

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	147456
Number of I/O	177
Number of Gates	1000000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p1000-1fg256m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
 - Bit 0 (LSB) = 100%
 - Bit 1 = 50%
 - Bit 2 = 25%
 - ...
 - Bit 7 (MSB) = 0.78125%
 - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%.

Table 2-23 • Toggle Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
α_1	Toggle rate of VersaTile outputs	10%
α ₂	I/O buffer toggle rate	10%

Table 2-24 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
β ₁	I/O output buffer enable rate	100%
β ₂	RAM enable rate for read operations	12.5%
β ₃	RAM enable rate for write operations	12.5%

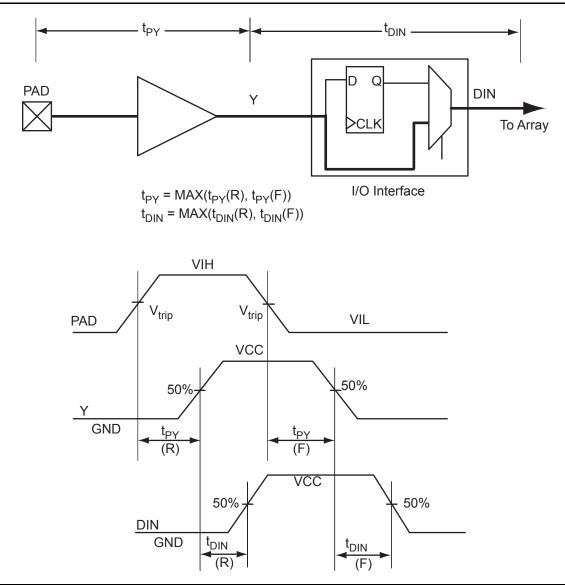


Figure 2-4 • Input Buffer Timing Model and Delays (Example)

Summary of I/O Timing Characteristics – Default I/O Software Settings

Standard	Input/Output Supply Voltage	Input Reference Voltage (VREF_TYP)	Board Termination Voltage (VTT_REF)	Measuring Trip Point (Vtrip)
3.3 V LVTTL / 3.3 V LVCMOS	3.30 V	_	_	1.4 V
3.3 V LVCMOS Wide Range	3.30 V	-	-	1.4 V
2.5 V LVCMOS	2.50 V	-	-	1.2 V
1.8 V LVCMOS	2.50 V	-	-	0.90 V
1.5 V LVCMOS	1.80 V	-	-	0.75 V
1.2 V LVCMOS*	1.50 V	-	-	0.6 V
1.2 V LVCMOS Wide Range*	1.20 V	-	-	0.6 V
3.3 V PCI	1.20 V	-	-	0.285 * VCCI (RR)
	3.30 V	-	_	0.615 * VCCI (FF))
3.3 V PCI-X	3.30 V	-	_	0.285 * VCCI (RR)
	3.30 V	-	_	0.615 * VCCI (FF)
3.3 V GTL	2.50 V	0.8 V	1.2 V	VREF
2.5 V GTL	3.30 V	0.8 V	1.2 V	VREF
3.3 V GTL+	2.50 V	1.0 V	1.5 V	VREF
2.5 V GTL+	1.50 V	1.0 V	1.5 V	VREF
HSTL (I)	1.50 V	0.75 V	0.75 V	VREF
HSTL (II)	3.30 V	0.75 V	0.75 V	VREF
SSTL2 (I)	3.30 V	1.25 V	1.25 V	VREF
SSTL2 (II)	2.50 V	1.25 V	1.25 V	VREF
SSTL3 (I)	2.50 V	1.5 V	1.485 V	VREF
SSTL3 (II)	2.50 V	1.5 V	1.485 V	VREF
LVDS	3.30 V	-	-	Cross point
LVPECL		-	-	Cross point

Table 2-29 • Summary of AC Measuring Points

Note: *Applicable to A3PE600L and A3PE3000L devices operating at 1.2 V core regions only.

