

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	147456
Number of I/O	300
Number of Gates	1000000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p1000-2fg484m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

🌜 Microsemi.

Military ProASIC3/EL Low Power Flash FPGAs

I/Os Per Package¹

ProASIC3/EL Low Power Devices	A3F	P250	A3PI	E600L	A3P	1000	A3PE3000L		
ARM Cortex-M1 Devices					M1A3	P1000	M1A3PE3000L		
Package	Single- Ended I/O ² I/O Pairs		Single- Ended I/O ²	Single- Ended I/O ² Differential I/O Pairs		Differential I/O Pairs	Single- Ended I/O ²	Differential I/O Pairs	
VQ100	68	13	-	-	-	-	-	-	
PQ208	-	-	-	-	154	35	-	-	
FG144	-	-	-	-	97 25		-	-	
FG256			-	-	177	44	-	-	
FG484			270 135		300	74	341	168	
FG896							620	310	

Notes:

1. When considering migrating your design to a lower- or higher-density device, refer to the packaging section of the datasheet to ensure you are complying with design and board migration requirements.

2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.

3. "G" indicates RoHS-compliant packages. Refer to "Military ProASIC3/EL Ordering Information" on page III for the location of the "G" in the part number.

- 4. For A3PE3000L devices, the usage of certain I/O standards is limited as follows:
 - SSTL3(I) and (II): up to 40 I/Os per north or south bank
 - LVPECL / GTL + 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank

– SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank

5. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not as a regular I/O, the number of single-ended user I/Os available is reduced by one.

Military ProASIC3/EL Device Status

Military ProASIC3/EL Devices	Status	M1 Military ProASIC3/EL Devices	Status
A3P250	Production		
A3PE600L	Production		
A3P1000	Production	M1A3P1000	Production
A3PE3000L	Production	M1A3PE3000L	Production

1 – Military ProASIC3/EL Device Family Overview

General Description

The military ProASIC3/EL family of flash FPGAs dramatically reduces dynamic power consumption by 40% and static power by 50%. These power savings are coupled with performance, density, true single chip, 1.2 V to 1.5 V core and I/O operation, reprogrammability, and advanced features.

Microsemi's proven Flash*Freeze technology enables military ProASIC3EL device users to shut off dynamic power instantaneously and switch the device to static mode without the need to switch off clocks or power supplies, and retaining internal states of the device. This greatly simplifies power management. In addition, optimized software tools using power-driven layout provide instant push-button power reduction.

Nonvolatile flash technology gives military ProASIC3/EL devices the advantage of being a secure, lowpower, single-chip solution that is live at power-up (LAPU). Military ProASIC3/EL devices offer dramatic dynamic power savings, giving FPGA users flexibility to combine low power with high performance.

These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

Military ProASIC3/EL devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry (CCC) based on an integrated phase-locked loop (PLL). Military ProASIC3/EL devices support devices from 250K system gates to 3 million system gates with up to 504 kbits of true dual-port SRAM and 620 user I/Os.

M1 military ProASIC3/EL devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM for implementation in FPGAs. ARM Cortex-M1 is a soft processor that is fully implemented in the FPGA fabric. It has a three-stage pipeline that offers a good balance between low-power consumption and speed when implemented in an M1 military ProASIC3/EL device. The processor runs the ARMv6-M instruction set, has a configurable nested interrupt controller, and can be implemented with or without the debug block. ARM Cortex-M1 is available at no cost from Microsemi for use in M1 military ProASIC3/EL FPGAs.

The ARM-enabled devices have ordering numbers that begin with M1 and do not support AES decryption.

Flash*Freeze Technology[†]

Military ProASIC3EL devices offer Flash*Freeze technology, which allows instantaneous switching from an active state to a static state. When Flash*Freeze mode is activated, military ProASIC3EL devices enter a static state while retaining the contents of registers and SRAM. Power is conserved without the need for additional external components to turn off I/Os or clocks. Flash*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of military ProASIC3EL devices to support a 1.2 V core voltage allows for an even greater reduction in power consumption, which enables low total system power.

