

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	147456
Number of I/O	177
Number of Gates	1000000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p1000-2fgg256m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

 Table 2-66 • 3.3 V LVCMOS Wide Range Low Slew

 Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

 Applicable to Advanced I/O Banks

Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zнs}	Units
100 µA	4 mA	Std.	0.63	9.67	0.05	1.70	0.45	9.67	8.03	4.50	4.18	13.40	11.77	ns
		-1	0.54	8.22	0.04	1.44	0.39	8.22	6.83	3.83	3.55	11.40	10.01	ns
100 µA	6mA	Std.	0.63	8.13	0.05	1.70	0.45	8.13	6.95	5.07	5.17	11.86	10.69	ns
		-1	0.54	6.91	0.04	1.44	0.39	6.91	5.92	4.31	4.40	10.09	9.09	ns
100 µA	8 mA	Std.	0.63	8.13	0.05	1.70	0.45	8.13	6.95	5.07	5.17	11.86	10.69	ns
		-1	0.54	6.91	0.04	1.44	0.39	6.91	5.92	4.31	4.40	10.09	9.09	ns
100 µA	12 mA	Std.	0.63	6.96	0.05	1.70	0.45	6.96	6.15	5.45	5.81	10.70	9.89	ns
		-1	0.54	5.92	0.04	1.44	0.39	5.92	5.24	4.64	4.94	9.10	8.41	ns
100 µA	16 mA	Std.	0.63	6.61	0.05	1.70	0.45	6.61	5.96	5.54	5.97	10.34	9.70	ns
		-1	0.54	5.62	0.04	1.44	0.39	5.62	5.07	4.71	5.08	8.80	8.25	ns

Notes:

1. Note that 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges ONLY.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-67 • 3.3 V LVCMOS Wide Range High Slew

Military-Case Conditions: $T_J = 125^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Advanced I/O Banks

Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
100 µA	4 mA	Std.	0.63	5.49	0.05	1.70	0.45	5.49	4.23	4.51	4.44	9.22	7.97	ns
		-1	0.54	4.67	0.04	1.44	0.39	4.57	3.60	3.83	3.78	7.84	6.78	ns
100 µA	6 mA	Std.	0.63	4.56	0.05	1.70	0.45	4.56	3.42	5.08	5.45	8.29	7.15	ns
		-1	0.54	3.88	0.04	1.44	0.39	3.88	2.91	4.32	4.64	7.05	6.08	ns
100 µA	8 mA	Std.	0.63	4.56	0.05	1.70	0.45	4.56	3.42	5.08	5.45	8.29	7.15	ns
		-1	0.54	3.88	0.04	1.44	0.39	3.88	2.91	4.32	4.64	7.05	6.08	ns
100 µA	12 mA	Std.	0.63	4.08	0.05	1.70	0.45	4.08	3.03	5.46	6.09	7.81	6.76	ns
		-1	0.54	3.47	0.04	1.44	0.39	3.47	2.57	4.65	5.18	6.64	5.75	ns
100 µA	16 mA	Std.	0.63	4.00	0.05	1.70	0.45	4.00	2.96	5.55	6.26	7.73	6.69	ns
		-1	0.54	3.40	0.04	1.44	0.39	3.40	2.51	4.72	5.32	6.58	5.69	ns

Notes:

1. Note that 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

🌜 Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

2.5 V LVCMOS		VIL	VI	1	VOL	VOH	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	ا _{ال} 1	I _{IH} 2
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁵
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	16	18	15	15
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	16	18	15	15
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	32	37	15	15
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	32	37	15	15
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	65	74	15	15

Table 2-72 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
$$rac{1}{1}$$
 $rac{1}{1}$ $rac{1$

Figure 2-9 • AC Loading

Table 2-73 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (Typ) (V)	C _{LOAD} (pF)
0	2.5	1.2	-	5

Note: *Measuring point = $V_{trip.}$ See Table 2-29 on page 2-25 for a complete table of trip points.

