

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	147456
Number of I/O	97
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TJ)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p1000-1fg144m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based military ProASIC3/EL devices allow all functionality to be live at power-up; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The military ProASIC3/EL family device architecture mitigates the need for ASIC migration at higher volumes. This makes the military ProASIC3/EL family a cost-effective ASIC replacement.

Firm-Error Immunity

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration element of military ProASIC3/EL flash-based FPGAs. Once it is programmed, the flash cell configuration element of military ProASIC3/EL FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Advanced Flash Technology

The military ProASIC3/EL family offers many benefits, including nonvolatility and reprogrammability, through an advanced flash-based, 130-nm LVCMOS process with 7 layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

Advanced Architecture

The proprietary military ProASIC3/EL architecture provides granularity comparable to standard-cell ASICs. The military ProASIC3/EL device consists of five distinct and programmable architectural features (Figure 1-1 on page 1-4 and Figure 1-2 on page 1-4):

- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory
- Extensive CCCs and PLLs
- I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the military ProASIC3/EL core tile, as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable, allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC family of third-generation-architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

Military ProASIC3/EL DC and Switching Characteristics

Package Type	Device	Pin Count	θ_{jc}	Still Air	200 ft./min.	500 ft./min.	Units
Very Thin Quad Flat Pack (VQ100)	A3P250	100	10.0	35.3	29.4	27.1	C/W
Plastic Quad Flat Pack (PQ208)*	A3P1000	208	3.8	16.2	13.3	11.9	C/W
Fine Pitch Ball Grid Array (FBGA)	A3P1000	144	6.3	31.6	26.2	24.2	C/W
	A3P1000	256	6.6	28.1	24.4	22.7	C/W
	A3P1000	484	8.0	23.3	19.0	16.7	C/W
	A3PE600L	484	9.5	27.5	21.9	20.2	C/W
	A3PE3000L	484	4.7	20.6	15.7	14.0	C/W
	A3PE3000L	896	2.4	13.6	10.4	9.4	C/W

Table 2-5 • Package Thermal Resistivities

* Embedded heatspreader

Temperature and Voltage Derating Factors

Table 2-6 •Temperature and Voltage Derating Factors for Timing Delays
(normalized to $T_J = 125^{\circ}C$, VCC = 1.14 V)
Applicable to A3PE600L and A3PE3000L Only

			Junc	tion Temper	ature		
Array Voltage VCC (V)	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C
1.14	0.85	0.86	0.89	0.92	0.96	0.97	1.00
1.2	0.82	0.83	0.86	0.88	0.92	0.93	0.96
1.26	0.79	0.80	0.83	0.85	0.89	0.90	0.93
1.30	0.77	0.78	0.81	0.83	0.86	0.88	0.90
1.35	0.74	0.75	0.78	0.80	0.84	0.85	0.88
1.40	0.72	0.73	0.75	0.77	0.81	0.82	0.85
1.425	0.71	0.71	0.74	0.76	0.79	0.80	0.83
1.5	0.67	0.68	0.70	0.72	0.75	0.76	0.79
1.575	0.65	0.66	0.68	0.70	0.73	0.74	0.76

Table 2-7 •Temperature and Voltage Derating Factors for Timing Delays
(normalized to T_J = 125°C, VCC = 1.425 V)
Applicable to A3P250 and A3P1000 Devices Only

		Junction Temperature										
Array Voltage VCC (V)	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C					
1.425	0.80	0.82	0.87	0.89	0.94	0.96	1.00					
1.5	0.76	0.78	0.82	0.84	0.89	0.91	0.95					
1.575	0.73	0.75	0.79	0.82	0.86	0.87	0.91					

2-6

Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Table 2-18 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings ¹ Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC7 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	-	141.97
3.3 V LVCMOS Wide Range	5	3.3	-	141.97
2.5 V LVCMOS	5	2.5	-	79.98
1.8 V LVCMOS	5	1.8	-	52.26
1.5 V LVCMOS (JESD8-11)	5	1.5	-	35.62
3.3 V PCI	10	3.3	-	201.02
3.3 V PCI-X	10	3.3	-	201.02
Differential		•		
LVDS	_	2.5	7.74	89.82
LVPECL	_	3.3	19.54	167.55

Notes:

1. Dynamic Power consumption is given for software default drive strength and output slew. Output load is lower than the software default.