When the military ProASIC3EL device enters Flash*Freeze mode, the device automatically shuts off the clocks and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and data is retained.

The availability of low-power modes, combined with a reprogrammable, single-chip, single-voltage solution, make military ProASIC3EL devices suitable for low-power data transfer and manipulation in military-temperature applications where available power may be limited (e.g., in battery-powered equipment); or where heat dissipation may be limited (e.g., in enclosures with no forced cooling).

[†] Flash*Freeze technology is not supported on A3P1000.

Flash*Freeze Technology^{††}

Military ProASIC3EL devices offer proven Flash*Freeze technology, which enables designers to instantaneously shut off dynamic power consumption while retaining all SRAM and register information. Flash*Freeze technology enables the user to quickly (within 1 µs) enter and exit Flash*Freeze mode by activating the Flash*Freeze (FF) pin while all power supplies are kept at their original values. In addition, I/Os and global I/Os can still be driven and can be toggling without impact on power consumption; clocks can still be driven or can be toggling without impact on power consumption; all core registers and SRAM cells retain their states. I/Os are tristated during Flash*Freeze mode or can be set to a certain state using weak pull-up or pull-down I/O attribute configuration. No power is consumed by the I/O banks, clocks, JTAG pins, or PLLs. Flash*Freeze technology allows the user to switch to active mode on demand, thus simplifying the power management of the device.

The FF pin (active low) can be routed internally to the core to allow the user's logic to decide when it is safe to transition to this mode. It is also possible to use the FF pin as a regular I/O if Flash*Freeze mode usage is not planned, which is advantageous because of the inherent low-power static and dynamic capabilities of the military ProASIC3EL device. Refer to Figure 1-3 for an illustration of entering/exiting Flash*Freeze mode.

VersaTiles

The military ProASIC3/EL core consists of VersaTiles, which have been enhanced beyond the ProASIC^{PLUS®} core tiles. The military ProASIC3/EL VersaTile supports the following:

- All 3-input logic functions—LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set

Refer to Figure 1-4 for VersaTile configurations.

*††Flash***Freeze technology is not supported for A3P1000.*

Military ProASIC3/EL DC and Switching Characteristics

					θ_{ja}		
Package Type	Device	Pin Count	θ_{jc}	Still Air	200 ft./min.	500 ft./min.	Units
Very Thin Quad Flat Pack (VQ100)	A3P250	100	10.0	35.3	29.4	27.1	C/W
Plastic Quad Flat Pack (PQ208)*	A3P1000	208	3.8	16.2	13.3	11.9	C/W
Fine Pitch Ball Grid Array (FBGA)	A3P1000	144	6.3	31.6	26.2	24.2	C/W
	A3P1000	256	6.6	28.1	24.4	22.7	C/W
	A3P1000	484	8.0	23.3	19.0	16.7	C/W
	A3PE600L	484	9.5	27.5	21.9	20.2	C/W
	A3PE3000L	484	4.7	20.6	15.7	14.0	C/W
	A3PE3000L	896	2.4	13.6	10.4	9.4	C/W

Table 2-5 • Package Thermal Resistivities

* Embedded heatspreader

Temperature and Voltage Derating Factors

Table 2-6 •Temperature and Voltage Derating Factors for Timing Delays
(normalized to $T_J = 125^{\circ}C$, VCC = 1.14 V)
Applicable to A3PE600L and A3PE3000L Only

			Junc	tion Temper	ature		
Array Voltage VCC (V)	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C
1.14	0.85	0.86	0.89	0.92	0.96	0.97	1.00
1.2	0.82	0.83	0.86	0.88	0.92	0.93	0.96
1.26	0.79	0.80	0.83	0.85	0.89	0.90	0.93
1.30	0.77	0.78	0.81	0.83	0.86	0.88	0.90
1.35	0.74	0.75	0.78	0.80	0.84	0.85	0.88
1.40	0.72	0.73	0.75	0.77	0.81	0.82	0.85
1.425	0.71	0.71	0.74	0.76	0.79	0.80	0.83
1.5	0.67	0.68	0.70	0.72	0.75	0.76	0.79
1.575	0.65	0.66	0.68	0.70	0.73	0.74	0.76