🌜 Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

1.5 V DC Core Voltage

Table 2-76 • 2.5 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.61	6.73	0.04	1.75	2.26	0.40	6.83	5.71	2.54	1.99	8.30	7.18	ns
	-1	0.52	5.73	0.03	1.49	1.93	0.34	5.81	4.86	2.16	1.69	7.06	6.10	ns
8 mA	Std.	0.61	5.48	0.04	1.75	2.26	0.40	5.56	4.82	2.92	2.71	7.02	6.29	ns
	–1	0.52	4.66	0.03	1.49	1.93	0.34	4.73	4.10	2.48	2.30	5.98	5.35	ns
12 mA	Std.	0.61	4.59	0.04	1.75	2.26	0.40	4.65	4.18	3.18	3.18	6.12	5.65	ns
	-1	0.52	3.91	0.03	1.49	1.93	0.34	3.96	3.56	2.71	2.70	5.20	4.80	ns
16 mA	Std.	0.61	4.32	0.04	1.75	2.26	0.40	4.38	4.04	3.24	3.31	5.84	5.51	ns
	-1	0.52	3.68	0.03	1.49	1.93	0.34	3.72	3.44	2.75	2.81	4.97	4.69	ns
24 mA	Std.	0.61	4.20	0.04	1.75	2.26	0.40	4.26	4.06	3.31	3.76	5.72	5.52	ns
	-1	0.52	3.58	0.03	1.49	1.93	0.34	3.62	3.45	2.82	3.20	4.87	4.70	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-77 • 2.5 V LVCMOS High Slew

	•
Military-Case Co	nditions: T _J = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Pro	I/Os for A3PE600L and A3PE3000L Only

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.61	3.37	0.04	1.75	2.26	0.40	3.41	3.01	2.54	2.08	4.87	4.48	ns
	–1	0.52	2.87	0.03	1.49	1.93	0.34	2.90	2.56	2.16	1.77	4.14	3.81	ns
8 mA	Std.	0.61	2.74	0.04	1.75	2.26	0.40	2.76	2.29	2.92	2.82	4.23	3.75	ns
	-1	0.52	2.33	0.03	1.49	1.93	0.34	2.35	1.95	2.48	2.40	3.60	3.19	ns
12 mA	Std.	0.61	2.36	0.04	1.75	2.26	0.40	2.38	1.93	3.18	3.27	3.84	3.40	ns
	-1	0.52	2.01	0.03	1.49	1.93	0.34	2.02	1.65	2.71	2.78	3.27	2.89	ns
16 mA	Std.	0.61	2.29	0.04	1.75	2.26	0.40	2.31	1.87	3.24	3.40	3.77	3.33	ns
	–1	0.52	1.95	0.03	1.49	1.93	0.34	1.96	1.59	2.75	2.89	3.21	2.84	ns
24 mA	Std.	0.61	2.31	0.04	1.75	2.26	0.40	2.32	1.78	3.31	3.89	3.79	3.25	ns
	-1	0.52	1.96	0.03	1.49	1.93	0.34	1.98	1.52	2.82	3.31	3.22	2.76	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

1.5 V LVCMOS		VIL	VIH		VOL	VOH	I _{OL}	I _{ОН}	I _{OSL}	I _{OSH}	ا _{ال} 1	I _{IH} 2
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	13	16	15	15
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	4	4	25	33	15	15
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	6	6	32	39	15	15
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	8	8	66	55	15	15
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12	66	55	15	15

Table 2-94 • Minimum and Maximum DC Input and Output Levels Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Notes:

1. I_{II} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-95 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only

1.5 V LVCMOS		VIL	VIH		V _{OL}	VOH	I _{OL}	I _{ОН}	I _{OSL}	I _{OSH}	ا _{ال} 1	I _{IH} 2
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	13	16	15	15
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	25	33	15	15
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	6	6	32	39	15	15
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	8	8	66	55	15	15
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	12	12	66	55	15	15

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

5. Software default selection highlighted in gray.

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-27. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

	Circuit Disaram and	Roard Laval Implana	ntation
FIGUIE Z=Z/ • LVFEGE	CITCUIL DIAUTAILI ALIU	Dualu-Level IIIIDielle	illalioii

