D 3x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	208-TFBGA
Supplier Device Package	208-TFBGA (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc3154fet208-551

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block diagram 4.

LPC3152 3154

Table 3. Pin allocation table ...continued

Pin names with prefix m are multiplexed pins. See Table 11 for pin function selection of multiplexed pins.

Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
9	I2SRX_WS0	10	UART_RXD	11	mUART_RTS_N	12	ml2STX_WS0
13	GPIO0	14	ADC_VINR	15	ADC_MIC	16	ADC_VREFN
17	UOS_CX1		-		-		-
Rov	νT						
1	USB_DP	2	USB_GNDA	3	USB_VDDA33_DRV	4	mLCD_DB_12
5	mLCD_DB_7	6	mLCD_DB_2	7	mLCD_DB_0	8	mLCD_RW_WR
9	I2SRX_BCK0	10	TDI	11	ml2STX_CLK0	12	mI2STX_BCK0
13	mI2STX_DATA0	14	GPIO1	15	ADC_VINL	16	ADC_VREF
17	ADC_VREFP		-		-		-
Rov	v U						
1	n.c.	2	mLCD_DB_14	3	mLCD_DB_13	4	mLCD_DB_11
5	mLCD_DB_8	6	mLCD_DB_4	7	VDDE_IOB	8	VSSE_IOB
9	TMS	10	JTAGSEL	11	TRST_N	12	ТСК
13	VDDI	14	VSSI	15	VDDE_IOC	16	VSSE_IOC
17	RTC_CLK32		-		-	1	-

Table 4. Pin description

Pin names with prefix m are multiplexed pins. See Table 11 for pin function selection of multiplexed pins.

TFBGA pin name	TFB GA ball	Digital I/O Ievel [1]	Application function	Pin state after reset ^[2]	Cell type [3]	Description
Clock generation unit						
FFAST_IN	A10	SUP1	AI		AIO2	12 MHz oscillator clock input
FFAST_OUT	B10	SUP1	AO		AIO2	12 MHz oscillator clock output
VDDA12	B11	SUP1	Supply		PS3	12 MHz oscillator/PLLs analog supply
VSSA12	C11	-	Ground		CG1	12 MHz oscillator/PLLs analog ground
RSTIN_N	E15	SUP3	DI	I:PU	DIO2	System reset input (active LOW)
CLOCK_OUT	M4	SUP4	DO	0	DIO4	Clock output
10-bit ADC						
ADC10B_VDDA33	B13	SUP3	Supply		PS3	10-bit ADC analog supply
ADC10B_GNDA	A13	-	Ground		CG1	10-bit ADC analog ground
ADC10B_GPA0	B12	SUP3	AI		AIO1	10-bit ADC analog input
ADC10B_GPA1	C13	SUP3	AI		AIO1	10-bit ADC analog input
ADC10B_GPA2	C12	SUP3	AI		AIO1	10-bit ADC analog input
Audio ADC						
ADC_MIC	R15	-	AI		AIO2	ADC microphone input
ADC_VINL	T15	-	AI		AIO2	ADC line input left
ADC_VINR	R14	-	AI		AIO2	ADC line input right
ADC_TINL	P13	-	AI		AIO2	ADC tuner input left
ADC_TINR	P14	-	AI		AIO2	ADC tuner input right
ADC_VREF	T16	-	AO		AIO2	ADC reference voltage output

All information provided in this document is subject to legal disclaimers.

