

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	147456
Number of I/O	177
Number of Gates	1000000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p1000-fg256m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

					θ _{ja}		
Package Type	Device	Pin Count	θ_{jc}	Still Air	200 ft./min.	500 ft./min.	Units
Very Thin Quad Flat Pack (VQ100)	A3P250	100	10.0	35.3	29.4	27.1	C/W
Plastic Quad Flat Pack (PQ208)*	A3P1000	208	3.8	16.2	13.3	11.9	C/W
Fine Pitch Ball Grid Array (FBGA)	A3P1000	144	6.3	31.6	26.2	24.2	C/W
	A3P1000	256	6.6	28.1	24.4	22.7	C/W
	A3P1000	484	8.0	23.3	19.0	16.7	C/W
	A3PE600L	484	9.5	27.5	21.9	20.2	C/W
	A3PE3000L	484	4.7	20.6	15.7	14.0	C/W
	A3PE3000L	896	2.4	13.6	10.4	9.4	C/W

Table 2-5 • Package Thermal Resistivities

* Embedded heatspreader

Temperature and Voltage Derating Factors

Table 2-6 •Temperature and Voltage Derating Factors for Timing Delays
(normalized to $T_J = 125^{\circ}C$, VCC = 1.14 V)
Applicable to A3PE600L and A3PE3000L Only

	Junction Temperature								
Array Voltage VCC (V)	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C		
1.14	0.85	0.86	0.89	0.92	0.96	0.97	1.00		
1.2	0.82	0.83	0.86	0.88	0.92	0.93	0.96		
1.26	0.79	0.80	0.83	0.85	0.89	0.90	0.93		
1.30	0.77	0.78	0.81	0.83	0.86	0.88	0.90		
1.35	0.74	0.75	0.78	0.80	0.84	0.85	0.88		
1.40	0.72	0.73	0.75	0.77	0.81	0.82	0.85		
1.425	0.71	0.71	0.74	0.76	0.79	0.80	0.83		
1.5	0.67	0.68	0.70	0.72	0.75	0.76	0.79		
1.575	0.65	0.66	0.68	0.70	0.73	0.74	0.76		

Table 2-7 •Temperature and Voltage Derating Factors for Timing Delays
(normalized to T_J = 125°C, VCC = 1.425 V)
Applicable to A3P250 and A3P1000 Devices Only

		Junction Temperature							
Array Voltage VCC (V)	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C		
1.425	0.80	0.82	0.87	0.89	0.94	0.96	1.00		
1.5	0.76	0.78	0.82	0.84	0.89	0.91	0.95		
1.575	0.73	0.75	0.79	0.82	0.86	0.87	0.91		

Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Table 2-18 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings ¹ Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC7 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	-	141.97
3.3 V LVCMOS Wide Range	5	3.3	_	141.97
2.5 V LVCMOS	5	2.5	-	79.98
1.8 V LVCMOS	5	1.8	-	52.26
1.5 V LVCMOS (JESD8-11)	5	1.5	-	35.62
3.3 V PCI	10	3.3	-	201.02
3.3 V PCI-X	10	3.3	-	201.02
Differential				
LVDS	_	2.5	7.74	89.82
LVPECL	_	3.3	19.54	167.55

Notes:

1. Dynamic Power consumption is given for software default drive strength and output slew. Output load is lower than the software default.

2. PDC7 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCCI.

Table 2-19 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC7 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended		-		
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	-	125.97
3.3 V LVCMOS – Wide Range	5	3.3	-	125.97
2.5 V LVCMOS	5	2.5	-	70.82
1.8 V LVCMOS	5	1.8	_	36.39
1.5 V LVCMOS (JESD8-11)	5	1.5	_	25.34
3.3 V PCI	10	3.3	-	184.92
3.3 V PCI-X	10	3.3	_	184.92

Notes:

1. Dynamic Power consumption is given for software default drive strength and output slew. Output load is lower than the software default.