DC Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
VCCI	Supply Voltage	3.0		3.3		3	6.6	V
VOL	Output Low Voltage	0.96	1.27	1.06	1.43	1.30	1.57	V
VOH	Output High Voltage	1.8	2.11	1.92	2.28	2.13	2.41	V
VIL, VIH	Input Low, Input High Voltages	0	3.3	0	3.6	0	3.9	V
V _{ODIFF}	Differential Output Voltage	0.625	0.97	0.625	0.97	0.625	0.97	V
V _{OCM}	Output Common-Mode Voltage	1.762	1.98	1.762	1.98	1.762	1.98	V
V _{ICM}	Input Common-Mode Voltage	1.01	2.57	1.01	2.57	1.01	2.57	V
V _{IDIFF}	Input Differential Voltage	300		300		300		mV

Table 2-166 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)		
1.64	1.94	Cross point		

Note: *Measuring point = $V_{trip.}$ See Table 2-29 on page 2-25 for a complete table of trip points.

I/O Register Specifications

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Figure 2-28 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Table 2-177 • Output Data Register Propagation DelaysMilitary-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000

Parameter	Description	-1	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	0.71	0.83	ns
t _{OSUD}	Data Setup Time for the Output Data Register	0.38	0.44	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	0.53	0.62	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	0.97	1.14	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	0.97	1.14	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.27	0.31	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.27	0.31	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.25	0.30	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.25	0.30	ns
t _{OCKMPWH}	Clock Minimum Pulse Width HIGH for the Output Data Register	0.41	0.48	ns
t _{OCKMPWL}	Clock Minimum Pulse Width LOW for the Output Data Register	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

static Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Timing Characteristics

Table 2-178 • Output Enable Register Propagation Delays

Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L

Parameter	Description	-1	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.62	0.72	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	0.43	0.51	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	0.60	0.71	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	0.92	1.08	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	0.92	1.08	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.31	0.36	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.31	0.36	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.19	0.22	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.19	0.22	ns
t _{OECKMPWH}	Clock Minimum Pulse Width HIGH for the Output Enable Register	0.31	0.36	ns
t _{OECKMPWL}	Clock Minimum Pulse Width LOW for the Output Enable Register	0.28	0.32	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-179 • Output Enable Register Propagation DelaysMilitary-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L

Parameter	Description	-1	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.47	0.55	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	0.33	0.39	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	0.46	0.54	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	0.70	0.83	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	0.70	0.83	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.24	0.28	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.24	0.28	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.19	0.22	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.19	0.22	ns
t _{OECKMPWH}	Clock Minimum Pulse Width HIGH for the Output Enable Register	0.31	0.36	ns
t _{OECKMPWL}	Clock Minimum Pulse Width LOW for the Output Enable Register	0.28	0.32	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Figure 2-34 • Input DDR Timing Diagram

Timing Characteristics

Table 2-182 • Input DDR Propagation DelaysMilitary-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L

Parameter	Description	-1	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.38	0.45	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.54	0.63	ns
t _{DDRISUD1}	Data Setup for Input DDR (fall)	0.39	0.46	ns
t _{DDRISUD2}	Data Setup for Input DDR (rise)	0.34	0.40	ns
t _{DDRIHD1}	Data Hold for Input DDR (fall)	0.00	0.00	ns
t _{DDRIHD2}	Data Hold for Input DDR (rise)	0.00	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear-to-Out Out_QR for Input DDR	0.64	0.75	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	0.79	0.93	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal Time for Input DDR	0.00	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery Time for Input DDR	0.31	0.36	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.19	0.22	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width HIGH for Input DDR	0.31	0.36	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width LOW for Input DDR	0.28	0.32	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	160	160	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The military ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *IGLOO*, *Fusion, and ProASIC3 Macro Library Guide*.

