

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	147456
Number of I/O	300
Number of Gates	1000000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p1000-2fgg484m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – Military ProASIC3/EL Device Family Overview

General Description

The military ProASIC3/EL family of flash FPGAs dramatically reduces dynamic power consumption by 40% and static power by 50%. These power savings are coupled with performance, density, true single chip, 1.2 V to 1.5 V core and I/O operation, reprogrammability, and advanced features.

Microsemi's proven Flash*Freeze technology enables military ProASIC3EL device users to shut off dynamic power instantaneously and switch the device to static mode without the need to switch off clocks or power supplies, and retaining internal states of the device. This greatly simplifies power management. In addition, optimized software tools using power-driven layout provide instant push-button power reduction.

Nonvolatile flash technology gives military ProASIC3/EL devices the advantage of being a secure, lowpower, single-chip solution that is live at power-up (LAPU). Military ProASIC3/EL devices offer dramatic dynamic power savings, giving FPGA users flexibility to combine low power with high performance.

These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

Military ProASIC3/EL devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry (CCC) based on an integrated phase-locked loop (PLL). Military ProASIC3/EL devices support devices from 250K system gates to 3 million system gates with up to 504 kbits of true dual-port SRAM and 620 user I/Os.

M1 military ProASIC3/EL devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM for implementation in FPGAs. ARM Cortex-M1 is a soft processor that is fully implemented in the FPGA fabric. It has a three-stage pipeline that offers a good balance between low-power consumption and speed when implemented in an M1 military ProASIC3/EL device. The processor runs the ARMv6-M instruction set, has a configurable nested interrupt controller, and can be implemented with or without the debug block. ARM Cortex-M1 is available at no cost from Microsemi for use in M1 military ProASIC3/EL FPGAs.

The ARM-enabled devices have ordering numbers that begin with M1 and do not support AES decryption.

Flash*Freeze Technology[†]

Military ProASIC3EL devices offer Flash*Freeze technology, which allows instantaneous switching from an active state to a static state. When Flash*Freeze mode is activated, military ProASIC3EL devices enter a static state while retaining the contents of registers and SRAM. Power is conserved without the need for additional external components to turn off I/Os or clocks. Flash*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of military ProASIC3EL devices to support a 1.2 V core voltage allows for an even greater reduction in power consumption, which enables low total system power.

When the military ProASIC3EL device enters Flash*Freeze mode, the device automatically shuts off the clocks and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and data is retained.

The availability of low-power modes, combined with a reprogrammable, single-chip, single-voltage solution, make military ProASIC3EL devices suitable for low-power data transfer and manipulation in military-temperature applications where available power may be limited (e.g., in battery-powered equipment); or where heat dissipation may be limited (e.g., in enclosures with no forced cooling).

[†] Flash*Freeze technology is not supported on A3P1000.

Military ProASIC3/EL Device Family Overview

User Nonvolatile FlashROM

Military ProASIC3/EL devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

FlashROM is written using the standard military ProASIC3/EL IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks, as in security keys stored in the FlashROM for a user design.

FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

Microsemi military ProASIC3/EL development software solutions, Libero SoC has extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using the Libero SoC software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

Military ProASIC3/EL devices have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro.

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

Military ProASIC3 devices provide designers with flexible clock conditioning circuit (CCC) capabilities. Each member of the military ProASIC3 family contains six CCCs, located at the four corners and the centers of the east and west sides. One CCC (center west side) has a PLL. All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

Military ProASIC3EL devices also contain six CCCs; however, all six are equipped with a PLL.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

static Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Symbol	Parameter		Military	Units
TJ	Junction temperature		–55 to 125 ²	°C
VCC	1.5 V DC core supply voltage ³		1.425 to 1.575	V
	1.2 V $-$ 1.5 V wide range DC core supply voltage ⁴		1.14 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	V
VPUMP ⁵	Programming voltage	Programming mode	3.15 to 3.45	V
		Operation ⁶	0 to 3.6	V
VCCPLL ⁵	Analog power supply (PLL)	1.5 V DC core supply voltage ³	1.425 to 1.575	V
		1.2 V - 1.5 V DC core supply voltage ⁴	1.14 to 1.575	V
VCCI and VMV ⁵	1.2 V DC supply voltage ⁴		1.14 to 1.26	V
	1.2 V wide range DC supply voltage ⁴		1.14 to 1.575	V
	1.5 V DC supply voltage		1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	V
	3.0 V DC supply voltage ⁷		2.7 to 3.6	V
	3.3 V DC supply voltage		3.0 to 3.6	V
	LVDS differential I/O		2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	V