2. PDC7 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCCI.

Table 2-19 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC7 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³	
Single-Ended		•			
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	_	125.97	
3.3 V LVCMOS – Wide Range	5	3.3	-	125.97	
2.5 V LVCMOS	5	2.5	-	70.82	
1.8 V LVCMOS	5	1.8	-	36.39	
1.5 V LVCMOS (JESD8-11)	5	1.5	-	25.34	
3.3 V PCI	10	3.3	-	184.92	
3.3 V PCI-X	10	3.3	-	184.92	

Notes:

1. Dynamic Power consumption is given for software default drive strength and output slew. Output load is lower than the software default.

2. PDC7 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCCI.

Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Table 2-28 • Summary of Maximum and Minimum DC Input Levels Applicable to Military Conditions

	Milit	tary ¹
	I _{IL} ²	I _{IH} ³
DC I/O Standard	μA	μA
3.3 V LVTTL / 3.3 V LVCMOS	15	15
3.3 V LVCMOS Wide Range	15	15
2.5 V LVCMOS	15	15
1.8 V LVCMOS	15	15
1.5 V LVCMOS	15	15
1.2 V LVCMOS ⁴	15	15
1.2 V LVCMOS Wide Range ⁴	15	15
3.3 V PCI	15	15
3.3 V PCI-X	15	15
3.3 V GTL	15	15
2.5 V GTL	15	15
3.3 V GTL+	15	15
2.5 V GTL+	15	15
HSTL (I)	15	15
HSTL (II)	15	15
SSTL2 (I)	15	15
SSTL2 (II)	15	15
SSTL3 (I)	15	15
SSTL3 (II)	15	15

Notes:

1. Military temperature range: -55°C to 125°C.

2. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. *I_{IH}* is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

4. Applicable to Military A3PE600L and A3PE3000L devices operating at VCCI ≥ VCC.

🌜 Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

3.3 V LVTTL / 3.3 V LVCMOS	v	ΊL	v	ІН	VOL	voн	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	ا _{ال} 1	I _{IH} ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	15	15
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	15	15
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	15	15
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	15	15
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	103	109	15	15
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	103	109	15	15

Table 2-48 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3V < VIN < VIL.

I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside.

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
$$rac{1}{5}$$
 pF
Datapath $rac{1}{5}$ pF
 $R = 1 k$
Enable Path $rac{1}{5}$ pF for $t_{LZ} / t_{ZL} / t_{ZLS}$
 $rac{1}{5}$ pF for $t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$
 $rac{1}{5}$ pF for $t_{HZ} / t_{ZH} / t_{ZLS} / t_{ZLS}$

Figure 2-7 • AC Loading

Table 2-49 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (Typ) (V)	C _{LOAD} (pF)
0	3.3	1.4	_	5

Note: *Measuring point = $V_{trip.}$ See Table 2-29 on page 2-25 for a complete table of trip points.

static Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

3.3 V LVCMOS Wide Range	Equiv. Software Default	v	IL	v	ІН	VOL	VOH	IOL	юн	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Drive Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μA	μA	Max. mA ⁴	Max. mA ⁴	μ Α 5	μ Α 5
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	100	100	25	27	15	15
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	100	100	25	27	15	15
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	100	100	51	54	15	15
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	100	100	51	54	15	15
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	100	100	103	109	15	15
100 µA	16 mA	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	100	100	132	127	15	15

Table 2-60 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

Notes:

1. Note that 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only.

2. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 125°C junction temperature.

5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-A specification.

6. Software default selection highlighted in gray.

Figure 2-8 • AC Loading

Table 2-61 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (Typ) (V)	C _{LOAD} (pF)
0	3.3	1.4	-	5

Note: *Measuring point = $V_{trip.}$ See Table 2-29 on page 2-25 for a complete table of trip points.