Table 4. Pin description ...continued

NXP Semiconductors LPC3152/3154 Table 4. Pin descriptioncontinued Pin names with prefix m are multiplexed pins. See Table 11 for pin function selection of multiplexed pins. TFBGA pin name TFB Digital Application function state after reset[2] VDDE_IOC U15; SUP3 Supply A15; A4; PS1 Peripheral supply A15; A4;									
			oins. See Table	11 for pir	n function se	election of multiplexed pins.			
TFBGA pin name	TFB GA ball		Application function	-		Description			
VDDE_IOC	U15; A15; A4;	SUP3	Supply		PS1	Peripheral supply			
VDDE_IOD	G15	SUP3	Supply		PS2	Analog die peripheral supply			
VSSE_IOA	E1; N1	-	Ground		PG1	Peripheral ground NAND flash controller			
VSSE_IOB	K1; U8	-	Ground		PG1	Peripheral ground LCD interface / SDRAM interface			
VSSE_IOC	U16; A14; A5;	-	Ground		PG1	Peripheral ground			
VSSE_IOD	L14	-	Ground		PG2	Analog die peripheral ground			
LCD interface									
mLCD_CSB ^[4]	R8	SUP8	DO	0	DIO4	LCD chip select (active LOW)			
mLCD_E_RD ^[4]	P7	SUP8	DO	0	DIO4	LCD: 6800 enable, 8080 read enable (active HIGH)			
mLCD_RS ^[4]	R7	SUP8	DO	0	DIO4	LCD: instruction register (LOW)/ data register (HIGH) select			
mLCD_RW_WR ^[4]	Т8	SUP8	DO	0	DIO4	LCD: 6800 read/write select,8080 write enable (active HIGH)			
mLCD_DB_0 <u>^[4]</u>	T7	SUP8	DIO	0	DIO4	LCD Data 0			
mLCD_DB_1 ^[4]	P8	SUP8	DIO	0	DIO4	LCD Data 1			
mLCD_DB_2[4]	T6	SUP8	DIO	0	DIO4	LCD Data 2			
mLCD_DB_3[4]	R6	SUP8	DIO	0	DIO4	LCD Data 3			
mLCD_DB_4[4]	U6	SUP8	DIO	0	DIO4	LCD Data 4			
mLCD_DB_5[4]	P6	SUP8	DIO	0	DIO4	LCD Data 5			
mLCD_DB_6[4]	R5	SUP8	DIO	0	DIO4	LCD Data 6			
mLCD_DB_7[4]	T5	SUP8	DIO	0	DIO4	LCD Data 7			
mLCD_DB_8[4]	U5	SUP8	DIO	0	DIO4	LCD Data 8 / 8-bit Data 0			
mLCD_DB_9[4]	P5	SUP8	DIO	0	DIO4	LCD Data 9 / 8-bit Data 1			
mLCD_DB_10[4]	P4	SUP8	DIO	0	DIO4	LCD Data 10 / 8-bit Data 2			
mLCD_DB_11 ^[4]	U4	SUP8	DIO	0	DIO4	LCD Data 11 / 8-bit Data 3			
mLCD_DB_12[4]	T4	SUP8	DIO	0	DIO4	LCD Data 12 / 8-bit Data 4 / 4-bit Data 0			
mLCD_DB_13 ^[4]	U3	SUP8	DIO	0	DIO4	LCD Data 13 / 8-bit Data 5 / 4-bit Data 1 / serial clock output			
mLCD_DB_14 ^[4]	U2	SUP8	DIO	0	DIO4	LCD Data 14 / 8-bit Data 6 / 4-bit Data 2 / serial data input			
mLCD_DB_15 ^[4]	R4	SUP8	DIO	0	DIO4	LCD Data 15 / 8-bit Data 7 / 4-bit Data 3 / serial data output			
I ² S/Digital audio input									
I2SRX_DATA0[4]	P9	SUP3	DI / GPIO	I	DIO1	I ² S input serial data receive			

Preliminary data sheet

6.6 External Bus Interface (EBI)

The EBI module acts as multiplexer with arbitration between the NAND flash and the SDRAM/SRAM memory modules connected externally through the MPMC.

The main purpose for using the EBI module is to save external pins. However only data and address pins are multiplexed. Control signals towards and from the external memory devices are not multiplexed.

Table 6. Memory map of the external SKAW/SDKAM memory modules							
Module	Maximum address space		Data width	Device size			
External SRAM0	0x2000 0000	0x2000 FFFF	8 bit	64 kB			
	0x2000 0000	0x2001 FFFF	16 bit	128 kB			
External SRAM1	0x2002 0000	0x2002 FFFF	8 bit	64 kB			
	0x2002 0000	0x2003 FFFF	16 bit	128 kB			
External SDRAM0	0x3000 0000	0x37FF FFFF	16 bit	128 MB			

 Table 8.
 Memory map of the external SRAM/SDRAM memory modules

6.7 Internal ROM Memory

The internal ROM memory is used to store the boot code of the LPC3152/3154. After a reset, the ARM processor will start its code execution from this memory.

The LPC3154 ROM memory has the following features:

- Supports secure booting from SPI flash, NAND flash, SD/SDHC/MMC cards, UART, and USB (DFU class) interfaces.
- Supports SHA1 hash checking on the boot image.
- Supports un-secure boot from UART and USB (DFU class) interfaces during development. Once the AES key is programmed in the OTP, only secure boot is allowed through UART and USB.
- Supports secure booting from managed NAND devices such as moviNAND, iNAND, eMMC-NAND and eSD-NAND using SD/MMC boot mode.
- Contains pre-defined MMU table (16 kB) for simple systems.

The LPC3152 ROM memory has the following features:

- Supports non-secure booting from SPI flash, NAND flash, SD/SDHC/MMC cards, UART, and USB (DFU class) interfaces.
- Supports option to perform CRC32 checking on the boot image.
- Supports non-secure booting from UART and USB (DFU class) interfaces during development.
- Supports non-secure booting from managed NAND devices such as moviNAND, iNAND, eMMC-NAND and eSD-NAND using SD/MMC boot mode.
- Contains pre-defined MMU table (16 kB) for simple systems.