Table 2-2 • Recommended Operating Conditions¹

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

- 2. Default Junction Temperature Range in the Libero SoC software is set from 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information regarding custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help.
- 3. For A3P250 and A3P1000
- 4. For A3PE600L and A3PE3000L devices only, operating at VCCI ≥ VCC.
- 5. See the "Pin Descriptions and Packaging" section on page 3-1 for instructions and recommendations on tie-off and supply grouping.
- 6. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-25 on page 2-22. VCCI should be at the same voltage within a given I/O bank.
- 7. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.
- 8. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi's timing and power simulation tools.

Power per I/O Pin

Table 2-14 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

	VCCI (V)	Static Power PDC6 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL/LVCMOS	3.3	-	16.34
3.3 V LVTTL/LVCMOS – Schmitt trigger	3.3	_	24.49
3.3 V LVCMOS Wide Range	3.3	-	16.34
3.3 V LVCMOS – Schmitt trigger Wide Range	3.3	-	24.49
2.5 V LVCMOS	2.5	_	4.71
2.5 V LVCMOS – Schmitt trigger	2.5	_	6.13
1.8 V LVCMOS	1.8	_	1.66
1.8 V LVCMOS – Schmitt trigger	1.8	-	1.78
1.5 V LVCMOS (JESD8-11)	1.5	_	1.01
1.5 V LVCMOS (JESD8-11) – Schmitt trigger	1.5	_	0.97
1.2 V LVCMOS	1.2	-	0.60
1.2 V LVCMOS (JESD8-11) – Schmitt trigger	1.2	_	0.53
1.2 V LVCMOS Wide Range	1.2	-	0.60
1.2 V LVCMOS Schmitt trigger Wide Range	1.2	_	0.53
3.3 V PCI	3.3	_	17.76
3.3 V PCI – Schmitt trigger	3.3	_	19.10
3.3 V PCI-X	3.3	_	17.76
3.3 V PCI-X – Schmitt trigger	3.3	_	19.10
Voltage-Referenced			
3.3 V GTL	3.3	2.90	7.14
2.5 V GTL	2.5	2.13	3.54
3.3 V GTL+	3.3	2.81	2.91
2.5 V GTL+	2.5	2.57	2.61
HSTL (I)	1.5	0.17	0.79
HSTL (II)	1.5	0.17	0.79
SSTL2 (I)	2.5	1.38	3.26
SSTL2 (II)	2.5	1.38	3.26
SSTL3 (I)	3.3	3.21	7.97
SSTL3 (II)	3.3	3.21	7.97
Differential			
LVDS	2.5	2.26	0.89
LVPECL	3.3	5.71	1.94

Notes:

1. PDC6 is the static power (where applicable) measured on VCCI.

2. PAC9 is the total dynamic power measured on VCCI.

Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

User I/O Characteristics

Timing Model

Figure 2-3 • Timing Model Operating Conditions: –1 Speed, Military Temperature Range (T_J = 125°C), Worst-Case VCC = 1.14 V (example for A3PE3000L and A3PE600L)

Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Table 2-80 • 2.5 V LVCMOS Low Slew Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.63	6.45	0.05	1.43	0.45	6.56	5.71	2.48	2.19	9.02	8.17	ns
	-1	0.54	5.48	0.04	1.21	0.39	5.58	4.86	2.11	1.86	7.68	6.95	ns
6 mA	Std.	0.63	5.28	0.05	1.43	0.45	5.38	4.92	2.85	2.88	7.84	7.38	ns
	-1	0.54	4.50	0.04	1.21	0.39	4.58	4.19	2.42	2.45	6.67	6.28	ns
8 mA	Std.	0.63	5.28	0.05	1.43	0.45	5.38	4.92	2.85	2.88	7.84	7.38	ns
	-1	0.54	4.50	0.04	1.21	0.39	4.58	4.19	2.42	2.45	6.67	6.28	ns
12 mA	Std.	0.63	4.48	0.05	1.43	0.45	4.56	4.35	3.11	3.31	7.02	6.81	ns
	-1	0.54	3.81	0.04	1.21	0.39	3.88	3.70	2.65	2.82	5.97	5.79	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-81 • 2.5 V LVCMOS High Slew

Military-Case Conditions: T _J = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.63	3.18	0.05	1.43	0.45	3.23	2.92	2.48	2.28	5.69	5.38	ns
	-1	0.54	2.70	0.04	1.21	0.39	2.75	2.48	2.11	1.94	4.84	4.58	ns
6 mA	Std.	0.63	2.57	0.05	1.43	0.45	2.62	2.24	2.84	2.98	5.08	4.70	ns
	–1	0.54	2.19	0.04	1.21	0.39	2.23	1.90	2.42	2.54	4.32	4.00	ns
8 mA	Std.	0.63	2.57	0.05	1.43	0.45	2.62	2.24	2.84	2.98	5.08	4.70	ns
	-1	0.54	2.19	0.04	1.21	0.39	2.23	1.90	2.42	2.54	4.32	4.00	ns
12 mA	Std.	0.63	2.28	0.05	1.43	0.45	2.32	1.90	3.11	3.42	4.78	4.36	ns
	-1	0.54	1.94	0.04	1.21	0.39	1.97	1.62	2.64	2.91	4.07	3.71	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

🌜 Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Table 2-84 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O I/O Banks

1.8 V LVCMOS		VIL	VIH		VOL	VOH	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 1	I _{IH} 2
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	2	2	9	11	15	15
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	4	4	17	22	15	15
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	6	6	35	44	15	15
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI – 0.45	8	8	35	44	15	15

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-10 • AC Loading

Table 2-85 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (Typ) (V)	C _{LOAD} (pF)
0	1.8	0.9	_	5

Note: *Measuring point = V_{trip} . See Table 2-29 on page 2-25 for a complete table of trip points.

Military ProASIC3/EL DC and Switching Characteristics

Timing Characteristics

1.2 V DC Core Voltage

Table 2-108 • 1.2 V LVCMOS Low Slew

Military-Case Conditions: $T_J = 125^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.80	12.61	0.05	2.65	3.75	0.52	12.10	9.50	5.11	4.66	14.31	11.71	ns
	-1	0.68	10.72	0.05	2.25	3.19	0.44	10.30	8.08	4.35	3.97	12.17	9.96	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-109 • 1.2 V LVCMOS High Slew

Military-Case Conditions: $T_J = 125^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Unit s
2 mA	Std.	0.80	5.16	0.05	2.65	3.75	0.52	4.98	4.39	5.10	4.81	7.19	6.60	ns
	-1	0.68	4.39	0.05	2.25	3.19	0.44	4.24	3.74	4.34	4.09	6.11	5.61	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-143 • HSTL Class II Military-Case Conditions: T_J = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V, VREF = 0.75 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.61	2.86	0.04	2.52	0.40	2.89	2.57	1	-	4.36	4.04	ns
-1	0.52	2.44	0.03	2.14	0.34	2.46	2.19	_	_	3.71	3.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

SSTL2 Class I

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Military ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL2 Class I		VIL	VIH		VOL	VOH	I_{OL}	I _{OH}	I _{OSL}	I _{OSH}	۱ _{۱L} 1	I _{IH} ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
15 mA	-0.3	VREF - 0.2	VREF + 0.2	3.6	0.54	VCCI – 0.62	15	15	83	87	15	15

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. II_H is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

Figure 2-21 • AC Loading

Table 2-145 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-25 for a complete table of trip points.