Table 2-30 • I/O AC Parameter Definitions

Parameter	Parameter Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{HZ}	Enable to Pad delay through the Output Buffer—High to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to High
t _{LZ}	Enable to Pad delay through the Output Buffer—Low to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to Low
t _{zHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to High
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to Low

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
3.3 V LVCMOS Wide Range	100 µA	Same as regula	r 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
1.8 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
	16 mA	20	40
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

 Table 2-37 •
 I/O Output Buffer Maximum Resistances ¹

 Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only

Notes:

2. R_(PULL-DOWN-MAX) = (VOLspec) / I_{OLspec}

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / I_{OHspec}

^{1.} These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on V_{CCI}, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/products/fpga-soc/designresources/ibis-models.

	Applica		a vanoo										
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.63	6.25	0.05	1.12	0.45	6.37	5.29	2.91	2.70	8.83	7.75	ns
	-1	0.54	5.32	0.04	0.95	0.39	5.42	4.50	2.47	2.30	7.51	6.59	ns
6 mA	Std.	0.63	5.25	0.05	1.12	0.45	5.35	4.58	3.28	3.34	7.81	7.04	ns
	-1	0.54	4.47	0.04	0.95	0.39	4.55	3.90	2.79	2.85	6.65	5.99	ns
8 mA	Std.	0.63	5.25	0.05	1.12	0.45	5.35	4.58	3.28	3.34	7.81	7.04	ns
	-1	0.54	4.47	0.04	0.95	0.39	4.55	3.90	2.79	2.85	6.65	5.99	ns
12 mA	Std.	0.63	4.50	0.05	1.12	0.45	4.59	4.05	3.53	3.76	7.05	6.51	ns
	-1	0.54	3.83	0.04	0.95	0.39	3.90	3.45	3.00	3.20	5.99	5.54	ns
16 mA	Std.	0.63	4.27	0.05	1.12	0.45	4.35	3.93	3.58	3.86	6.81	6.39	ns
	-1	0.54	3.63	0.04	0.95	0.39	3.70	3.34	3.05	3.29	5.79	5.43	ns
24 mA	Std.	0.63	4.14	0.05	1.12	0.45	4.22	3.97	3.65	4.27	6.68	6.43	ns
	-1	0.54	3.53	0.04	0.95	0.39	3.59	3.38	3.10	3.63	5.68	5.47	ns

 Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

 Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

 Applicable to Advanced I/O Banks

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-55 • 3.3 V LVTTL / 3.3 V LVCMOS High SlewMilitary-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 VApplicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.63	3.55	0.05	1.12	0.45	3.62	2.79	2.91	2.87	6.07	5.25	ns
	-1	0.54	3.02	0.04	0.95	0.39	3.08	2.37	2.48	2.44	5.17	4.46	ns
6 mA	Std.	0.63	2.95	0.05	1.12	0.45	3.00	2.25	3.28	3.52	5.46	4.71	ns
	-1	0.54	2.51	0.04	0.95	0.39	2.55	1.91	2.79	3.00	4.65	4.01	ns
8 mA	Std.	0.63	2.95	0.05	1.12	0.45	3.00	2.25	3.28	3.52	5.46	4.71	ns
	-1	0.54	2.51	0.04	0.95	0.39	2.55	1.91	2.79	3.00	4.65	4.01	ns
12 mA	Std.	0.63	2.64	0.05	1.12	0.45	2.68	1.99	3.53	3.94	5.14	4.45	ns
	1	0.54	2.24	0.04	0.95	0.39	2.28	1.70	3.00	3.35	4.38	3.79	ns
16 mA	Std.	0.63	2.58	0.05	1.12	0.45	2.63	1.95	3.59	4.05	5.09	4.41	ns
	1	0.54	2.20	0.04	0.95	0.39	2.24	1.66	3.05	3.44	4.33	3.75	ns
24 mA	Std.	0.63	2.61	0.05	1.12	0.45	2.66	1.89	3.66	4.46	5.12	4.35	ns
	-1	0.54	2.22	0.04	0.95	0.39	2.26	1.61	3.11	3.80	4.35	3.70	ns

Notes:

1. Software default selection highlighted in gray.

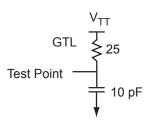
Voltage-Referenced I/O Characteristics

3.3 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The V_{CCI} pin should be connected to 3.3 V.