Early Un Ract DRA The boot ROM determines the boot mode based on the reset state of the GPIO0, GPIO1, and GPIO2 pins. To ensure that GPIO0, GPIO1 and GPIO2 pins come up as inputs, pins TRST_N and JTAGSEL must be low during power-on reset, see UM10315 JTAG chapter for details.

Table 9 shows the various boot modes supported on the LPC3152/3154. If the boot process fails (e.g. due to tampering with security), the boot code drives pin GPIO3 HIGH. It is recommended to connect the GPIO3 pin to PSU_STOP, so that the LPC3152/3154 will be powered down and further access prevented when the boot ROM detects an error.

Boot mode	GPIO0	GPIO1	GPIO2	Description
NAND	0	0	0	Boots from NAND flash. If proper image is not found, boot ROM will switch to DFU boot mode.
SPI	0	0	1	Boot from SPI NOR flash connected to SPI_CS_OUT0. If proper image is not found, boot ROM will switch to DFU boot mode.
DFU	0	1	0	Device boots via USB using DFU class specification.
SD/MMC	0	1	1	Boot ROM searches all the partitions on the SD/MMC/SDHC/MMC+/eMMC/eSD card for boot image. If partition table is missing, it will start searching from sector 0. A valid image is said to be found if a valid image header is found, followed by a valid image. If a proper image is not found, boot ROM will switch to DFU boot mode.
Reserved 0	1	0	0	Reserved for testing.
NOR flash	1	0	1	Boot from parallel NOR flash connected to EBI_NSTCS_1.[1]
UART	1	1	0	Boot ROM tries to download boot image from UART ((115200 $-$ 8 $-$ n $-$ 1) assuming 12 MHz FFAST clock).
Test	1	1	1	Boot ROM is testing ISRAM using memory pattern test and basic functionality of the analog audio block. Switches to UART boot mode on receiving three ASCI dots ("") on UART.

Table 9. LPC3152/3154 boot modes

[1] For security reasons this mode is disabled when JTAG security feature is used.

6.8 Internal RAM memory

The ISRAM (Internal Static Memory Controller) module is used as controller between the AHB bus and the internal RAM memory. The internal RAM memory can be used as working memory for the ARM processor and as temporary storage to execute the code that is loaded by boot ROM from external devices such as SPI-flash, NAND flash and SD/MMC cards.

This module has the following features:

- Capacity of 192 kB
- Implemented as two independent 96 kB memory banks

Within most clock domains, the output clocks are again grouped into one or more subdomains. All output clocks within one subdomain are either all generated by the same fractional divider or they are connected directly to the base clock. Therefore all output clocks within one subdomain have the same frequency and all output clocks within one clock domain are synchronous because they originate from the same base clock

The CGU reference clock is generated by the external crystal. Furthermore the CGU has several Phase Locked Loop (PLL) circuits to generate clock signals that can be used for system clocks and/or audio clocks. All clock sources, except the output of the PLLs, can be used as reference input for the PLLs.

This module has the following features:

- Advanced features to optimize the system for low power:
 - All output clocks can be disabled individually for flexible power optimization
 - Some modules have automatic clock gating: they are only active when (bus) access to the module is required.
 - Variable clock scaling for automatic power optimization of the AHB bus (high clock frequency when the bus is active, low clock frequency when the bus is idle).
 - Clock wake-up feature: module clocks can be programmed to be activated automatically on the basis of an event detected by the Event Router (see also <u>Section 6.19</u>). For example, all clocks (including the ARM /bus clocks) are off and activated automatically when a button is pressed.
- Supports three clock sources:
 - Reference clock generated by the oscillator with an external crystal.
 - Pins I2SRX_BCK0, I2SRX_WS0 are used to input external clock signals (used for generating audio frequencies in I²S receive / I²S transmit slave mode, see also <u>Section 6.4</u>).
- Two PLLs:
 - System PLL generates programmable system clock frequency from its reference input.
 - Audio PLL generates programmable audio clock frequency (typically 256 × fs) from its reference input.

Remark: Both the System PLL and the audio PLL generate their frequencies based on their (individual) reference clocks. The reference clocks can be programmed to the oscillator clock or one of the external clock signals.

- Highly flexible switchbox to distribute the signals from the clock sources to the module clocks.
 - Each clock generated by the CGU is derived from one of the base clocks and optionally divided by a fractional divider.
 - Each base clock can be programmed to have any one of the clock sources as an input clock.
 - Fractional dividers can be used to divide a base clock by a fractional number to a lower clock frequency.
 - Fractional dividers support clock stretching to obtain a (near) 50% duty cycle output clock.
- · Register interface to reset all modules under software control.