Timing Characteristics

Table 2-146 • SSTL2 Class I

Military-Case Conditions: $T_J = 125^{\circ}C$, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V, VREF = 1.25 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.80	2.11	0.05	2.09	0.52	2.14	1.83	1	1	2.14	1.83	ns
-1	0.68	1.80	0.05	1.78	0.44	1.82	1.55	Ι	I	1.82	1.55	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-174 • Input Data Register Propagation DelaysMilitary-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000

Parameter	Description	-1	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.29	0.34	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.32	0.37	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.45	0.53	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.55	0.64	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.55	0.64	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.27	0.31	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.27	0.31	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.25	0.30	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.25	0.30	ns
t _{ICKMPWH}	Clock Minimum Pulse Width HIGH for the Input Data Register	0.41	0.48	ns
t _{ICKMPWL}	Clock Minimum Pulse Width LOW for the Input Data Register	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Figure 2-34 • Input DDR Timing Diagram

Timing Characteristics

Table 2-182 • Input DDR Propagation DelaysMilitary-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L

Parameter	Description	-1	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.38	0.45	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.54	0.63	ns
t _{DDRISUD1}	Data Setup for Input DDR (fall)	0.39	0.46	ns
t _{DDRISUD2}	Data Setup for Input DDR (rise)	0.34	0.40	ns
t _{DDRIHD1}	Data Hold for Input DDR (fall)	0.00	0.00	ns
t _{DDRIHD2}	Data Hold for Input DDR (rise)	0.00	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear-to-Out Out_QR for Input DDR	0.64	0.75	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	0.79	0.93	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal Time for Input DDR	0.00	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery Time for Input DDR	0.31	0.36	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.19	0.22	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width HIGH for Input DDR	0.31	0.36	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width LOW for Input DDR	0.28	0.32	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	160	160	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Figure 2-40 • Timing Model and Waveforms

Table 2-199 • A3P250 Global Resource Military-Case Conditions: T_J = 125°C, VCC = 1.425 V

			-1	S		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.97	1.24	1.14	1.46	ns
t _{RCKH}	Input High Delay for Global Clock	0.94	1.27	1.11	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock					ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock					ns
t _{RCKSW}	Maximum Skew for Global Clock		0.32		0.38	ns
F _{RMAX}	Maximum Frequency for Global Clock					MHz

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-200 • A3P1000 Global Resource Military-Case Conditions: T_J = 125°C, VCC = 1.425 V

			-1		Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units	
t _{RCKL}	Input Low Delay for Global Clock	1.18	1.44	1.39	1.70	ns	
t _{RCKH}	Input High Delay for Global Clock	1.17	1.48	1.37	1.74	ns	
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock					ns	
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock					ns	
t _{RCKSW}	Maximum Skew for Global Clock		0.32		0.37	ns	
F _{RMAX}	Maximum Frequency for Global Clock					MHz	

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

3 – Pin Descriptions and Packaging

Supply Pins

GND

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

vcc

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V for A3P250 and A3P100 devices and 1.2 V or 1.5 V for A3PE600L and A3PE3000L devices. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

For A3PE600L and A3PE3000L devices, VCC can be switched dynamically from 1.2 V to 1.5 V or vice versa. This allows in-system programming (ISP) when VCC is at 1.5 V and the benefit of low power operation when VCC is at 1.2 V.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within each I/O bank, the VMV and VCCI are connected to each other to improve the ESD discharge path for any I/O pin against its VMV pin. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2 V (A3PE600L and A3PE3000L only), 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V or 1.2 V, depending on the device.

- 1.5 V for A3P250 and A3P1000 devices
- 1.2 V or 1.5 V for A3PE600L or A3PE3000L devices

When the PLLs are not used, the Microsemi Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *Miliary ProASIC3/EL Device Family User's Guide* for a complete board solution for the PLL analog power supply and ground.

- There is one VCCPLF pin on A3P250 and A3P1000 devices.
- There are six VCCPLX pins on A3PE600L and A3PE3000L devices.