Table 2-7 •Temperature and Voltage Derating Factors for Timing Delays
(normalized to T_J = 125°C, VCC = 1.425 V)
Applicable to A3P250 and A3P1000 Devices Only

		Junction Temperature										
Array Voltage VCC (V)	–55°C	-55°C -40°C 0°C 25°C 70°C 85°C 12										
1.425	0.80	0.82	0.87	0.89	0.94	0.96	1.00					
1.5	0.76	0.78	0.82	0.84	0.89	0.91	0.95					
1.575	0.73	0.75	0.79	0.82	0.86	0.87	0.91					

2-6

🌜 Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Table 2-15 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only

	VMV (V)	Static Power PDC6 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	16.22
3.3 V LVCMOS – Wide Range	3.3	-	16.22
2.5 V LVCMOS	2.5	-	4.65
1.8 V LVCMOS	1.8	-	1.65
1.5 V LVCMOS (JESD8-11)	1.5	-	0.98
3.3 V PCI	3.3	-	17.64
3.3 V PCI-X	3.3	-	17.64
Differential			
LVDS	2.5	2.26	0.83
LVPECL	3.3	5.72	1.81

Notes:

1. PDC6 is the static power (where applicable) measured on VMV.

2. PAC9 is the total dynamic power measured on VMV.

Table 2-16 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only

	VMV (V)	Static Power PDC6 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	_	16.23
3.3 V LVCMOS – Wide Range	3.3	-	16.23
2.5 V LVCMOS	2.5	_	4.66
1.8 V LVCMOS	1.8	_	1.64
1.5 V LVCMOS (JESD8-11)	1.5	-	0.99
3.3 V PCI	3.3	-	17.64
3.3 V PCI-X	3.3	-	17.64

Notes:

1. PDC6 is the static power (where applicable) measured on VMV.

2. PAC9 is the total dynamic power measured on VMV.

Military ProASIC3/EL DC and Switching Characteristics

Combinatorial Cells Contribution—P_{C-CELL}

 $P_{C-CELL} = N_{C-CELL} * \alpha_1 / 2 * PAC7 * F_{CLK}$

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on page 2-17.

 F_{CLK} is the global clock signal frequency.

Routing Net Contribution—P_{NET}

 $P_{NET} = (N_{S-CELL} + N_{C-CELL}) * \alpha_1 / 2 * PAC8 * F_{CLK}$

 $N_{S\text{-}CELL}$ is the number of VersaTiles used as sequential modules in the design.

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on page 2-17.

F_{CLK} is the global clock signal frequency.

I/O Input Buffer Contribution—PINPUTS

$P_{INPUTS} = N_{INPUTS} * \alpha_2 / 2 * PAC9 * F_{CLK}$

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-23 on page 2-17.

 F_{CLK} is the global clock signal frequency.

I/O Output Buffer Contribution—POUTPUTS

 $P_{OUTPUTS} = N_{OUTPUTS} * \alpha_2 / 2 * \beta_1 * PAC10 * F_{CLK}$

 $N_{\mbox{OUTPUTS}}$ is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-23 on page 2-17.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 2-24 on page 2-17.

F_{CLK} is the global clock signal frequency.

RAM Contribution—P_{MEMORY}

 $\mathsf{P}_{\mathsf{MEMORY}} = \mathsf{PAC11} * \mathsf{N}_{\mathsf{BLOCKS}} * \mathsf{F}_{\mathsf{READ-CLOCK}} * \beta_2 + \mathsf{P}_{\mathsf{AC12}} * \mathsf{N}_{\mathsf{BLOCK}} * \mathsf{F}_{\mathsf{WRITE-CLOCK}} * \beta_3$

N_{BLOCKS} is the number of RAM blocks used in the design.