All information provided in this document is subject to legal disclaimers

Pin name	Default signal	Alternate signal	Description
NAND flash relate	ed pin multiplexing		Ra
mNAND_RYBN0	NAND_RYBN0	MCI_DAT_4	NAND_RYBN0 — NAND flash controller Read/Not busy signal 0.
			MCI_DAT_4 — MCI card data input/output line 4.
mNAND_RYBN1	NAND_RYBN1	MCI_DAT_5	NAND_RYBN1 — NAND flash controller Read/Not busy signal 1.
			MCI_DAT_5 — MCI card data input/output line 5.
mNAND_RYBN2	NAND_RYBN2	MCI_DAT_6	NAND_RYBN2 — NAND flash controller Read/Not busy signal 2.
			MCI_DAT_6 — MCI card data input/output line 6.
mNAND_RYBN3	NAND_RYBN3	MCI_DAT_7	NAND_RYBN3 — NAND flash controller Read/Not busy signal 3.
			MCI_DAT_7 — MCI card data input/output line 7.
Audio related pin	multiplexing		
ml2STX_DATA0	I2STX_DATA0	PCM_DA	I2STX_DATA0 — I2S interface 0 transmit data signal.
			PCM_DA — PCM serial data line A.
ml2STX_BCK0	I2STX_BCK0	PCM_FSC	I2STX_BCK0 — I2S interface 0 transmit bitclock signal.
			PCM_FSC — PCM frame synchronization signal.
ml2STX_WS0	I2STX_WS0	PCM_DCLK	I2STX_WS0 — I2S interface 0 transmit word select signal.
			PCM_DCLK — PCM data clock output.
ml2STX_CLK0	I2STX_CLK0	PCM_DB	I2STX_CLK0 — I2S interface 0 transmit clock signal.
			PCM_DB — PCM serial data line B.
UART related pin	multiplexing		
mUART_CTS_N	UART_CTS_N	SPI_CS_OUT1	UART_CTS_N — UART modem control Clear-to-Send signal.
			SPI_CS_OUT1 — SPI chip select out for slave 1 (used in master mode).
mUART_RTS_N	UART_RTS_N	SPI_CS_OUT2	UART_RTS_N — UART modem control Request-to-Send signal.
			SPI_CS_OUT2 — SPI chip select out for slave 2 (used in master mode).

Table 11. Pin descriptions of multiplexed pins

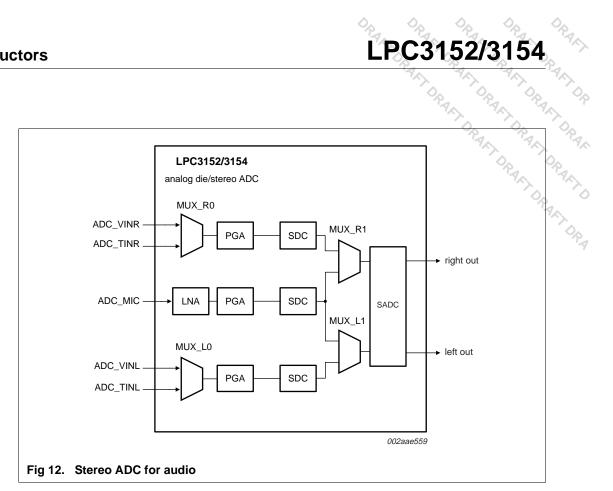
6.28.2 Multiplexing between LCD and MPMC

The multiplexing between the LCD interface and MPMC allows for the following two modes of operation:

- MPMC-mode: SDRAM and bus-based LCD or SRAM.
- LCD-mode: Dedicated LCD-Interface.

The external NAND flash is accessible in both modes.

The block diagram <u>Figure 9</u> gives a high level overview of the modules in the chip that are involved in the pin interface multiplexing between the EBI, NAND flash controller, MPMC, and RAM-based LCD interface.


The $l^2S0/1$ module has the following features:

- Receive input supports master mode and slave mode.
- Transmit output supports master mode.
- Supports LSB justified words of 16, 18, 20 and 24 bits.
- Supports a configurable number of bit clock periods per word select period (up to 128 bit clock periods).
- Supports DMA transfers.
- Transmit FIFO or receive FIFO of 4 stereo samples.
- Supports single 16-bit transfers to/from the left or right FIFO.
- Supports single 24-bit transfers to/from the left or right FIFO.
- Supports 32-bit interleaved transfers, with the lower 16 bits representing the left audio sample and the higher 16 bits representing the right audio sample.
- Supports two 16-bit samples audio samples combined in a 32-bit word (2 left or 2 right samples) to reduce bus load.
- Provides maskable interrupts for audio status. (FIFO underrun/overrun/full/half_full/not empty for left and right channel separately).