Figure 2-37 • Sample of Combinatorial Cells

🌜 Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Timing Characteristics

Table 2-192 • Register Delays

Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L

Parameter	Description	-1	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.76	0.90	ns
t _{SUD}	Data Setup Time for the Core Register	0.59	0.70	ns
t _{HD}	Data Hold Time for the Core Register	0.00	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.63	0.74	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.55	0.65	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.55	0.65	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.31	0.36	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.31	0.36	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.30	0.34	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.30	0.34	ns
t _{CKMPWH}	Clock Minimum Pulse Width HIGH for the Core Register	0.56	0.64	ns
t _{CKMPWL}	Clock Minimum Pulse Width LOW for the Core Register	0.56	0.64	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Military ProASIC3/EL DC and Switching Characteristics

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-123. Table 2-195 to Table 2-198 on page 2-121 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Timing Characteristics

1.2 V DC Core Voltage

Table 2-195 • A3PE600L Global Resource Military-Case Conditions: T_J = 125°C, VCC = 1.14 V

		-	-1		Std.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input LOW Delay for Global Clock	0.95	1.23	1.12	1.44	ns
t _{RCKH}	Input HIGH Delay for Global Clock	0.94	1.26	1.10	1.48	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock					ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock					ns
t _{RCKSW}	Maximum Skew for Global Clock		0.32		0.38	ns
F _{RMAX}	Maximum Frequency for Global Clock					MHz

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-196 • A3PE3000L Global Resource Military-Case Conditions: T_J = 125°C, VCC = 1.14 V

		-	-1		Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹ Max. ²		Units	
t _{RCKL}	Input LOW Delay for Global Clock	1.81	2.09	2.13	2.42	ns	
t _{RCKH}	Input HIGH Delay for Global Clock	1.80	2.13	2.12	2.45	ns	
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock					ns	
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock					ns	
t _{RCKSW}	Maximum Skew for Global Clock		0.32		0.38	ns	
F _{RMAX}	Maximum Frequency for Global Clock					MHz	

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

^{2.} Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

^{3.} For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

GL Globals

FF

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs " chapter of the *Military ProASIC3/EL FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter (for A3P250 and A3P1000) or "I/O Structures in IGLOOe and ProASIC3E Devices" (for A3PE600L and A3PE3000L) of the *Military ProASIC3/EL FPGA Fabric User's Guide* for an explanation of the naming of global pins.

Flash*Freeze Mode Activation Pin

Flash*Freeze is available on A3PE600L and A3PE3000L devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O. The FF pin can be configured as a Schmitt trigger input.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

Table 3-1 shows the Flash*Freeze pin location on the available packages for Military ProASIC3/EL devices. The Flash*Freeze pin location is independent of device, allowing migration to larger or smaller devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology and Low Power Modes" chapter of the *Military ProASIC3/EL FPGA Fabric User Guide* for more information on I/O states during Flash*Freeze mode.

Military ProASIC3/EL Packages	Flash*Freeze Pin
FG484	W6
FG896	AH4

Table 3-1 • Flash*Freeze Pin Location in Military ProASIC3/EL Packages (device-independent)

FG144

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/products/fpga-soc/solutions.

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/products/fpga-soc/solutions.

	FG484		FG484
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
Y3	NC	AA16	IO122RSB2
Y4	IO182RSB2	AA17	IO119RSB2
Y5	GND	AA18	IO117RSB2
Y6	IO177RSB2	AA19	NC
Y7	IO174RSB2	AA20	NC
Y8	VCC	AA21	VCCIB1
Y9	VCC	AA22	GND
Y10	IO154RSB2	AB1	GND
Y11	IO148RSB2	AB2	GND
Y12	IO140RSB2	AB3	VCCIB2
Y13	NC	AB4	IO180RSB2
Y14	VCC	AB5	IO176RSB2
Y15	VCC	AB6	IO173RSB2
Y16	NC	AB7	IO167RSB2
Y17	NC	AB8	IO162RSB2
Y18	GND	AB9	IO156RSB2
Y19	NC	AB10	IO150RSB2
Y20	NC	AB11	IO145RSB2
Y21	NC	AB12	IO144RSB2
Y22	VCCIB1	AB13	IO132RSB2
AA1	GND	AB14	IO127RSB2
AA2	VCCIB3	AB15	IO126RSB2
AA3	NC	AB16	IO123RSB2
AA4	IO181RSB2	AB17	IO121RSB2
AA5	IO178RSB2	AB18	IO118RSB2
AA6	IO175RSB2	AB19	NC
AA7	IO169RSB2	AB20	VCCIB2
AA8	IO166RSB2	AB21	GND
AA9	IO160RSB2	AB22	GND
AA10	IO152RSB2		
AA11	IO146RSB2		
AA12	IO139RSB2		
AA13	IO133RSB2		
AA14	NC		