 $F_{READ-CLOCK}$ is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations.

F_{WRITE-CLOCK} is the memory write clock frequency.

 β_3 is the RAM enable rate for write operations—guidelines are provided in Table 2-24 on page 2-17.

PLL Contribution—P_{PLL}

 $P_{PLL} = PDC4 + PAC13 * F_{CLKOUT}$

F_{CLKOUT} is the output clock frequency.¹

If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (P_{AC13}* F_{CLKOUT} product) to the total PLL contribution.

Figure 2-4 • Input Buffer Timing Model and Delays (Example)

Military ProASIC3/EL DC and Switching Characteristics

Overview of I/O Performance

Summary of I/O DC Input and Output Levels – Default I/O Software Settings

Table 2-25 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Military Conditions—Software Default Settings Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

		Equiv.			VIL	VIH		VOL	VOH	l _{OL} ²	I _{OH} 2
I/O Standard	Drive Strength	Software Default Drive Strength Option ¹	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range ^{1,3}	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	12	12
1.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12
1.2 V LVCMOS ^{4,5}	2 mA	2 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2
1.2 V LVCMOS Wide Range ^{1,4,5}	100 µA	2 mA	High	-0.3	0.3 * VCCI	0.7 * VCCI	3.6	0.1	VCCI – 0.1	0.1	0.1
3.3 V PCI		•	•		Per F	CI Specificati	on				
3.3 V PCI-X					Per Po	CI-X Specifica	tion				
3.3 V GTL	20 mA ⁶	20 mA	High	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20
2.5 V GTL	20 mA ⁶	20 mA	High	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20
3.3 V GTL+	35 mA	35 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	_	35	35
2.5 V GTL+	33 mA	33 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	33	33
HSTL (I)	8 mA	8 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	8	8
HSTL (II)	15 mA ⁶	15 mA ⁶	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	15	15
SSTL2 (I)	15 mA	15 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI-0.62	15	15
SSTL2 (II)	18 mA	18 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI-0.43	18	18
SSTL3 (I)	14 mA	14 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14
SSTL3 (II)	21 mA	21 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI - 0.9	21	21

Notes:

 Note that 1.2 V LVCMOS and 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will not operate at the equivalent software default drive strength These values are for normal ranges only.

2. Currents are measured at 125°C junction temperature.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

4. Applicable to A3PE600L and A3PE3000L devices operating at VCCI \geq VCC.

5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.

6. Output drive strength is below JEDEC specification.

7. Output slew rate can be extracted using the IBIS Models.

 Table 2-66 • 3.3 V LVCMOS Wide Range Low Slew

 Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

 Applicable to Advanced I/O Banks

Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zн}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zнs}	Units
100 µA	4 mA	Std.	0.63	9.67	0.05	1.70	0.45	9.67	8.03	4.50	4.18	13.40	11.77	ns
		-1	0.54	8.22	0.04	1.44	0.39	8.22	6.83	3.83	3.55	11.40	10.01	ns
100 µA	6mA	Std.	0.63	8.13	0.05	1.70	0.45	8.13	6.95	5.07	5.17	11.86	10.69	ns
		-1	0.54	6.91	0.04	1.44	0.39	6.91	5.92	4.31	4.40	10.09	9.09	ns
100 µA	8 mA	Std.	0.63	8.13	0.05	1.70	0.45	8.13	6.95	5.07	5.17	11.86	10.69	ns
		-1	0.54	6.91	0.04	1.44	0.39	6.91	5.92	4.31	4.40	10.09	9.09	ns
100 µA	12 mA	Std.	0.63	6.96	0.05	1.70	0.45	6.96	6.15	5.45	5.81	10.70	9.89	ns
		-1	0.54	5.92	0.04	1.44	0.39	5.92	5.24	4.64	4.94	9.10	8.41	ns
100 µA	16 mA	Std.	0.63	6.61	0.05	1.70	0.45	6.61	5.96	5.54	5.97	10.34	9.70	ns
		-1	0.54	5.62	0.04	1.44	0.39	5.62	5.07	4.71	5.08	8.80	8.25	ns