2. PDC7 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCCI.

Overview of I/O Performance

Summary of I/O DC Input and Output Levels – Default I/O Software Settings

Table 2-25 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Military Conditions—Software Default Settings Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

		Equiv.			VIL	VIH		VOL	VOH	l _{OL} ²	l _{OH} 2
I/O Standard	Drive Strength	Software Default Drive Strength Option ¹		Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range ^{1,3}	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	12	12
1.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12
1.2 V LVCMOS ^{4,5}	2 mA	2 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2
1.2 V LVCMOS Wide Range ^{1,4,5}	100 µA	2 mA	High	-0.3	0.3 * VCCI	0.7 * VCCI	3.6	0.1	VCCI – 0.1	0.1	0.1
3.3 V PCI					Per F	CI Specificati	ion				
3.3 V PCI-X					Per P0	CI-X Specifica	ition				
3.3 V GTL	20 mA ⁶	20 mA	High	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20
2.5 V GTL	20 mA ⁶	20 mA	High	-0.3	VREF-0.05	VREF + 0.05	3.6	0.4	-	20	20
3.3 V GTL+	35 mA	35 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	35	35
2.5 V GTL+	33 mA	33 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	33	33
HSTL (I)	8 mA	8 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	8	8
HSTL (II)	15 mA ⁶	15 mA ⁶	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	15	15
SSTL2 (I)	15 mA	15 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI-0.62	15	15
SSTL2 (II)	18 mA	18 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI-0.43	18	18
SSTL3 (I)	14 mA	14 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14
SSTL3 (II)	21 mA	21 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI – 0.9	21	21

Notes:

 Note that 1.2 V LVCMOS and 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will not operate at the equivalent software default drive strength These values are for normal ranges only.

2. Currents are measured at 125°C junction temperature.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

4. Applicable to A3PE600L and A3PE3000L devices operating at VCCI \geq VCC.

5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.

6. Output drive strength is below JEDEC specification.

7. Output slew rate can be extracted using the IBIS Models.

Table 2-26 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Military Conditions—Software Default Settings

		Equiv.			VIL	VIH		VOL	VOH	l _{OL} ²	I _{OH} ²
I/O Standard	Drive Strength	Software Default Drive Strength Option ¹		Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range ^{1,3}	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	12	12
1.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	12	12
3.3 V PCI	Per PCI specifications										
3.3 V PCI-X		Per PCI-X specifications									

Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only

Notes:

1. Note that 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only.

2. Currents are measured at 125°C junction temperature.

3. Output slew rate can be extracted using the IBIS Models.

4. Output drive strength is below JEDEC specification.

5. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Military Conditions—Software Default Settings

Applicable to	Standard Plus	I/O Banks for	A3P250 and A3P10	00 Only

		Equiv.			VIL	VIH		VOL	VOH	l _{OL} ²	I _{OH} ²
I/O Standard	Drive Strength	Software Default Drive Strength Option ¹		Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range ^{1,3}	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	12	12
1.8 V LVCMOS	8 mA	8 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	8	8
1.5 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4
3.3 V PCI		Per PCI specifications									
3.3 V PCI-X					Per PC	CI-X specifica	tions				

Notes:

1. Note that 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only.

2. Currents are measured at 125°C junction temperature.

3. Output slew rate can be extracted using the IBIS Models.

4. Output drive strength is below JEDEC specification.

5. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

	Drive Strength	I _{OSL} (mA)*	I _{OSH} (mA)*
3.3 V LVTTL / 3.3V LVCMOS	2mA	25	27
	4mA	25	27
	6mA	51	54
	8mA	51	54
	12mA	103	109
	16mA	103	109
3.3 V LVCMOS Wide Range	100 µA	Same specification as	regular LVCMOS 3.3 V
2.5 V LVCMOS	2mA	16	18
	4mA	16	18
	6mA	32	37
	8mA	32	37
	12mA	65	74
1.8 V LVCMOS	2mA	9	11
	4mA	17	22
	6mA	35	44
	8mA	35	44
1.5V LVCMOS	2mA	13	16
	4mA	25	33
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	103	109

Table 2-42 • I/O Short Currents IOSH/IOSL Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only