3.3 V GTL	VIL VIH		VIH		VOL	VOH	I _{OL}	I_{OH}	I _{OSL}	I _{OSH}	IIL 1	I _{IH} ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
20 mA ⁵	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20	268	181	15	15

Notes:


1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. II_H is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

5. Output drive strength is below JEDEC specification.

Figure 2-15 • AC Loading

Table 2-121 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = V_{trip} . See Table 2-29 on page 2-25 for a complete table of trip points.

Timing Characteristics

Table 2-122 • 3.3 V GTL

Military-Case Conditions: $T_J = 125^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V, VREF = 0.8 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.80	2.05	0.05	2.34	0.52	2.01	2.05	-	-	4.22	4.26	ns
–1	0.68	1.75	0.05	1.99	0.44	1.71	1.75	_	-	3.59	3.62	ns

Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Table 2-123 • 3.3 V GTL

Military-Case Conditions: $T_J = 125^{\circ}C$, VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 0.8 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

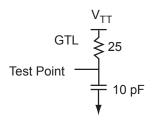
Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.61	1.97	0.04	2.11	0.40	1.86	1.97	-	-	3.32	3.43	ns
-1	0.52	1.68	0.03	1.79	0.34	1.58	1.68	-	_	2.83	2.92	ns

2.5 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The V_{CCI} pin should be connected to 2.5 V.

2.5 V GTL		VIL VIH			VOL	VOH	I_{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 1	I _{IH} ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
20 mA ⁵	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20	169	124	15	15

Notes:


1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. II_H is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

5. Output drive strength is below JEDEC specification.

Figure 2-16 • AC Loading

Table 2-125 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	V _{TT} (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = V_{trip} . See Table 2-29 on page 2-25 for a complete table of trip points.

Timing Characteristics

Table 2-126 • 2.5 V GTL

Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V, VREF = 0.8 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.80	2.11	0.05	2.26	0.52	2.14	2.11	1	-	4.34	4.31	ns
–1	0.68	1.79	0.05	1.93	0.44	1.82	1.79	_	-	3.70	3.68	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-127 • 2.5 V GTL

Military-Case Conditions: T_J = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 0.8 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.61	2.02	0.04	2.04	0.40	1.98	2.02	-	-	3.45	3.49	ns
-1	0.52	1.72	0.03	1.73	0.34	1.69	1.72	-	-	2.93	2.97	ns

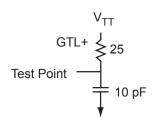
🌜 Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

3.3 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

Table 2-128 • Minimum and Maximum DC Input and Output Levels


3.3 V GTL+		VIL VIH			VOL	VOH	I _{OL}	I_{OH}	I _{OSL}	I _{OSH}	IIL 1	I _{IH} ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
35 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	35	35	268	181	15	15

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.

- 2. II_H is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

Figure 2-17 • AC Loading

Table 2-129 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = V_{trip} . See Table 2-29 on page 2-25 for a complete table of trip points.