1.8 V LVCMOS

Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

1.8 V LVCMOS		VIL	VIH		VOL	VOH	I _{OL}	I _{ОН}	I _{OSL}	I _{OSH}	ا _{ال} 1	I _{IH} 2
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	2	2	9	11	15	15
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4	17	22	15	15
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	6	6	35	44	15	15
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	8	8	45	51	15	15
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	12	12	91	74	15	15
16 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	16	16	91	74	15	15

Table 2-82 • Minimum and Maximum DC Input and Output Levels Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. *I_{IH}* is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

5. Software default selection highlighted in gray.

 Table 2-83 •
 Minimum and Maximum DC Input and Output Levels

 Applicable to Advanced I/O Banks

1.8 V LVCMOS		VIL	VIH		VOL	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 1	I _{IH} 2
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	2	2	9	11	15	15
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	4	4	17	22	15	15
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	6	6	35	44	15	15
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	8	8	45	51	15	15
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	12	12	91	74	15	15
16 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	16	16	91	74	15	15

Notes:

1. I_{II} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

5. Software default selection highlighted in gray.

static Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Table 2-92 • 1.8 V LVCMOS Low SlewMilitary-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7VApplicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.63	8.81	0.05	1.43	0.45	8.98	7.51	2.48	1.61	11.44	9.97	ns
	-1	0.54	7.50	0.04	1.21	0.39	7.64	6.39	2.11	1.37	9.73	8.48	ns
4 mA	Std.	0.63	7.10	0.05	1.43	0.45	7.23	6.43	2.92	2.75	9.69	8.89	ns
	-1	0.54	6.04	0.04	1.21	0.39	6.15	5.47	2.48	2.34	8.24	7.56	ns
6 mA	Std.	0.63	6.06	0.05	1.43	0.45	6.17	5.68	3.23	3.29	8.63	8.14	ns
	-1	0.54	5.16	0.04	1.21	0.39	5.25	4.84	2.75	2.80	7.34	6.93	ns
8 mA	Std.	0.63	6.06	0.05	1.43	0.45	6.17	5.68	3.23	3.29	8.63	8.14	ns
	-1	0.54	5.16	0.04	1.21	0.39	5.25	4.84	2.75	2.80	7.34	6.93	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-93 • 1.8 V LVCMOS High Slew Military-Case Conditions: T = 12

Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.63	3.94	0.05	1.32	0.45	4.01	3.72	2.47	1.67	6.47	6.18	ns
	-1	0.54	3.35	0.04	1.12	0.39	3.41	3.16	2.10	1.42	5.51	5.26	ns
4 mA	Std.	0.63	3.03	0.05	1.32	0.45	3.09	2.75	2.91	2.86	5.55	5.21	ns
	–1	0.54	2.58	0.04	1.12	0.39	2.63	2.34	2.48	2.44	4.72	4.43	ns
6 mA	Std.	0.63	2.65	0.05	1.32	0.45	2.70	2.27	3.22	3.41	5.16	4.73	ns
	-1	0.54	2.26	0.04	1.12	0.39	2.30	1.93	2.74	2.90	4.39	4.02	ns
8 mA	Std.	0.63	2.65	0.05	1.32	0.45	2.70	2.27	3.22	3.41	5.16	4.73	ns
	-1	0.54	2.26	0.04	1.12	0.39	2.30	1.93	2.74	2.90	4.39	4.02	ns

Notes:

1. Software default selection highlighted in gray.

1.2 V LVCMOS Wide Range

Table 2-110 • Minimum and Maximum DC Input and Output Levels

Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Operating at 1.2 V Core Voltage

1.2 V LVCMOS Wide Range ¹	Equiv. Software Default		VIL	VIH		VOL	VOH	I _{OL}	I _{ОН}	I _{OSH}	I _{OSL}	I _{IL} ³	I _{IH} 4
Drive Strength	Drive Strength Option ²	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μA	μA	Max. mA ⁵	Max. mA ⁵	μA ⁶	μA ⁶
100 µA	2 mA	-0.3	0.3 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	100	100	TBD	TBD	15	15

Notes:

1. Applicable to A3PE600L and A3PE3000L devices only.

2. Note that 1.2 V LVCMOS wide range is applicable to 100 μ A drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only.

3. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

- 4. *I_{IH}* is the input leakage current per *I*/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 5. Currents are measured at 100°C junction temperature and maximum voltage.
- 6. Currents are measured at 125°C junction temperature.
- 7. Software default selection highlighted in gray.