7. Functional description of the analog die blocks

7.1 Analog die

The analog die part of the LPC3152/3154 contains the audio codec, the Real-Time Clock (RTC), the Power Supply Unit (PSU), the Li-ion charger, and the USB charge pump.

This module has the following features:

- Three input options: line-in (stereo), tuner-in (stereo), microphone-in (mono).
- Low-Noise Amplifier (LNA) with a fixed 30 dB gain for the microphone input.
- Programmable Gain Amplifier (PGA). Gain can be set in steps of 3 dB up to 24 dB.
- Single-to-Differential Converter (SDC).
- SADC (switched cap).
- Supported audio sample frequencies are 8 kHz to 55 kHz.
- Oversampling rate 128 times the sample frequency.
- High dynamic range.
- Digital dB-linear volume control in 0.5 dB steps.
- DC blocking filter (optional).
- Soft start-up.
- Mute and overflow detection.

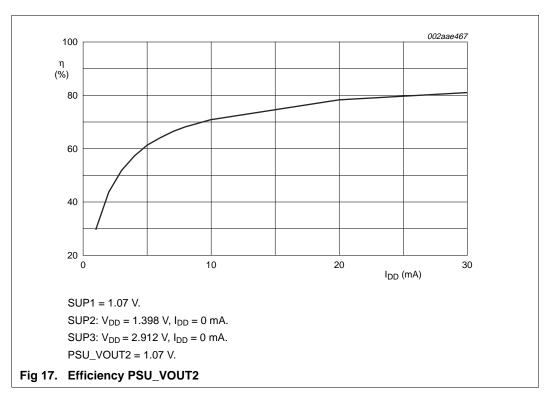
7.3 Li-ion charger

The built-in charger allows a Li-ion battery to be charged from the power supplied by a USB connection or by an AC adapter.

This module has the following features:

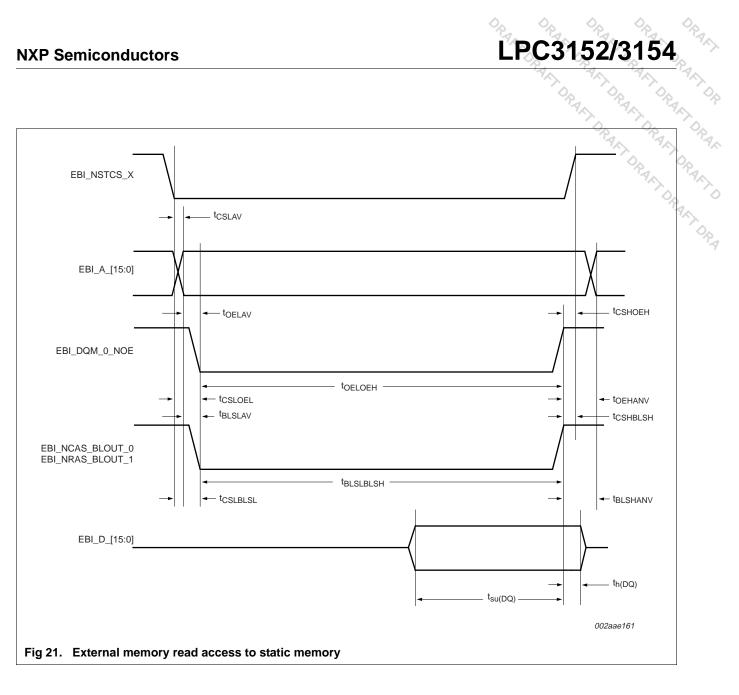
- Monitors for battery voltage, charge current, battery temperature feedback (NTC), and chip temperature (programmable temperature limits).
- Maximum charge current 250 mA.

Table 13: Static characteristics


 $T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$ unless otherwise specified.