PQ208

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/products/fpga-soc/solutions.

Military ProASIC3/EL Low Power Flash FPGAs

PQ208			PQ208		PQ208
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
109	TRST	145	IO84PDB1	181	IO33RSB0
110	VJTAG	146	IO82NDB1	182	IO31RSB0
111	GDA0/IO113NDB1	147	IO82PDB1	183	IO29RSB0
112	GDA1/IO113PDB1	148	IO80NDB1	184	IO27RSB0
113	GDB0/IO112NDB1	149	GBC2/IO80PDB1	185	IO25RSB0
114	GDB1/IO112PDB1	150	IO79NDB1	186	VCCIB0
115	GDC0/IO111NDB1	151	GBB2/IO79PDB1	187	VCC
116	GDC1/IO111PDB1	152	IO78NDB1	188	IO22RSB0
117	IO109NDB1	153	GBA2/IO78PDB1	189	IO20RSB0
118	IO109PDB1	154	VMV1	190	IO18RSB0
119	IO106NDB1	155	GNDQ	191	IO16RSB0
120	IO106PDB1	156	GND	192	IO15RSB0
121	IO104PSB1	157	VMV0	193	IO14RSB0
122	GND	158	GBA1/IO77RSB0	194	IO13RSB0
123	VCCIB1	159	GBA0/IO76RSB0	195	GND
124	IO99NDB1	160	GBB1/IO75RSB0	196	IO12RSB0
125	IO99PDB1	161	GBB0/IO74RSB0	197	IO11RSB0
126	NC	162	GND	198	IO10RSB0
127	IO96NDB1	163	GBC1/IO73RSB0	199	IO09RSB0
128	GCC2/IO96PDB1	164	GBC0/IO72RSB0	200	VCCIB0
129	GCB2/IO95PSB1	165	IO70RSB0	201	GAC1/IO05RSB0
130	GND	166	IO67RSB0	202	GAC0/IO04RSB0
131	GCA2/IO94PSB1	167	IO63RSB0	203	GAB1/IO03RSB0
132	GCA1/IO93PDB1	168	IO60RSB0	204	GAB0/IO02RSB0
133	GCA0/IO93NDB1	169	IO57RSB0	205	GAA1/IO01RSB0
134	GCB0/IO92NDB1	170	VCCIB0	206	GAA0/IO00RSB0
135	GCB1/IO92PDB1	171	VCC	207	GNDQ
136	GCC0/IO91NDB1	172	IO54RSB0	208	VMV0
137	GCC1/IO91PDB1	173	IO51RSB0		
138	IO88NDB1	174	IO48RSB0		
139	IO88PDB1	175	IO45RSB0		
140	VCCIB1	176	IO42RSB0		
141	GND	177	IO40RSB0		
142	VCC	178	GND		
143	IO86PSB1	179	IO38RSB0		
144	IO84NDB1	180	IO35RSB0		

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/products/fpga-soc/solutions.