Timing Characteristics

Table 2-130 • 3.3 V GTL+

Military-Case Conditions: $T_J = 125^{\circ}C$, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.80	2.04	0.05	2.34	0.52	2.07	2.03	_	_	4.28	4.24	ns
-1	0.68	1.74	0.05	1.99	0.44	1.76	1.73	I	1	3.64	3.61	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-131 • 3.3 V GTL+

Military-Case Conditions: $T_J = 125^{\circ}C$, VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.61	1.95	0.04	2.11	0.40	1.92	1.95	-	-	3.38	3.41	ns
-1	0.52	1.66	0.03	1.79	0.34	1.63	1.66	_	-	2.88	2.90	ns

Table 2-143 • HSTL Class II Military-Case Conditions: T_J = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V, VREF = 0.75 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

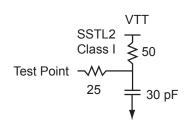
Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.61	2.86	0.04	2.52	0.40	2.89	2.57	-	-	4.36	4.04	ns
-1	0.52	2.44	0.03	2.14	0.34	2.46	2.19	-	1	3.71	3.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

SSTL2 Class I

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Military ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL2 Class I		VIL	VIH		VOL	VOH	I_{OL}	I _{OH}	I _{OSL}	I _{OSH}	۱ _{۱L} 1	$I_{\rm H}^2$
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
15 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI – 0.62	15	15	83	87	15	15


Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. II_H is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

Figure 2-21 • AC Loading

Table 2-145 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-25 for a complete table of trip points.

Timing Characteristics

Table 2-146 • SSTL2 Class I

Military-Case Conditions: $T_J = 125^{\circ}C$, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V, VREF = 1.25 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.80	2.11	0.05	2.09	0.52	2.14	1.83	-	-	2.14	1.83	ns
-1	0.68	1.80	0.05	1.78	0.44	1.82	1.55	-	_	1.82	1.55	ns

static Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

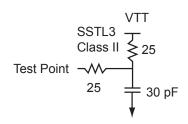
Table 2-155 • SSTL3 Class I

Military-Case Conditions: $T_J = 125^{\circ}C$, VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.5 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.61	2.15	0.04	1.77	0.40	2.17	1.70	-	-	2.17	1.70	ns
-1	0.52	1.83	0.03	1.51	0.34	1.84	1.45	-	1	1.84	1.45	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

SSTL3 Class II


Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Military ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL3 Class II		VIL	VIH		VOL	VOH	I_{OL}	I _{OH}	I _{OSL}	I _{OSH}	Ι _{ΙL}	I _{IH}
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
21 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI – 0.9	21	21	103	109	15	15

Notes:

1. Currents are measured at 100°C junction temperature and maximum voltage.

2. Currents are measured at 125°C junction temperature.

Figure 2-24 • AC Loading

Table 2-157 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.5	1.5	1.485	30

Note: *Measuring point = V_{trip}. See Table 2-29 on page 2-25 for a complete table of trip points.

Timing Characteristics

Table 2-158 • SSTL3 Class II

Military-Case Conditions: $T_J = 125^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V, VREF = 1.5 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.80	2.05	0.05	2.00	0.52	2.08	1.65	-	-	2.08	1.65	ns
-1	0.68	1.75	0.05	1.71	0.44	1.77	1.41	-	-	1.77	1.41	ns

Table 2-159 • SSTL3 Class II

Military-Case Conditions: $T_J = 125^{\circ}C$, VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.5 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.61	1.91	0.04	1.77	0.40	1.92	1.54	-	-	1.92	1.54	ns
-1	0.52	1.63	0.03	1.51	0.34	1.64	1.31	-	-	1.64	1.31	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-25. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, military ProASIC3 also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

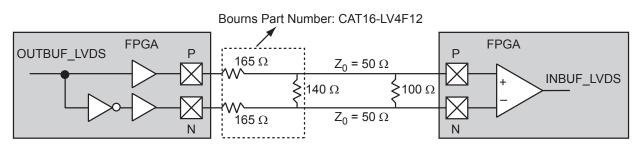


Figure 2-25 • LVDS Circuit Diagram and Board-Level Implementation

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The military ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *IGLOO*, *Fusion, and ProASIC3 Macro Library Guide*.