Notes:

1. Note that 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges ONLY.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-67 • 3.3 V LVCMOS Wide Range High Slew

Military-Case Conditions: $T_J = 125^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Advanced I/O Banks

Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
100 µA	4 mA	Std.	0.63	5.49	0.05	1.70	0.45	5.49	4.23	4.51	4.44	9.22	7.97	ns
		-1	0.54	4.67	0.04	1.44	0.39	4.57	3.60	3.83	3.78	7.84	6.78	ns
100 µA	6 mA	Std.	0.63	4.56	0.05	1.70	0.45	4.56	3.42	5.08	5.45	8.29	7.15	ns
		-1	0.54	3.88	0.04	1.44	0.39	3.88	2.91	4.32	4.64	7.05	6.08	ns
100 µA	8 mA	Std.	0.63	4.56	0.05	1.70	0.45	4.56	3.42	5.08	5.45	8.29	7.15	ns
		-1	0.54	3.88	0.04	1.44	0.39	3.88	2.91	4.32	4.64	7.05	6.08	ns
100 µA	12 mA	Std.	0.63	4.08	0.05	1.70	0.45	4.08	3.03	5.46	6.09	7.81	6.76	ns
		-1	0.54	3.47	0.04	1.44	0.39	3.47	2.57	4.65	5.18	6.64	5.75	ns
100 µA	16 mA	Std.	0.63	4.00	0.05	1.70	0.45	4.00	2.96	5.55	6.26	7.73	6.69	ns
		-1	0.54	3.40	0.04	1.44	0.39	3.40	2.51	4.72	5.32	6.58	5.69	ns

Notes:

1. Note that 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Characteristics

1.2 V DC Core Voltage

Table 2-86 • 1.8 V LVCMOS Low Slew

Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Drive	Speed													
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.80	9.16	0.05	2.00	2.82	0.52	9.32	7.69	2.77	1.20	11.53	9.89	ns
	-1	0.68	7.79	0.05	1.70	2.40	0.44	7.93	6.54	2.36	1.02	9.81	8.42	ns
4 mA	Std.	0.80	7.55	0.05	2.00	2.82	0.52	7.68	6.48	3.23	2.76	9.88	8.68	ns
	-1	0.68	6.42	0.05	1.70	2.40	0.44	6.53	5.51	2.75	2.35	8.41	7.38	ns
6 mA	Std.	0.80	6.40	0.05	2.00	2.82	0.52	6.51	5.65	3.54	3.34	8.71	7.85	ns
	-1	0.68	5.44	0.05	1.70	2.40	0.44	5.54	4.80	3.01	2.84	7.41	6.68	ns
8 mA	Std.	0.80	6.01	0.05	2.00	2.82	0.52	6.12	5.48	3.61	3.50	8.32	7.69	ns
	-1	0.68	5.11	0.05	1.70	2.40	0.44	5.20	4.66	3.07	2.98	7.08	6.54	ns
12 mA	Std.	0.80	5.90	0.05	2.00	2.82	0.52	6.00	5.49	3.71	4.08	8.21	7.70	ns
	-1	0.68	5.02	0.05	1.70	2.40	0.44	5.11	4.67	3.16	3.47	6.98	6.55	ns
16 mA	Std.	0.80	5.90	0.05	2.00	2.82	0.52	6.00	5.49	3.71	4.08	8.21	7.70	ns
	-1	0.68	5.02	0.05	1.70	2.40	0.44	5.11	4.67	3.16	3.47	6.98	6.55	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-87 • 1.8 V LVCMOS High Slew

Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.80	4.14	0.05	2.00	2.82	0.52	4.21	4.05	2.76	1.23	6.42	6.26	ns
	-1	0.68	3.52	0.05	1.70	2.40	0.44	3.58	3.45	2.35	1.04	5.46	5.32	ns
4 mA	Std.	0.80	3.36	0.05	2.00	2.82	0.52	3.41	3.01	3.22	2.85	5.62	5.21	ns
	-1	0.68	2.86	0.05	1.70	2.40	0.44	2.90	2.56	2.74	2.42	4.78	4.43	ns
6 mA	Std.	0.80	2.88	0.05	2.00	2.82	0.52	2.93	2.49	3.54	3.43	5.13	4.70	ns
	-1	0.68	2.45	0.05	1.70	2.40	0.44	2.49	2.12	3.01	2.92	4.36	3.99	ns
8 mA	Std.	0.80	2.79	0.05	2.00	2.82	0.52	2.83	2.40	3.60	3.59	5.04	4.60	ns
	-1	0.68	2.37	0.05	1.70	2.40	0.44	2.41	2.04	3.06	3.05	4.29	3.91	ns
12 mA	Std.	0.80	2.78	0.05	2.00	2.82	0.52	2.82	2.28	3.71	4.21	5.02	4.48	ns
	-1	0.68	2.36	0.05	1.70	2.40	0.44	2.40	1.94	3.16	3.58	4.27	3.81	ns
16 mA	Std.	0.80	2.78	0.05	2.00	2.82	0.52	2.82	2.28	3.71	4.21	5.02	4.48	ns
	-1	0.68	2.36	0.05	1.70	2.40	0.44	2.40	1.94	3.16	3.58	4.27	3.81	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

🌜 Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

3.3 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

Table 2-128 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL+	VIL		VIH		VOL	VOH	I _{OL}	I_{OH}	I _{OSL}	I _{OSH}	I _{IL} 1	I _{IH} ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
35 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	35	35	268	181	15	15

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.

- 2. II_H is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

Figure 2-17 • AC Loading

Table 2-129 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = V_{trip} . See Table 2-29 on page 2-25 for a complete table of trip points.

Timing Characteristics

Table 2-130 • 3.3 V GTL+

Military-Case Conditions: $T_J = 125^{\circ}C$, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.80	2.04	0.05	2.34	0.52	2.07	2.03	-	-	4.28	4.24	ns
-1	0.68	1.74	0.05	1.99	0.44	1.76	1.73	_	-	3.64	3.61	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-131 • 3.3 V GTL+

Military-Case Conditions: $T_J = 125^{\circ}C$, VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.61	1.95	0.04	2.11	0.40	1.92	1.95	1	-	3.38	3.41	ns
-1	0.52	1.66	0.03	1.79	0.34	1.63	1.66	_	-	2.88	2.90	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2.5 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The V_{CCI} pin should be connected to 2.5 V.

2.5 V GTL+	VIL		VIH		VOL	VOH	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 1	I _{IH} ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
33 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	33	33	169	124	15	15

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. II_H is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

Figure 2-18 • AC Loading

Table 2-133 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = V_{trip} . See Table 2-29 on page 2-25 for a complete table of trip points.

Timing Characteristics

Table 2-134 • 2.5 V GTL+

Military-Case Conditions: $T_J = 125^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V, VREF = 1.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.80	2.19	0.05	2.27	0.52	2.22	2.08	I	1	4.43	4.28	ns
–1	0.68	1.86	0.05	1.93	0.44	1.89	1.77	-	-	3.77	3.64	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-135 • 2.5 V GTL+

Military-Case Conditions: $T_J = 125^{\circ}C$, VCC = 1.425 V, Worst-Case VCCI = 2.3 V, VREF = 1.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.61	2.05	0.04	2.04	0.40	2.07	1.99	I	I	3.53	3.46	ns
–1	0.52	1.75	0.03	1.73	0.34	1.76	1.69	I	I	3.00	2.94	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Characteristics

 Table 2-175 • Output Data Register Propagation Delays

Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L

Parameter	Description	-1	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	0.81	0.96	ns
tosud	Data Setup Time for the Output Data Register	0.43	0.51	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	0.61	0.71	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	1.11	1.31	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	1.11	1.31	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.31	0.36	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.31	0.36	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	0.22	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.19	0.22	ns
t _{OCKMPWH}	Clock Minimum Pulse Width HIGH for the Output Data Register	0.31	0.36	ns
t _{OCKMPWL}	Clock Minimum Pulse Width LOW for the Output Data Register	0.28	0.32	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-176 • Output Data Register Propagation Delays Military-Case Conditions: T_J = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L