AA15

NC

Package Pin Assignments

FG484			FG484	FG484		
Pin Number	A3PE3000L Function	Pin Number	A3PE3000L Function	Pin Number	A3PE3000L Function	
A1	GND	AA14	IO170NDB4V2	B5	IO08PDB0V0	
A2	GND	AA15	IO170PDB4V2	B6	IO14NDB0V1	
A3	VCCIB0	AA16	IO166NDB4V1	B7	IO14PDB0V1	
A4	IO10NDB0V1	AA17	IO166PDB4V1	B8	IO18NDB0V2	
A5	IO10PDB0V1	AA18	IO160NDB4V0	B9	IO24NDB0V2	
A6	IO16NDB0V1	AA19	IO160PDB4V0	B10	IO34PDB0V4	
A7	IO16PDB0V1	AA20	IO158NPB4V0	B11	IO40PDB0V4	
A8	IO18PDB0V2	AA21	VCCIB3	B12	IO46NDB1V0	
A9	IO24PDB0V2	AA22	GND	B13	IO54NDB1V1	
A10	IO28NDB0V3	AB1	GND	B14	IO62NDB1V2	
A11	IO28PDB0V3	AB2	GND	B15	IO62PDB1V2	
A12	IO46PDB1V0	AB3	VCCIB5	B16	IO68NDB1V3	
A13	IO54PDB1V1	AB4	IO216NDB5V2	B17	IO68PDB1V3	
A14	IO56NDB1V1	AB5	IO216PDB5V2	B18	IO72PDB1V3	
A15	IO56PDB1V1	AB6	IO210NDB5V2	B19	IO74PDB1V4	
A16	IO64NDB1V2	AB7	IO210PDB5V2	B20	IO76NPB1V4	
A17	IO64PDB1V2	AB8	IO208NDB5V1	B21	VCCIB2	
A18	IO72NDB1V3	AB9	IO208PDB5V1	B22	GND	
A19	IO74NDB1V4	AB10	IO197NDB5V0	C1	VCCIB7	
A20	VCCIB1	AB11	IO197PDB5V0	C2	IO303PDB7V3	
A21	GND	AB12	IO174NDB4V2	C3	IO305PDB7V3	
A22	GND	AB13	IO174PDB4V2	C4	IO06NPB0V0	
AA1	GND	AB14	IO172NDB4V2	C5	GND	
AA2	VCCIB6	AB15	IO172PDB4V2	C6	IO12NDB0V1	
AA3	IO228PDB5V4	AB16	IO168NDB4V1	C7	IO12PDB0V1	
AA4	IO224PDB5V3	AB17	IO168PDB4V1	C8	VCC	
AA5	IO218NDB5V3	AB18	IO162NDB4V1	C9	VCC	
AA6	IO218PDB5V3	AB19	IO162PDB4V1	C10	IO34NDB0V4	
AA7	IO212NDB5V2	AB20	VCCIB4	C11	IO40NDB0V4	
AA8	IO212PDB5V2	AB21	GND	C12	IO48NDB1V0	
AA9	IO198PDB5V0	AB22	GND	C13	IO48PDB1V0	
AA10	IO198NDB5V0	B1	GND	C14	VCC	
AA11	IO188PPB4V4	B2	VCCIB7	C15	VCC	
AA12	IO180NDB4V3	B3	IO06PPB0V0	C16	IO70NDB1V3	
AA13	IO180PDB4V3	B4	IO08NDB0V0	C17	IO70PDB1V3	