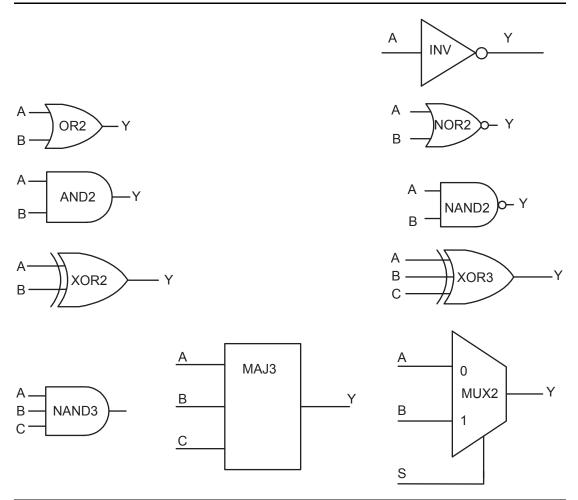


Figure 2-37 • Sample of Combinatorial Cells

1.5 V DC Core Voltage

Table 2-197 • A3PE600L Global Resource

Military-Case Conditions: T_J = 125°C, VCC = 1.425 V

		-	-1	S		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.82	1.07	0.97	1.26	ns
t _{RCKH}	Input High Delay for Global Clock	0.81	1.10	0.95	1.30	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock					ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock					ns
t _{RCKSW}	Maximum Skew for Global Clock		0.30		0.35	ns
F _{RMAX}	Maximum Frequency for Global Clock					MHz

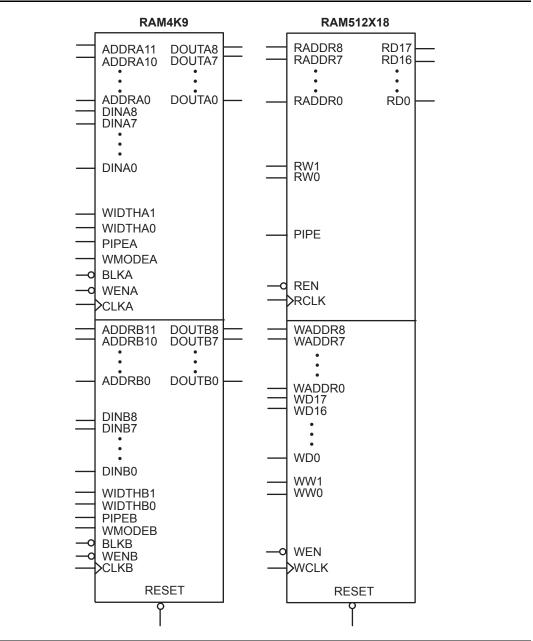
Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-198 • A3PE3000L Global Resource Military-Case Conditions: T_J = 125°C, VCC = 1.425 V

		-	-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.62	1.87	1.90	2.20	ns
t _{RCKH}	Input High Delay for Global Clock	1.61	1.90	1.89	2.24	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock					ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock					ns
t _{RCKSW}	Maximum Skew for Global Clock		0.30		0.35	ns
F _{RMAX}	Maximum Frequency for Global Clock					MHz


Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

^{2.} Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

Embedded SRAM and FIFO Characteristics

SRAM

Figure 2-43 • RAM Models

Pin Descriptions and Packaging

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Microsemi Designer place-androute tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

- There is one VCOMPLF pin on A3P250 and A3P1000 devices.
- There are six VCOMPL pins (PLL ground) on A3PE600L and A3PE3000L devices.