Note: $^{*}T_{J} = 100^{\circ}C$

Table 2-43 • Schmitt Trigger Input Hysteresis, Hysteresis Voltage Value (typical) for Schmitt Mode Input Buffers Applicable to A3PE600L and A3PE3000L Only

Input Buffer Configuration	Hysteresis Value (typical)
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)	240 mV
2.5 V LVCMOS (Schmitt trigger mode)	140 mV
1.8 V LVCMOS (Schmitt trigger mode)	80 mV
1.5 V LVCMOS (Schmitt trigger mode)	60 mV
1.2 V LVCMOS (Schmitt trigger mode)	40 mV

The length of time an I/O can withstand I_{OSH}/I_{OSL} events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis.

🌜 Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

1.5 V DC Core Voltage

Table 2-64 • 3.3 V LVCMOS Wide Range Low Slew

Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{zL}	t _{zн}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
100 µA	4 mA	Std.	0.61	8.94	0.04	1.90	2.87	0.40	8.92	7.06	3.69	3.20	10.39	8.53	ns
		-1	0.52	7.61	0.03	1.61	2.44	0.34	7.59	6.01	3.14	2.72	8.84	7.25	ns
100 µA	8 mA	Std.	0.61	7.24	0.04	1.90	2.87	0.40	7.22	5.99	4.23	4.15	8.68	7.45	ns
		-1	0.52	6.16	003	1.61	2.44	0.34	6.14	5.10	3.60	3.53	7.39	6.34	ns
100 µA	12 mA	Std.	0.61	6.03	0.04	1.90	2.87	0.40	6.01	5.19	4.58	4.74	7.47	6.65	ns
		-1	0.52	5.13	0.03	1.61	2.44	0.34	5.11	4.41	3.89	4.03	6.36	5.66	ns
100 µA	16 mA	Std.	0.61	5.68	0.04	1.90	2.87	0.40	5.66	5.01	4.65	4.91	7.13	6.47	ns
		-1	0.52	4.83	0.03	1.61	2.44	0.34	4.82	4.26	3.95	4.18	6.06	5.51	ns
100 µA	24 mA	Std.	0.61	5.50	0.04	1.90	2.87	0.40	5.48	5.03	4.74	5.53	6.95	6.49	ns
		-1	0.52	4.68	0.03	1.61	2.44	0.34	4.66	4.28	4.04	4.70	5.91	5.52	ns

Notes:

1. Note that 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges ONLY.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-65 • 3.3 V LVCMOS Wide Range High Slew

Military-Case Conditions: $T_J = 125^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only

Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
100 µA	4 mA	Std.	0.61	4.86	0.04	1.90	2.87	0.40	4.84	3.65	3.69	3.43	6.31	5.12	ns
		–1	0.52	4.14	0.03	1.61	2.44	0.34	4.12	3.11	3.14	2.91	5.37	4.35	ns
100 µA	8 mA	Std.	0.61	3.93	0.04	1.90	2.87	0.40	3.91	2.87	4.23	4.38	5.37	4.33	ns
		–1	0.52	3.34	0.03	1.61	2.44	0.34	3.33	2.44	3.60	3.72	4.57	3.68	ns
100 µA	12 mA	Std.	0.61	3.40	0.04	1.90	2.87	0.40	3.38	2.49	4.58	4.99	4.85	3.95	ns
		–1	0.52	2.89	0.03	1.61	2.44	0.34	2.88	2.12	3.89	4.25	4.12	3.36	ns
100 µA	16 mA	Std.	0.61	3.31	0.04	1.90	2.87	0.40	3.29	2.42	4.66	5.16	4.76	3.89	ns
		–1	0.52	2.82	0.03	1.61	2.44	0.34	2.80	2.06	3.96	4.39	4.05	3.31	ns
100 µA	24 mA	Std.	0.61	3.35	0.04	1.90	2.87	0.40	3.33	2.32	4.76	5.78	4.80	3.79	ns
		–1	0.52	2.85	0.03	1.61	2.44	0.34	2.83	1.98	4.05	4.92	4.08	3.22	ns

Notes:

1. Note that 3.3 V LVCMOS wide range is applicable to 100 μ A drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Table 2-80 • 2.5 V LVCMOS Low Slew Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.63	6.45	0.05	1.43	0.45	6.56	5.71	2.48	2.19	9.02	8.17	ns
	-1	0.54	5.48	0.04	1.21	0.39	5.58	4.86	2.11	1.86	7.68	6.95	ns
6 mA	Std.	0.63	5.28	0.05	1.43	0.45	5.38	4.92	2.85	2.88	7.84	7.38	ns
	-1	0.54	4.50	0.04	1.21	0.39	4.58	4.19	2.42	2.45	6.67	6.28	ns
8 mA	Std.	0.63	5.28	0.05	1.43	0.45	5.38	4.92	2.85	2.88	7.84	7.38	ns
	-1	0.54	4.50	0.04	1.21	0.39	4.58	4.19	2.42	2.45	6.67	6.28	ns
12 mA	Std.	0.63	4.48	0.05	1.43	0.45	4.56	4.35	3.11	3.31	7.02	6.81	ns
	-1	0.54	3.81	0.04	1.21	0.39	3.88	3.70	2.65	2.82	5.97	5.79	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-81 • 2.5 V LVCMOS High Slew

Military-Case Conditions: T _J = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.63	3.18	0.05	1.43	0.45	3.23	2.92	2.48	2.28	5.69	5.38	ns
	-1	0.54	2.70	0.04	1.21	0.39	2.75	2.48	2.11	1.94	4.84	4.58	ns
6 mA	Std.	0.63	2.57	0.05	1.43	0.45	2.62	2.24	2.84	2.98	5.08	4.70	ns
	-1	0.54	2.19	0.04	1.21	0.39	2.23	1.90	2.42	2.54	4.32	4.00	ns
8 mA	Std.	0.63	2.57	0.05	1.43	0.45	2.62	2.24	2.84	2.98	5.08	4.70	ns
	-1	0.54	2.19	0.04	1.21	0.39	2.23	1.90	2.42	2.54	4.32	4.00	ns
12 mA	Std.	0.63	2.28	0.05	1.43	0.45	2.32	1.90	3.11	3.42	4.78	4.36	ns
	-1	0.54	1.94	0.04	1.21	0.39	1.97	1.62	2.64	2.91	4.07	3.71	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

static Microsemi.

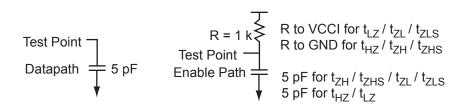
Military ProASIC3/EL DC and Switching Characteristics

 Table 2-96 • Minimum and Maximum DC Input and Output Levels

 Applicable to Standard Plus I/O Banks

1.5 V LVCMOS		VIL	VIH		VOL VOH		I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 1	I _{IH} 2
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	13	16	15	15
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	25	33	15	15

Notes:


1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

 I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-11 • AC Loading

Table 2-97 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (Typ) (V)	C _{LOAD} (pF)
0	1.5	0.75	-	5

Note: *Measuring point = $V_{trip.}$ See Table 2-29 on page 2-25 for a complete table of trip points.

Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Table 2-104 • 1.5 V LVCMOS Low SlewMilitary-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 VApplicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.63	8.94	0.05	1.43	0.45	9.11	7.80	2.99	2.67	11.57	10.26	ns
	-1	0.54	7.61	0.04	1.21	0.39	7.75	6.64	2.54	2.27	9.84	8.73	ns
4 mA	Std.	0.63	7.68	0.05	1.43	0.45	7.83	6.91	3.34	3.30	10.29	9.37	ns
	-1	0.54	6.54	0.04	1.21	0.39	6.66	5.88	2.84	2.80	8.75	7.97	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-105 • 1.5 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.63	3.55	0.05	1.56	0.45	3.61	3.22	2.98	2.80	6.07	5.68	ns
	-1	0.54	3.02	0.04	1.33	0.39	3.07	2.74	2.54	2.39	5.16	4.83	ns
4 mA	Std.	0.63	3.09	0.05	1.56	0.45	3.14	2.62	3.34	3.44	5.60	5.08	ns
	-1	0.54	2.62	0.04	1.33	0.39	2.67	2.23	2.84	2.93	4.77	4.32	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

🌜 Microsemi.