Test Point
Datapath
$$\downarrow$$
 5 pF $R = 1 k$
 $R = 1 k$
 $R = 1 k$
 $R to VCCI for t_{LZ} / t_{ZL} / t_{ZLS}$
 $R to GND for t_{HZ} / t_{ZH} / t_{ZHS}$
 $5 pF for t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$
 $5 pF for t_{HZ} / t_{ZHS} / t_{ZL} / t_{ZLS}$

Figure 2-13 • AC Loading

Table 2-111 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (Typ) (V)	C _{LOAD} (pF)
0	1.2	0.6	-	5

Note: *Measuring point = V_{trip} . See Table 2-29 on page 2-25 for a complete table of trip points.

Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Table 2-123 • 3.3 V GTL

Military-Case Conditions: $T_J = 125^{\circ}C$, VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 0.8 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.61	1.97	0.04	2.11	0.40	1.86	1.97	Ι	Ι	3.32	3.43	ns
-1	0.52	1.68	0.03	1.79	0.34	1.58	1.68	_	_	2.83	2.92	ns

Military ProASIC3/EL DC and Switching Characteristics

HSTL Class II

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). Military ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

HSTL Class II		VIL	VIH		VOL	VOH	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 1	I _{IH} ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
15 mA ⁵	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	15	15	66	55	15	15

Table 2-140 • Minimum and Maximum DC Input and Output Levels

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.

2. II_H is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at 100°C junction temperature and maximum voltage.

- 4. Currents are measured at 125°C junction temperature.
- 5. Output drive strength is below JEDEC specification.

Figure 2-20 • AC Loading

Table 2-141 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	0.75	0.75	0.75	20

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-25 for a complete table of trip points.

Timing Characteristics

Table 2-142 • HSTL Class II

Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V, VREF = 0.75 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.80	3.00	0.05	2.76	0.52	3.05	2.69	-	1	5.25	4.89	ns
-1	0.68	2.55	0.05	2.34	0.44	2.59	2.28	_	_	4.47	4.16	ns

Table 2-143 • HSTL Class II Military-Case Conditions: T_J = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V, VREF = 0.75 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.61	2.86	0.04	2.52	0.40	2.89	2.57	1	1	4.36	4.04	ns
-1	0.52	2.44	0.03	2.14	0.34	2.46	2.19	_	_	3.71	3.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

SSTL2 Class I

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Military ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL2 Class I		VIL	VIH		VOL	VOH	I_{OL}	I _{OH}	I _{OSL}	I _{OSH}	۱ _{۱L} 1	I _{IH} ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
15 mA	-0.3	VREF - 0.2	VREF + 0.2	3.6	0.54	VCCI – 0.62	15	15	83	87	15	15

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. II_H is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

Figure 2-21 • AC Loading

Table 2-145 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-25 for a complete table of trip points.

Timing Characteristics

Table 2-146 • SSTL2 Class I

Military-Case Conditions: $T_J = 125^{\circ}C$, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V, VREF = 1.25 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.80	2.11	0.05	2.09	0.52	2.14	1.83	-	1	2.14	1.83	ns
-1	0.68	1.80	0.05	1.78	0.44	1.82	1.55	-	I	1.82	1.55	ns

DC Parameter Description Units Min. Max. Тур. Supply Voltage VCCI 2.375 2.5 2.625 V Output Low Voltage VOL V 0.9 1.075 1.25 Output High Voltage V VOH 1.25 1.425 1.6 Output Lower Current IOL¹ 0.65 0.91 1.16 mΑ Output High Current IOH¹ 0.65 0.91 1.16 mΑ Input Voltage VI 0 2.925 V _ IIH ^{2,3} Input High Leakage Current 10 μA IIL ^{2,4} Input Low Leakage Current 10 μA _ _ **Differential Output Voltage** VODIFF 250 350 450 mV Output Common Mode Voltage VOCM V 1.125 1.25 1.375 Input Common Mode Voltage VICM V 0.05 1.25 2.35 Input Differential Voltage VIDIFF 350 100 mV

Table 2-160 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IOL/IOH is defined by VODIFF/(Resistor Network).