VJTAG JTAG Supply Voltage

Military ProASIC3/EL devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

A3P250 and A3P1000 devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in Table 2-2 on page 2-2.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User-Defined Supply Pins

VREF

I/O Voltage Reference

Reference voltage for I/O minibanks in A3PE600L and A3PE3000L devices. VREF pins are configured by the user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated the voltage reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and GTL/GTL+. One VREF pin can support the number of I/Os available in its minibank.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

Package Pin Assignments

	FG484		FG484		FG484
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
E18	GBA2/IO78PDB1	G9	IO23RSB0	H22	NC
E19	IO81PDB1	G10	IO29RSB0	J1	IO212NDB3
E20	GND	G11	IO33RSB0	J2	IO212PDB3
E21	NC	G12	IO46RSB0	J3	NC
E22	IO84PDB1	G13	IO52RSB0	J4	IO217NDB3
F1	NC	G14	IO60RSB0	J5	IO218NDB3
F2	IO215PDB3	G15	GNDQ	J6	IO216PDB3
F3	IO215NDB3	G16	IO80NDB1	J7	IO216NDB3
F4	IO224NDB3	G17	GBB2/IO79PDB1	J8	VCCIB3
F5	IO225NDB3	G18	IO79NDB1	J9	GND
F6	VMV3	G19	IO82NPB1	J10	VCC
F7	IO11RSB0	G20	IO85PDB1	J11	VCC
F8	GAC0/IO04RSB0	G21	IO85NDB1	J12	VCC
F9	GAC1/IO05RSB0	G22	NC	J13	VCC
F10	IO25RSB0	H1	NC	J14	GND
F11	IO36RSB0	H2	NC	J15	VCCIB1
F12	IO42RSB0	H3	VCC	J16	IO83NPB1
F13	IO49RSB0	H4	IO217PDB3	J17	IO86NPB1
F14	IO56RSB0	H5	IO218PDB3	J18	IO90PPB1
F15	GBC0/IO72RSB0	H6	IO221NDB3	J19	IO87NDB1
F16	IO62RSB0	H7	IO221PDB3	J20	NC
F17	VMV0	H8	VMV0	J21	IO89PDB1
F18	IO78NDB1	H9	VCCIB0	J22	IO89NDB1
F19	IO81NDB1	H10	VCCIB0	K1	IO211PDB3
F20	IO82PPB1	H11	IO38RSB0	K2	IO211NDB3
F21	NC	H12	IO47RSB0	K3	NC
F22	IO84NDB1	H13	VCCIB0	K4	IO210PPB3
G1	IO214NDB3	H14	VCCIB0	K5	IO213NDB3
G2	IO214PDB3	H15	VMV1	K6	IO213PDB3
G3	NC	H16	GBC2/IO80PDB1	K7	GFC1/IO209PPB3
G4	IO222NDB3	H17	IO83PPB1	K8	VCCIB3
G5	IO222PDB3	H18	IO86PPB1	K9	VCC
G6	GAC2/IO223PDB3	H19	IO87PDB1	K10	GND
G7	IO223NDB3	H20	VCC	K11	GND
G8	GNDQ	H21	NC	K12	GND