Military ProASIC3/EL DC and Switching Characteristics

Timing Characteristics

Table 2-112 • 1.2 V LVCMOS Wide Range Low Slew

Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
100 µA	Std.	0.80	12.61	0.05	2.65	3.75	0.52	12.10	9.50	5.11	4.66	14.31	11.71	ns
	-1	0.68	10.72	0.05	2.25	3.19	0.44	10.30	8.08	4.35	3.97	12.17	9.96	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-113 • 1.2 V LVCMOS Wide Range High Slew

Military-Case Conditions: $T_J = 125^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Unit s
100 µA	Std.	0.80	5.16	0.05	2.65	3.75	0.52	4.98	4.39	5.10	4.81	7.19	6.60	ns
	-1	0.68	4.39	0.05	2.25	3.19	0.44	4.24	3.74	4.34	4.09	6.11	5.61	ns

Notes:

1. Software default selection highlighted in gray.

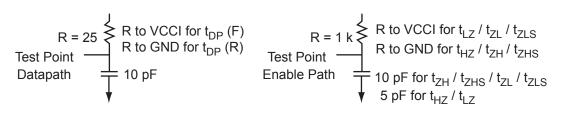
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

3.3 V PCI/PCI-X	V	ΊL	V	ΊH	VOL	VOH	I_{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} ¹	I _{IH} ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Per PCI specification		Per PCI curves							15	15		

Notes:


1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the database; Microsemi loadings for enable path characterization are described in Figure 2-14.

Figure 2-14 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-115.

Table 2-115 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (Typ) (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for t _{DP(R)}		10
		0.615 * VCCI for t _{DP(F)}		

Note: *Measuring point = $V_{trip.}$ See Table 2-29 on page 2-25 for a complete table of trip points.

Table 2-151 • SSTL2 Class II

Military-Case Conditions: $T_J = 125^{\circ}C$, VCC = 1.425 V, Worst-Case VCCI = 2.3 V, VREF = 1.25 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

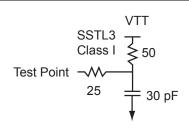
Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.61	2.02	0.04	1.85	0.40	2.03	1.64	-	-	2.03	1.64	ns
-1	0.52	1.72	0.03	1.58	0.34	1.73	1.39	-	1	1.73	1.39	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

SSTL3 Class I

Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Military ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL3 Class I		VIL	V _{IH}		VOL	VOH	I_{OL}	I _{OH}	I _{OSL}	I _{OSH}	կլ¹	I _{IH} ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
14 mA	-0.3	VREF - 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14	51	54	15	15


Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. II_H is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

Figure 2-23 • AC Loading

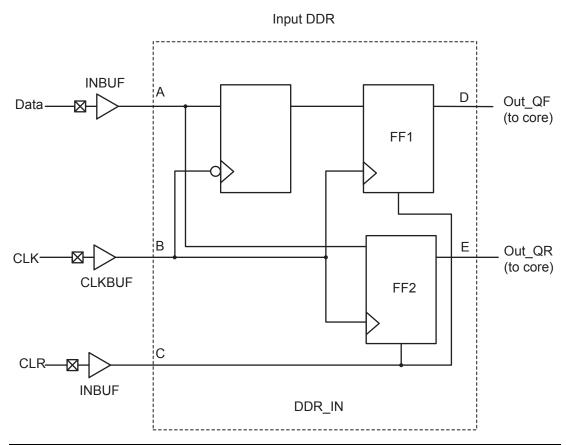
Table 2-153 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.5	1.5	1.485	30

Note: *Measuring point = V_{trip} . See Table 2-29 on page 2-25 for a complete table of trip points.