ymbol	Parameter	Conditions		Min	Тур	Max	Unit
		SUP4; SUP8; 3.3 V mode	<u>[1]</u>	<tbd></tbd>	50	<tbd></tbd>	μA
		SUP3	[1]	<tbd></tbd>	50	<tbd></tbd>	μA
i	input capacitance	excluding bonding pad capacitance		-	-	<tbd></tbd>	pF
utput pins	and I/O pins configured	as output					
0	output voltage			<tbd></tbd>	-	V _{DD(IO)}	V
ОН	HIGH-level output voltage	SUP4; SUP8; I _{OH} = 6 mA:					
		1.8 V mode		<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	V
		3.3 V mode		$V_{\text{DD(IO)}}-0.26$	<tbd></tbd>	<tbd></tbd>	V
		SUP3; I _{OH} = 6 mA		$V_{\text{DD(IO)}} - 0.26$	-	-	V
		SUP3; I _{OH} = 30 mA		$V_{\text{DD(IO)}} - 0.38$	-	-	V
OL	LOW-level output voltage	SUP4; SUP8 outputs; I _{OL} = 4 mA					
		1.8 V mode		<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	V
		3.3 V mode	[1]	<tbd></tbd>	0.65	<tbd></tbd>	V
		SUP3; I _{OL} = 4 mA		-	-	<tbd></tbd>	V
I _{OH} HIGH-level current	HIGH-level output current	$V_{DD} = VDDE_IOx$ (x = A, B, C); $V_{OH} = V_{DD} - 0.4 V$		<tbd></tbd>	-	-	mA
		$V_{DD} = VDDE_IOx$ (x = A, B, C); $V_{OH} = V_{DD} - 0.4 V$		<tbd></tbd>	-	-	mA
L	LOW-level output current	$V_{DD} = VDDE_IOx$ (x = A, B, C); $V_{OL} = 0.4 V$		<tbd></tbd>	-	-	mA
		$V_{DD} = VDDE_IOx$ (x = A, B, C); $V_{OL} = 0.4 V$		<tbd></tbd>	-	-	mA
Z	OFF-state output current	$V_O = 0 V; V_O = V_{DD};$ no pull-up/down		-	-	0.064	μA
HS	HIGH-level short-circuit output	$V_{DD} = VDDE_IOx$ (x = A, B, C); $V_{OH} = 0 V$		-	-	<tbd></tbd>	mA
	current	$V_{DD} = VDDE_IOx$ (x = A, B, C); $V_{OH} = 0 V$		-	-	<tbd></tbd>	mA
DLS	LOW-level short-circuit output current	$V_{DD} = VDDE_IOx$ (x = A, B, C); $V_{OL} = V_{DD}$		-	-	<tbd></tbd>	mA
		$V_{DD} = VDDE_IOx$ (x = A, B, C); $V_{OL} = V_{DD}$		-	-	<tbd></tbd>	mA
D	output impedance	$V_{DD} = VDDE_IOx$ (x = A, B, C)					
		1.8 V mode	[1]	<tbd></tbd>	45	<tbd></tbd>	Ω
		1.8 V mode 3.3 V mode	[1] [1]	<tbd> <tbd></tbd></tbd>	45 35	<tbd></tbd>	

ctors			<	LPC3152/3154
Table 18.	Efficiency of outp	out on PSU_VOU	IT1 (PSU_VOUT [,]	1 programmed to 2.86 V)
I _{BAT} / mA on pin PS	V _{BAT} / V SU_VBAT	I _{DD} / mA (SUP3)	V _{DD} / V (SUP4)	Efficiency / %
2	3.602	1	2.8676	39.80566352 56.80015231
2.8	3.6016	2	2.864	56.80015231
3.598	-	3	2.8605	66.22816876
4.396	3.601	4	2.8569	72.18953182
5.195	3.6006	5	2.8533	76.27057345
5.994	3.6003	6	2.8498	79.23374865
6.793	3.5999	7	2.8462	81.47256753
7.59	3.5995	8	2.8426	83.23802841
8.388	3.5992	9	2.83991	84.63671469
9.231	3.5988	10	2.8542	85.9167695
13.32	3.597	15	2.8549	89.37941277
17.368	3.595	20	2.837	90.87420537
25.59	3.591	30	2.8198	92.056375145