2. Currents are measured at 125°C junction temperature.

3. IIH is the input leakage current per IO pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

Table 2-161 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)		
1.075	1.325	Cross point		

Note: *Measuring point = $V_{trip.}$ See Table 2-29 on page 2-25 for a complete table of trip points.

Figure 2-34 • Input DDR Timing Diagram

Timing Characteristics

Table 2-182 • Input DDR Propagation DelaysMilitary-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L

Parameter	Description	-1	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.38	0.45	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.54	0.63	ns
t _{DDRISUD1}	Data Setup for Input DDR (fall)	0.39	0.46	ns
t _{DDRISUD2}	Data Setup for Input DDR (rise)	0.34	0.40	ns
t _{DDRIHD1}	Data Hold for Input DDR (fall)	0.00	0.00	ns
t _{DDRIHD2}	Data Hold for Input DDR (rise)	0.00	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear-to-Out Out_QR for Input DDR	0.64	0.75	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	0.79	0.93	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal Time for Input DDR	0.00	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery Time for Input DDR	0.31	0.36	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.19	0.22	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width HIGH for Input DDR	0.31	0.36	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width LOW for Input DDR	0.28	0.32	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	160	160	MHz

Military ProASIC3/EL Low Power Flash FPGAs

Figure 2-38 • Timing Model and Waveforms

Table 2-199 • A3P250 Global Resource Military-Case Conditions: T_J = 125°C, VCC = 1.425 V

		-	–1		Std.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.97	1.24	1.14	1.46	ns
t _{RCKH}	Input High Delay for Global Clock	0.94	1.27	1.11	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock					ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock					ns
t _{RCKSW}	Maximum Skew for Global Clock		0.32		0.38	ns
F _{RMAX}	Maximum Frequency for Global Clock					MHz

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-200 • A3P1000 Global Resource Military-Case Conditions: T_J = 125°C, VCC = 1.425 V

		-	-1		Std.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.18	1.44	1.39	1.70	ns
t _{RCKH}	Input High Delay for Global Clock	1.17	1.48	1.37	1.74	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock					ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock					ns
t _{RCKSW}	Maximum Skew for Global Clock		0.32		0.37	ns
F _{RMAX}	Maximum Frequency for Global Clock					MHz

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-201 • Military ProASIC3/EL CCC/PLL Specification

For Devices Operating at 1.2 V DC Core Voltage: Applicable to A3PE600L and A3PE3000L Only

Parameter	Min.	Тур.	Max.	Units
Clock Conditioning Circuitry Input Frequency	1.5		250	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		250	MHz
Delay Increments in Programmable Delay Blocks ^{1, 2.3}		360		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Serial Clock (SCLK) for Dynamic PLL ⁴			100	MHz
Input cycle-to-cycle jitter (peak magnitude)			1	ns
Acquisition Time				
LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁵				
LockControl = 0			25	ns
LockControl = 1			1.5	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1,2}	1.2		15.65	ns
Delay Range in Block: Programmable Delay 2 ^{1,2}	0.025		15.65	ns
Delay Range in Block: Fixed Delay ^{1,2}		3.5		ns
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT}	Max.	Peak-to-Pe	ak Period J	itter ^{6,7}
	$SSO \leq 2$	$SSO \leq 4$	$SSO \leq 8$	$SSO \leq 16$
0.75 MHz to 50 MHz	0.50%	0.60%	0.80%	1.60%
50 MHz to 160 MHz	2.50%	4.00%	6.00%	12.00%

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 for deratings.

2. $T_J = 25^{\circ}C$, VCC = 1.2 V.

3. When the CCC/PLL core is generated by Mircosemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero online help associated with the core for more information.

4. Maximum value obtained for a -1 speed grade device in worst-case military conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.

 Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength and high slew rate. VCC/VCCPLL = 1.14V, VQ/PQ/TQ type of packages, 20 pF load.