Timing Characteristics

Table 2-154 • SSTL3 Class I


Military-Case Conditions: $T_J = 125^{\circ}C$, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V, VREF = 1.5 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.80	2.29	0.05	2.00	0.52	2.32	1.82	-	1	2.32	1.82	ns
-1	0.68	1.95	0.05	1.71	0.44	1.98	1.55	_	_	1.98	1.55	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

DDR Module Specifications

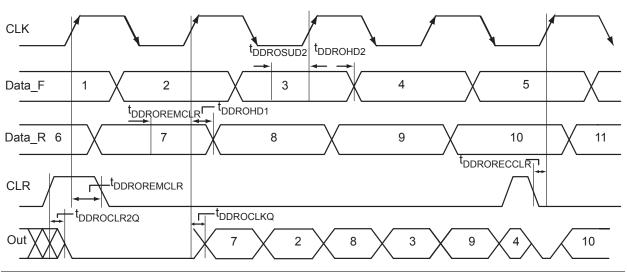

Input DDR Module

Figure 2-33 • Input DDR Timing Model

Table 2-181 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDRICLKQ1}	Clock-to-Out Out_QR	B, D
t _{DDRICLKQ2}	Clock-to-Out Out_QF	B, E
t _{DDRISUD}	Data Setup Time of DDR input	A, B
t _{DDRIHD}	Data Hold Time of DDR input	А, В
t _{DDRICLR2Q1}	Clear-to-Out Out_QR	C, D
t _{DDRICLR2Q2}	Clear-to-Out Out_QF	C, E
t _{DDRIREMCLR}	Clear Removal	С, В
t _{DDRIRECCLR}	Clear Recovery	С, В

Eiguro	2-36 .	Output	סחח	Timina	Diagram	
riyure	2-30 -	Output	DDK	ruuuy	Diagraili	

Timing Characteristics

Table 2-186 • Output DDR Propagation DelaysMilitary-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L

Parameter	Description	-1	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	0.97	1.14	ns
t _{DDRISUD1}	Data_F Data Setup for Output DDR	0.52	0.62	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.52	0.62	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	1.11	1.30	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.31	0.36	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	0.22	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width HIGH for the Output DDR	0.31	0.36	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width LOW for the Output DDR	0.28	0.32	ns
F _{DDROMAX}	Maximum Frequency for the Output DDR	160	160	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-123. Table 2-195 to Table 2-198 on page 2-121 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Timing Characteristics

1.2 V DC Core Voltage

Table 2-195 • A3PE600L Global Resource Military-Case Conditions: T_J = 125°C, VCC = 1.14 V

		-	-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input LOW Delay for Global Clock	0.95	1.23	1.12	1.44	ns
t _{RCKH}	Input HIGH Delay for Global Clock	0.94	1.26	1.10	1.48	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock					ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock					ns
t _{RCKSW}	Maximum Skew for Global Clock		0.32		0.38	ns
F _{RMAX}	Maximum Frequency for Global Clock					MHz
' RMAX						

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-196 • A3PE3000L Global Resource Military-Case Conditions: T_J = 125°C, VCC = 1.14 V

		-	-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input LOW Delay for Global Clock	1.81	2.09	2.13	2.42	ns
t _{RCKH}	Input HIGH Delay for Global Clock	1.80	2.13	2.12	2.45	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock					ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock					ns
t _{RCKSW}	Maximum Skew for Global Clock		0.32		0.38	ns
F _{RMAX}	Maximum Frequency for Global Clock					MHz

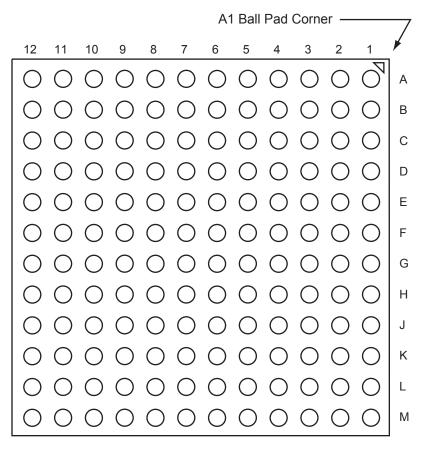
Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