Parameter	Description	-1	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	0.62	0.73	ns
t _{OSUD}	Data Setup Time for the Output Data Register	0.33	0.39	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	0.46	0.55	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	0.85	1.00	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	0.85	1.00	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.24	0.28	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.24	0.28	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	0.22	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.19	0.22	ns
t _{OCKMPWH}	Clock Minimum Pulse Width HIGH for the Output Data Register	0.31	0.36	ns
t _{OCKMPWL}	Clock Minimum Pulse Width LOW for the Output Data Register	0.28	0.32	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

A3P1000					
Combinatorial Cell	Equation	Parameter	-1	Std.	Units
INV	Y = !A	t _{PD}	0.48	0.57	ns
AND2	$Y = A \cdot B$	t _{PD}	0.57	0.67	ns
NAND2	Y = !(A · B)	t _{PD}	0.57	0.67	ns
OR2	Y = A + B	t _{PD}	0.59	0.69	ns
NOR2	Y = !(A + B)	t _{PD}	0.59	0.69	ns
XOR2	Y = A ⊕ B	t _{PD}	0.89	1.04	ns
MAJ3	Y = MAJ(A , B, C)	t _{PD}	0.84	0.99	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	1.05	1.24	ns
MUX2	Y = A !S + B S	t _{PD}	0.61	0.72	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	0.68	0.79	ns

Table 2-191 • Combinatorial Cell Propagation Delays Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A2P1000

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Embedded SRAM and FIFO Characteristics

SRAM

Figure 2-43 • RAM Models

Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Parameter	Description	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	5.28	6.21	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	ns
t _{BKS}	BLK Setup Time	1.66	1.95	ns
t _{BKH}	BLK Hold Time	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.22	0.26	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	ns
t _{CKQ1}	Clock HIGH to New Data Valid on RD (flow-through)	2.84	3.33	ns
t _{CKQ2}	Clock HIGH to New Data Valid on RD (pipelined)	1.08	1.27	ns
t _{RCKEF}	RCLK HIGH to Empty Flag Valid	2.07	2.43	ns
t _{WCKFF}	WCLK HIGH to Full Flag Valid	1.96	2.31	ns
t _{CKAF}	Clock HIGH to Almost Empty/Full Flag Valid	7.45	8.76	ns
t _{RSTFG}	RESET LOW to Empty/Full Flag Valid	2.04	2.40	ns
t _{RSTAF}	RESET LOW to Almost Empty/Full Flag Valid	7.38	8.67	ns
t _{RSTBQ}	RESET LOW to Data Out LOW on RD (flow-through)	1.11	1.31	ns
	RESET LOW to Data Out LOW on RD (pipelined)	1.11	1.31	ns
t _{REMRSTB}	RESET Removal	0.34	0.40	ns
t _{RECRSTB}	RESET Recovery	1.81	2.12	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.26	0.30	ns
t _{CYC}	Clock Cycle Time	3.89	4.57	ns
F _{MAX}	Maximum Frequency for FIFO	257	219	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Military ProASIC3/EL Low Power Flash FPGAs