Military ProASIC3/EL Low Power Flash FPGAs

FG484			FG484	FG484			
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function		
A1	GND	B14	IO58RSB0	D5	GAA0/IO00RSB0		
A2	GND	B15	IO63RSB0	D6	GAA1/IO01RSB0		
A3	VCCIB0	B16	IO66RSB0	D7	GAB0/IO02RSB0		
A4	IO07RSB0	B17	IO68RSB0	D8	IO16RSB0		
A5	IO09RSB0	B18	IO70RSB0	D9	IO22RSB0		
A6	IO13RSB0	B19	NC	D10	IO28RSB0		
A7	IO18RSB0	B20	NC	D11	IO35RSB0		
A8	IO20RSB0	B21	VCCIB1	D12	IO45RSB0		
A9	IO26RSB0	B22	GND	D13	IO50RSB0		
A10	IO32RSB0	C1	VCCIB3	D14	IO55RSB0		
A11	IO40RSB0	C2	IO220PDB3	D15	IO61RSB0		
A12	IO41RSB0	C3	NC	D16	GBB1/IO75RSB0		
A13	IO53RSB0	C4	NC	D17	GBA0/IO76RSB0		
A14	IO59RSB0	C5	GND	D18	GBA1/IO77RSB0		
A15	IO64RSB0	C6	IO10RSB0	D19	GND		
A16	IO65RSB0	C7	IO14RSB0	D20	NC		
A17	IO67RSB0	C8	VCC	D21	NC		
A18	IO69RSB0	C9	VCC	D22	NC		
A19	NC	C10	IO30RSB0	E1	IO219NDB3		
A20	VCCIB0	C11	IO37RSB0	E2	NC		
A21	GND	C12	IO43RSB0	E3	GND		
A22	GND	C13	NC	E4	GAB2/IO224PDB3		
B1	GND	C14	VCC	E5	GAA2/IO225PDB3		
B2	VCCIB3	C15	VCC	E6	GNDQ		
B3	NC	C16	NC	E7	GAB1/IO03RSB0		
B4	IO06RSB0	C17	NC	E8	IO17RSB0		
B5	IO08RSB0	C18	GND	E9	IO21RSB0		
B6	IO12RSB0	C19	NC	E10	IO27RSB0		
B7	IO15RSB0	C20	NC	E11	IO34RSB0		
B8	IO19RSB0	C21	NC	E12	IO44RSB0		
B9	IO24RSB0	C22	VCCIB1	E13	IO51RSB0		
B10	IO31RSB0	D1	IO219PDB3	E14	IO57RSB0		
B11	IO39RSB0	D2	IO220NDB3	E15	GBC1/IO73RSB0		
B12	IO48RSB0	D3	NC	E16	GBB0/IO74RSB0		
B13	IO54RSB0	D4	GND	E17	IO71RSB0		

Package Pin Assignments

FG896					
Pin Number	A3PE3000L Function				
M14	GND				
M15	GND				
M16	GND				
M17	GND				
M18	GND				
M19	GND				
M20	VCC				
M21	VCCIB2				
M22	NC				
M23	IO104PPB2V2				
M24	IO102PDB2V2				
M25	IO102NDB2V2				
M26	IO95PDB2V1				
M27	IO97NDB2V1				
M28	IO101NDB2V2				
M29	IO103NDB2V2				
M30	IO119PDB3V0				
N1	IO276PDB7V0				
N2	IO278PDB7V0				
N3	IO280PDB7V0				
N4	IO284PDB7V1				
N5	IO279PDB7V0				
N6	IO285NDB7V1				
N7	IO287NDB7V1				
N8	IO281NDB7V0				
N9	IO281PDB7V0				
N10	VCCIB7				
N11	VCC				
N12	GND				
N13	GND				
N14	GND				
N15	GND				
N16	GND				
N17	GND				
N18	GND				
N19	GND				

Package Pin Assignments

FG896					
Pin Number	A3PE3000L Function				
P26	IO111NPB2V3				
P27	IO105PDB2V2				
P28	IO105NDB2V2				
P29	GCC2/IO117PDB3V0				
P30	IO117NDB3V0				
R1	GFC2/IO270PDB6V4				
R2	GFB1/IO274PPB7V0				
R3	VCOMPLF				
R4	GFA0/IO273NDB6V4				
R5	GFB0/IO274NPB7V0				
R6	IO271NDB6V4				
R7	GFB2/IO271PDB6V4				
R8	IO269PDB6V4				
R9	IO269NDB6V4				
R10	VCCIB7				
R11	VCC				
R12	GND				
R13	GND				
R14	GND				
R15	GND				
R16	GND				
R17	GND				
R18	GND				
R19	GND				
R20	VCC				
R21	VCCIB2				
R22	GCC0/IO112NDB2V3				
R23	GCB2/IO116PDB3V0				
R24	IO118PDB3V0				
R25	IO111PPB2V3				
R26	IO122PPB3V1				
R27	GCA0/IO114NPB3V0				
R28	VCOMPLC				
R29	GCB1/IO113PPB2V3				
R30	IO115NPB3V0				
T1	IO270NDB6V4				