Table 40 Efficiency of output on PSU VOUT1 (PSU VOUT1 nr

9.2.1.2 PSU_VOUT2 efficiency

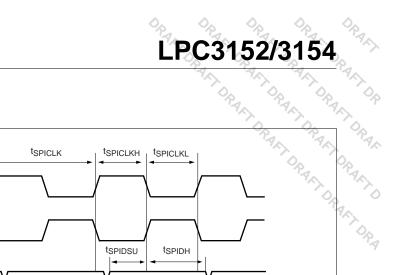
LPC3152_3154

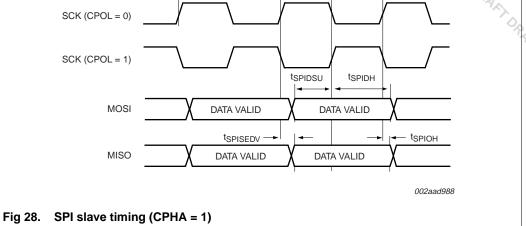
NXP Semiconductors

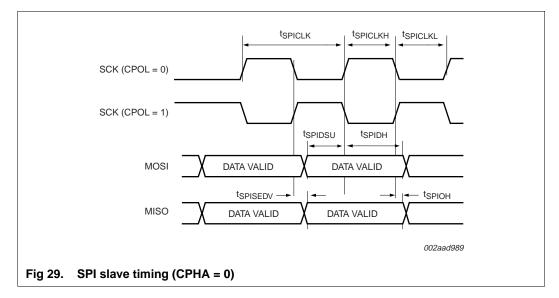
10.2.1 Crystal oscillator

Table 27: D	Dynamic characteristics: crystal oscillator
-------------	---

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{osc}	oscillator frequency		10	12	25	MHz 🔷
δ _{clk}	clock duty cycle		45	50	55	%
C _{xtal}	crystal capacitance	input; on pin FFAST_IN	-	-	2	pF
		output; on pin FFAST_OUT	-	-	0.74	pF
t _{startup}	start-up time		-	500	-	μs
P _{drive}	drive power		100	-	500	μW


10.2.2 SPI

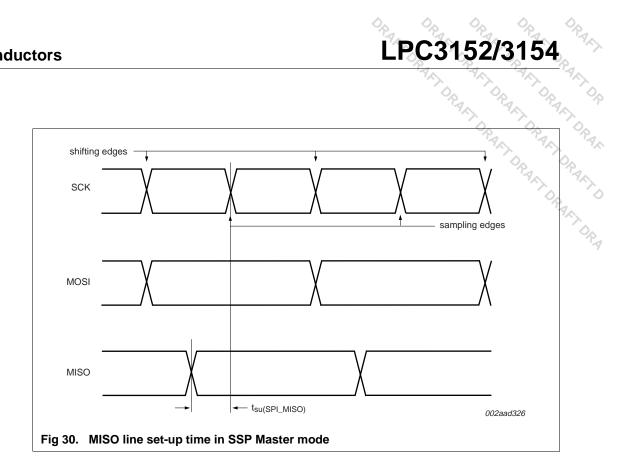

Table 28. Dynamic characteristics of SPI pins


 $T_{amb} = -40 \ ^{\circ}C$ to +85 $\ ^{\circ}C$ for industrial applications

Symbol	Parameter	Min	Тур	Max	Unit
SPI master					
T _{SPICYC}	SPI cycle time	22.2	-	-	ns
t _{SPICLKH}	SPICLK HIGH time	11.09	-	11.14	ns
t _{SPICLKL}	SPICLK LOW time	11.09	-	11.14	ns
t _{SPIDSU}	SPI data set-up time	<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	ns
t _{SPIDH}	SPI data hold time	<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	ns
t _{SPIQV}	SPI data output valid time	-	-	14	ns
t _{SPIOH}	SPI output data hold time	9.9	-	-	ns
SPI slave					
T _{SPICYC}	SPI cycle time	<tbd></tbd>	40	<tbd></tbd>	ns
t _{SPICLKH}	SPICLK HIGH time	<tbd></tbd>	20	<tbd></tbd>	ns
t _{SPICLKL}	SPICLK LOW time	<tbd></tbd>	20	<tbd></tbd>	ns
t _{SPIDSU}	SPI data set-up time	<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	ns
t _{SPIDH}	SPI data hold time	<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	ns
t _{SPIQV}	SPI data output valid time	<tbd></tbd>	<tbd></tbd>	14	ns
t _{SPIOH}	SPI output data hold time	9.9	-	-	ns

Remark: Note that the signal names SCK, MISO, and MOSI correspond to signals on pins SPI_SCK, SPI_MOSI, and SPI_MISO in the following SPI timing diagrams.

Table 29. Dynamic characteristic: SPI interface (SSP mode)

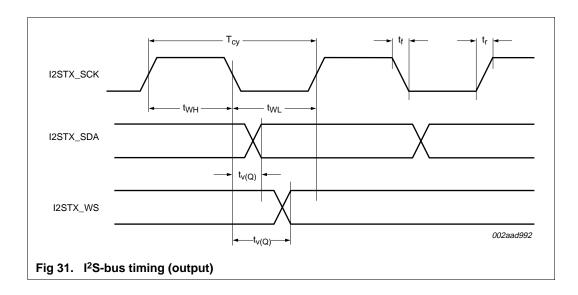

 $T_{amb} = -40 \degree C$ to +85 $\degree C$; $V_{DD(IO)}$ (SUP3) over specified ranges.[1]

Symbol	Parameter	Conditions	Min	Typ <u>[2]</u>	Мах	Unit
t _{su(SPI_MISO)}	SPI_MISO set-up time	T _{amb} = 25 °C; measured in SPI Master mode; see <u>Figure 30</u>	-	11	-	ns

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

Remark: Note that the signal names SCK, MISO, and MOSI correspond to signals on pins SPI_SCK, SPI_MOSI, and SPI_MISO in the following SPI timing diagram.