FG484		FG484		FG484		
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	
A1	GND	B14	IO58RSB0	D5	GAA0/IO00RSB0	
A2	GND	B15	IO63RSB0	D6	GAA1/IO01RSB0	
A3	VCCIB0	B16	IO66RSB0	D7	GAB0/IO02RSB0	
A4	IO07RSB0	B17	IO68RSB0	D8	IO16RSB0	
A5	IO09RSB0	B18	IO70RSB0	D9	IO22RSB0	
A6	IO13RSB0	B19	NC	D10	IO28RSB0	
A7	IO18RSB0	B20	NC	D11	IO35RSB0	
A8	IO20RSB0	B21	VCCIB1	D12	IO45RSB0	
A9	IO26RSB0	B22	GND	D13	IO50RSB0	
A10	IO32RSB0	C1	VCCIB3	D14	IO55RSB0	
A11	IO40RSB0	C2	IO220PDB3	D15	IO61RSB0	
A12	IO41RSB0	C3	NC	D16	GBB1/IO75RSB0	
A13	IO53RSB0	C4	NC	D17	GBA0/IO76RSB0	
A14	IO59RSB0	C5	GND	D18	GBA1/IO77RSB0	
A15	IO64RSB0	C6	IO10RSB0	D19	GND	
A16	IO65RSB0	C7	IO14RSB0	D20	NC	
A17	IO67RSB0	C8	VCC	D21	NC	
A18	IO69RSB0	C9	VCC	D22	NC	
A19	NC	C10	IO30RSB0	E1	IO219NDB3	
A20	VCCIB0	C11	IO37RSB0	E2	NC	
A21	GND	C12	IO43RSB0	E3	GND	
A22	GND	C13	NC	E4	GAB2/IO224PDB3	
B1	GND	C14	VCC	E5	GAA2/IO225PDB3	
B2	VCCIB3	C15	VCC	E6	GNDQ	
B3	NC	C16	NC	E7	GAB1/IO03RSB0	
B4	IO06RSB0	C17	NC	E8	IO17RSB0	
B5	IO08RSB0	C18	GND	E9	IO21RSB0	
B6	IO12RSB0	C19	NC	E10	IO27RSB0	
B7	IO15RSB0	C20	NC	E11	IO34RSB0	
B8	IO19RSB0	C21	NC	E12	IO44RSB0	
B9	IO24RSB0	C22	VCCIB1	E13	IO51RSB0	
B10	IO31RSB0	D1	IO219PDB3	E14	IO57RSB0	
B11	IO39RSB0	D2	IO220NDB3	E15	GBC1/IO73RSB0	
B12	IO48RSB0	D3	NC	E16	GBB0/IO74RSB0	
B13	IO54RSB0	D4	GND	E17	IO71RSB0	

Package Pin Assignments

FG896				
Pin Number A3PE3000L Function				
W20	VCC			
W21	VCCIB3			
W22	IO134PDB3V2			
W23	IO138PDB3V3			
W24	IO132NDB3V2			
W25	IO136NPB3V2			
W26	IO130NPB3V2			
W27	IO141PDB3V3			
W28	IO135PDB3V2			
W29	IO131PDB3V2			
W30	IO123NDB3V1			
Y1	IO266PDB6V4			
Y2	IO250PDB6V2			
Y3	IO250NDB6V2			
Y4	IO246PDB6V1			
Y5	IO247NDB6V1			
Y6	IO247PDB6V1			
Y7	IO249NPB6V1			
Y8	IO245PDB6V1			
Y9	IO253NDB6V2			
Y10	GEB0/IO235NPB6V0			
Y11	VCC			
Y12	VCC			
Y13	VCC			
Y14	VCC			
Y15	VCC			
Y16	VCC			
Y17	VCC			
Y18	VCC			
Y19	VCC			
Y20	VCC			
Y21	IO142PPB3V3			
Y22	IO134NDB3V2			
Y23	IO138NDB3V3			
Y24	IO140NDB3V3			
Y25	IO140PDB3V3			

Microsemi.

Military ProASIC3/EL Low Power Flash FPGAs

Revision	Changes	Page
Revision 1 (continued)	The "VQ100" pin table for A3P250 is new (SAR 31975).	
	The "FG144" pin table for A3P1000 was updated to remove the Flash*Freeze (FF) designation from pin L3. This package does not support Flash*Freeze functionality. Pin W6 of the "FG484" for A3PE600L was designated as the Flash*Freeze control pin for that package (SAR 24084).	4-7, 4-14

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 E-mail: sales.support@microsemi.com Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 3,400 employees globally. Learn more at **www.microsemi.com**.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.