Package Pin Assignments

FG484		FG484		FG484	
Pin Number	A3PE3000L Function	Pin Number	A3PE3000L Function	Pin Number	A3PE3000L Function
H13	VCCIB1	K4	IO279NDB7V0	L17	GCA0/IO114NPB3V0
H14	VCCIB1	K5	IO283NDB7V1	L18	VCOMPLC
H15	VMV1	K6	IO281NDB7V0	L19	GCB0/IO113NPB2V3
H16	GBC2/IO84PDB2V0	K7	GFC1/IO275PPB7V0	L20	IO110PPB2V3
H17	IO83NDB2V0	K8	VCCIB7	L21	IO111NDB2V3
H18	IO100NDB2V2	K9	VCC	L22	IO111PDB2V3
H19	IO100PDB2V2	K10	GND	M1	GNDQ
H20	VCC	K11	GND	M2	IO255NPB6V2
H21	VMV2	K12	GND	M3	IO272NDB6V4
H22	IO105PDB2V2	K13	GND	M4	GFA2/IO272PDB6V4
J1	IO285NDB7V1	K14	VCC	M5	GFA1/IO273PDB6V4
J2	IO285PDB7V1	K15	VCCIB2	M6	VCCPLF
J3	VMV7	K16	GCC1/IO112PPB2V3	M7	IO271NDB6V4
J4	IO279PDB7V0	K17	IO108NDB2V3	M8	GFB2/IO271PDB6V4
J5	IO283PDB7V1	K18	IO108PDB2V3	M9	VCC
J6	IO281PDB7V0	K19	IO110NPB2V3	M10	GND
J7	IO287NDB7V1	K20	IO106NPB2V3	M11	GND
J8	VCCIB7	K21	IO109NDB2V3	M12	GND
J9	GND	K22	IO107NDB2V3	M13	GND
J10	VCC	L1	IO257PSB6V2	M14	VCC
J11	VCC	L2	IO276PDB7V0	M15	GCB2/IO116PPB3V0
J12	VCC	L3	IO276NDB7V0	M16	GCA1/IO114PPB3V0
J13	VCC	L4	GFB0/IO274NPB7V0	M17	GCC2/IO117PPB3V0
J14	GND	L5	GFA0/IO273NDB6V4	M18	VCCPLC
J15	VCCIB2	L6	GFB1/IO274PPB7V0	M19	GCA2/IO115PDB3V0
J16	IO84NDB2V0	L7	VCOMPLF	M20	IO115NDB3V0
J17	IO104NDB2V2	L8	GFC0/IO275NPB7V0	M21	IO126PDB3V1
J18	IO104PDB2V2	L9	VCC	M22	IO124PSB3V1
J19	IO106PPB2V3	L10	GND	N1	IO255PPB6V2
J20	GNDQ	L11	GND	N2	IO253NDB6V2
J21	IO109PDB2V3	L12	GND	N3	VMV6
J22	IO107PDB2V3	L13	GND	N4	GFC2/IO270PPB6V4
K1	IO277NDB7V0	L14	VCC	N5	IO261PPB6V3
K2	IO277PDB7V0	L15	GCC0/IO112NPB2V3	N6	IO263PDB6V3
K3	GNDQ	L16	GCB1/IO113PPB2V3	N7	IO263NDB6V3

Note: This is the bottom view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/products/fpga-soc/solutions.

FG896					
Pin Number	A3PE3000L Function				
H26	IO84NDB2V0				
H27	IO96PDB2V1				
H28	IO96NDB2V1				
H29	IO89PDB2V0				
H30	IO89NDB2V0				
J1	IO290NDB7V2				
J2	IO290PDB7V2				
J3	IO302NDB7V3				
J4	IO302PDB7V3				
J5	IO295NDB7V2				
J6	IO299NDB7V3				
J7	VCCIB7				
J8	VCCPLA				
J9	VCC				
J10	IO04NPB0V0				
J11	IO18NDB0V2				
J12	IO20NDB0V2				
J13	IO20PDB0V2				
J14	IO32NDB0V3				
J15	IO32PDB0V3				
J16	IO42PDB1V0				
J17	IO44NDB1V0				
J18	IO44PDB1V0				
J19	IO54NDB1V1				
J20	IO54PDB1V1				
J21	IO76NPB1V4				
J22	VCC				
J23	VCCPLB				
J24	VCCIB2				
J25	IO90PDB2V1				
J26	IO90NDB2V1				
J27	GBB2/IO83PDB2V0				
J28	IO83NDB2V0				
J29	IO91PDB2V1				
J30	IO91NDB2V1				
K1	IO288NDB7V1				