7. Switching I/Os are placed outside of the PLL bank.

static Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Embedded FlashROM Characteristics

Figure 2-55 • Timing Diagram

Timing Characteristics

Table 2-217	'• Embedded FlashROM Access Time Military-C	Case Conditions: T _J = 125°C, Worst-Case
	VCC = 1.14 V for A3PE600L and A3PE3000L	-

Parameter	Description	-1	Std.	Units
t _{SU}	Address Setup Time	0.74	0.87	ns
t _{HOLD}	Address Hold Time	0.00	0.00	ns
t _{CK2Q}	Clock to Out	16.18	19.02	ns
F _{MAX}	Maximum Clock Frequency	15	15	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-218 • Embedded FlashROM Access Time Military-Case Conditions: T_J = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L

Parameter	Description	-1	Std.	Units
t _{SU}	Address Setup Time	0.58	0.68	ns
t _{HOLD}	Address Hold Time	0.00	0.00	ns
t _{CK2Q}	Clock to Out	12.77	15.01	ns
F _{MAX}	Maximum Clock Frequency	15	15	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-219 • Embedded FlashROM Access Time Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000

Parameter	Description	-1	Std.	Units
t _{SU}	Address Setup Time	0.64	0.75	ns
t _{HOLD}	Address Hold Time	0.00	0.00	ns
t _{CK2Q}	Clock to Out	19.54	22.97	ns
F _{MAX}	Maximum Clock Frequency	15	15	MHz

Package Pin Assignments

	FG484	FG484		
Pin Number	A3PE600L Function	Pin Number	A3PE600L Function	
Y3	NC	AA16	IO71NDB4V0	
Y4	IO98NDB5V2	AA17	IO71PDB4V0	
Y5	GND	AA18	NC	
Y6	IO94NDB5V1	AA19	NC	
Y7	IO94PDB5V1	AA20	NC	
Y8	VCC	AA21	VCCIB3	
Y9	VCC	AA22	GND	
Y10	IO89PDB5V0	AB1	GND	
Y11	IO80PDB4V1	AB2	GND	
Y12	IO78NPB4V1	AB3	VCCIB5	
Y13	NC	AB4	IO97NDB5V2	
Y14	VCC	AB5	IO97PDB5V2	
Y15	VCC	AB6	IO93NDB5V1	
Y16	NC	AB7	IO93PDB5V1	
Y17	NC	AB8	IO87NDB5V0	
Y18	GND	AB9	IO87PDB5V0	
Y19	NC	AB10	NC	
Y20	NC	AB11	NC	
Y21	NC	AB12	IO75NDB4V1	
Y22	VCCIB3	AB13	IO75PDB4V1	
AA1	GND	AB14	IO72NDB4V0	
AA2	VCCIB6	AB15	IO72PDB4V0	
AA3	NC	AB16	IO73NDB4V0	
AA4	IO98PDB5V2	AB17	IO73PDB4V0	
AA5	IO96NDB5V2	AB18	NC	
AA6	IO96PDB5V2	AB19	NC	
AA7	IO86NDB5V0	AB20	VCCIB4	
AA8	IO86PDB5V0	AB21	GND	
AA9	IO85PDB5V0	AB22	GND	
AA10	IO85NDB5V0			
AA11	IO78PPB4V1			
AA12	IO79NDB4V1			
AA13	IO79PDB4V1			

AA14 AA15 NC

NC

Package Pin Assignments

FG896	
Pin Number	A3PE3000L Function
W20	VCC
W21	VCCIB3
W22	IO134PDB3V2
W23	IO138PDB3V3
W24	IO132NDB3V2
W25	IO136NPB3V2
W26	IO130NPB3V2
W27	IO141PDB3V3
W28	IO135PDB3V2
W29	IO131PDB3V2
W30	IO123NDB3V1
Y1	IO266PDB6V4
Y2	IO250PDB6V2
Y3	IO250NDB6V2
Y4	IO246PDB6V1
Y5	IO247NDB6V1
Y6	IO247PDB6V1
Y7	IO249NPB6V1
Y8	IO245PDB6V1
Y9	IO253NDB6V2
Y10	GEB0/IO235NPB6V0
Y11	VCC
Y12	VCC
Y13	VCC
Y14	VCC
Y15	VCC
Y16	VCC
Y17	VCC
Y18	VCC
Y19	VCC
Y20	VCC
Y21	IO142PPB3V3
Y22	IO134NDB3V2
Y23	IO138NDB3V3
Y24	IO140NDB3V3
Y25	IO140PDB3V3