Package Pin Assignments

FG896		FG896		FG896		
Pin Number	A3PE3000L Function	Pin Number	A3PE3000L Function	Pin Number	A3PE3000L Function	
E12	IO13PDB0V1	F17	IO48PDB1V0	G21	IO66PDB1V3	
E13	IO34NDB0V4	F18	IO50NDB1V1	G22	VCCIB1	
E14	IO34PDB0V4	F19	IO58NDB1V2	G23	VMV1	
E15	IO40NDB0V4	F20	IO60PDB1V2	G24	VCC	
E16	IO49NDB1V1	F21	IO77NDB1V4	G25	GNDQ	
E17	IO49PDB1V1	F22	IO72NDB1V3	G25	GNDQ	
E18	IO50PDB1V1	F23	IO72PDB1V3	G26	VCCIB2	
E19	IO58PDB1V2	F24	GNDQ	G27	IO86NDB2V0	
E20	IO60NDB1V2	F25	GND	G28	IO92NDB2V1	
E21	IO77PDB1V4	F26	VMV2	G29	IO100PPB2V2	
E22	IO68NDB1V3	F26	VMV2	G30	GND	
E23	IO68PDB1V3	F27	IO86PDB2V0	H1	IO294PDB7V2	
E24	VCCIB1	F28	IO92PDB2V1	H2	IO294NDB7V2	
E25	IO74PDB1V4	F29	VCC	H3	IO300NDB7V3	
E26	VCC	F30	IO100NPB2V2	H4	IO300PDB7V3	
E27	GBB1/IO80PPB1V4	G1	GND	H5	IO295PDB7V2	
E28	VCCIB2	G2	IO296NPB7V2	H6	IO299PDB7V3	
E29	IO82NPB2V0	G3	IO306NDB7V4	H7	VCOMPLA	
E30	GND	G4	IO297NDB7V2	H8	GND	
F1	IO296PPB7V2	G5	VCCIB7	H9	IO08NDB0V0	
F2	VCC	G6	GNDQ	H10	IO08PDB0V0	
F3	IO306PDB7V4	G6	GNDQ	H11	IO18PDB0V2	
F4	IO297PDB7V2	G7	VCC	H12	IO26NPB0V3	
F5	VMV7	G8	VMV0	H13	IO28NDB0V3	
F5	VMV7	G9	VCCIB0	H14	IO28PDB0V3	
F6	GND	G10	IO10NDB0V1	H15	IO38PPB0V4	
F7	GNDQ	G11	IO16NDB0V1	H16	IO42NDB1V0	
F8	IO12NDB0V1	G12	IO22PDB0V2	H17	IO52NDB1V1	
F9	IO12PDB0V1	G13	IO26PPB0V3	H18	IO52PDB1V1	
F10	IO10PDB0V1	G14	IO38NPB0V4	H19	IO62NDB1V2	
F11	IO16PDB0V1	G15	IO36NDB0V4	H20	IO62PDB1V2	
F12	IO22NDB0V2	G16	IO46NDB1V0	H21	IO70NDB1V3	
F13	IO30NDB0V3	G17	IO46PDB1V0	H22	IO70PDB1V3	
F14	IO30PDB0V3	G18	IO56NDB1V1	H23	GND	
F15	IO36PDB0V4	G19	IO56PDB1V1	H24	VCOMPLB	
F16	IO48NDB1V0	G20	IO66NDB1V3	H25	GBC2/IO84PDB2V0	

Package Pin Assignments

FG896					
Pin Number	A3PE3000L Function				
M14	GND				
M15	GND				
M16	GND				
M17	GND				
M18	GND				
M19	GND				
M20	VCC				
M21	VCCIB2				
M22	NC				
M23	IO104PPB2V2				
M24	IO102PDB2V2				
M25	IO102NDB2V2				
M26	IO95PDB2V1				
M27	IO97NDB2V1				
M28	IO101NDB2V2				
M29	IO103NDB2V2				
M30	IO119PDB3V0				
N1	IO276PDB7V0				
N2	IO278PDB7V0				
N3	IO280PDB7V0				
N4	IO284PDB7V1				
N5	IO279PDB7V0				
N6	IO285NDB7V1				
N7	IO287NDB7V1				
N8	IO281NDB7V0				
N9	IO281PDB7V0				
N10	VCCIB7				
N11	VCC				
N12	GND				
N13	GND				
N14	GND				
N15	GND				
N16	GND				
N17	GND				
N18	GND				
N19	GND				

Microsemi.

Military ProASIC3/EL Low Power Flash FPGAs

Revision	Changes	Page
Revision 1	The "VQ100" pin table for A3P250 is new (SAR 31975).	
(continued)	The "FG144" pin table for A3P1000 was updated to remove the Flash*Freeze (FF) designation from pin L3. This package does not support Flash*Freeze functionality. Pin W6 of the "FG484" for A3PE600L was designated as the Flash*Freeze control pin for that package (SAR 24084).	4-7, 4-14