10.2.3 I²S-interface

Table 30. Dynamic characteristics: I²S-interface pins

NXP Sem	LPC3152/3154					
	10.2.3 I ² S-interface ynamic characteristics: I ² S C to +85 °C for industrial appli				DRAKT DRA	/3154 Unit
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
common to	input and output					· 7^
T _{cy(clk)}	clock cycle time		<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	ns
t _f	fall time		3.5	<tbd></tbd>	<tbd></tbd>	ns
t _r	rise time		3.5	<tbd></tbd>	<tbd></tbd>	ns
output						
t _{WH}	pulse width HIGH		<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	ns
t _{WL}	pulse width LOW		<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	ns
t _{v(Q)}	data output valid time	on pin I2STX_DATAx ^[1]	<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	ns
		on pin I2STX_WSx ^[1]	<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	ns
input						
t _{su(D)}	data input set-up time	on pin I2SRX_DATAx ^[1]	<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	ns
		on pin I2SRX_WSx ^[1]	<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	ns
t _{h(D)}	data input hold time	on pin I2SRX_DATAx ^[1]	<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	ns
		on pin I2SRX_WSx ^[1]	<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	ns

[1] x = 0 or 1.

10.3 Analog die/audio system

Table 34. Dynamic characteristics of Class AB amplifier

NXP Sem	iconductors		LPC3152/3154				
	10.3 Analog die/audi Dynamic characteristics of Class C to +85 °C unless otherwise spec	AB amplifier		מחח׳	33	INT DRAKE	DRAFT DRAFT RAFT DRAFT
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Vo	output voltage	HP unloaded		-	800	-	mV(RMS)
Po	output power	per channel; RL=16 Ω				23.5	mW
(THD+N)/S	Total harmonic distortion plus noise-to-signal ratio	at 0 dBFS; f _{in} = 1 kHz; RL=16 Ω	[1]	-	-60	-	dB
		at –60 dBFS; f_{in} = 1 kHz; RL=16 Ω		-	-40	-30	dBA
S/N	Signal-to-noise ratio		<u>[1]</u>	-	100	-	dBA
PSRR	power supply ripple rejection			-	6	-	dB
$\alpha_{ct(ch)}$	channel crosstalk	RL=16 Ω; between left channel and right channel		-	-55	-	dB

[1] Measured with 20 kHz block filter.

Table 35: Dynamic characteristic for analog in

 $T_{amb} = -40$ °C to +85 °C unless otherwise specified.

	_			_		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
В	Bandwidth		-	-	20	kHz
Tuner						
(THD+N)/S	Total harmonic distortion plus noise-to-signal ratio	at 0 dBFS; $f_{in} = 1$ kHz; Line input level = 1 V; PGA setting +12 dB; external resistor of 36 k Ω	-	-83	-80	dB
		at 0 dBFS; f _{in} = 1 kHz; Line input level = 1 V, PGA setting 0 dB	-	-70	-	dB
		at –60 dBFS; A-weighted; f _{in} = 1 kHz; Line input level = 1mV, PGA setting 0dB	-	-34	-30	dBA
S/N	Signal-to-noise ratio	A-weighted; line input = 1 V, PGA setting 0 dB	90	94	-	dBA
Zi	input impedance	line in (tuner mode)	-	12	-	kΩ
Microphone						
THD	total harmonic distortion	$V_i = 20 \text{ mV}; f_{in} = 1 \text{ kHz}$	-	-70	-60	dB
		$V_i = 0.3 \text{ mV}; f_{in} = 1 \text{ kHz}$	-	-90	-80	dB
Zi	input impedance	microphone mode	-	5	-	kΩ

Acronym	Description	· · · · · · · · · · · · · · · · · · ·
Timer	Timer module	PA PA
UART	Universal Asynchronous Receiver Transmitter	
USB 2.0 HS OTG	Universal Serial Bus 2.0 High-Speed On-The-Go	7. A.
		- Do

16. Legal information

16.1 Data sheet status

NXP Semiconduc	tors	LPC3152/3154
16. Legal infor	mation	ALT ORALT ORALT ORALT OR
16.1 Data sheet		The Art DRAFT DRAFT D
Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

Please consult the most recently issued document before initiating or completing a design. [1]

[2] The term 'short data sheet' is explained in section "Definitions".

The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status [3] information is available on the Internet at URL http://www.nxp.com.

Definitions 16.2

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

LPC3152 3154

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b)

17. Contact information

whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com