^{2.} Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

^{3.} For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

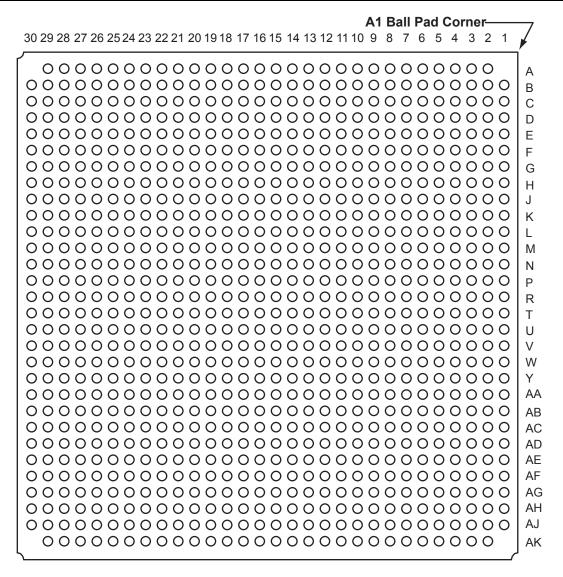
Table 2-205 • RAM4K9


Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000

Parameter	Description	-1	Std.	Units
t _{AS}	Address setup time	0.30	0.35	ns
t _{AH}	Address hold time	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.17	0.20	ns
t _{ENH}	REN, WEN hold time	0.12	0.14	ns
t _{BKS}	BLK setup time	0.28	0.33	ns
t _{BKH}	BLK hold time	0.02	0.03	ns
t _{DS}	Input data (DIN) setup time	0.22	0.26	ns
t _{DH}	Input data (DIN) hold time	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	2.84	2.53	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	2.15	3.33	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	1.08	1.27	ns
t _{C2CWWL}	Address collision clk-to-clk delay for reliable write after write on same address – applicable to closing edge	0.28	0.33	ns
t _{C2CWWH}	Address collision clk-to-clk delay for reliable write after write on same address – applicable to rising edge	0.26	0.30	ns
t _{C2CRWH}	Address collision clk-to-clk delay for reliable read access after write on same address – applicable to opening edge	0.38	0.45	ns
t _{C2CWRH}	Address collision clk-to-clk delay for reliable write access after read on same address – applicable to opening edge	0.42	0.49	ns
t _{rstbq}	RESET Low to data out Low on DOUT (flow-through)	1.11	1.31	ns
	RESET Low to data out Low on DOUT (pipelined)	1.11	1.31	ns
t _{REMRSTB}	RESET removal	0.34	0.40	ns
t _{RECRSTB}	RESET recovery	1.81	2.12	ns
t _{MPWRSTB}	RESET minimum pulse width	0.26	0.30	ns
t _{CYC}	Clock cycle time	3.89	4.57	ns
F _{MAX}	Maximum frequency	257	219	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

FG144



Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/products/fpga-soc/solutions.

Note: This is the bottom view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/products/fpga-soc/solutions.

Revision	Changes	Page
Revision 1	The "Quiescent Supply Current " section was updated.	2-7
(continued)	Table 2-8 • Power Supply State Per Mode is new (SAR 24882, 24112, 32549).	
	New values were added to the following tables (SAR 30619):	
	Table 2-9 • Quiescent Supply Current (IDD) Characteristics, Flash*Freeze Mode*	
	Table 2-11 • Quiescent Supply Current (IDD) Characteristics, Shutdown Mode*	
	Table 2-12 • Quiescent Supply Current (IDD), Static Mode and Active Mode ¹ (the name of this table changed from "No Flash*Freeze Mode" to "Static Mode and Active Mode" per SAR 32549)	
	Table 2-13 • Quiescent Supply Current (IDD) Characteristics for A3P250 and A3P1000	
	The military maximum current for A3P1000 was revised in the following table (SAR 30620):	
	Table 2-13 • Quiescent Supply Current (IDD) Characteristics for A3P250 and A3P1000	
	All timing and power tables were updated to reflect changes in the software resulting from characterization and bug fixes (SAR 32394).	2-9 to 2-146
	In the following tables for A3P250 and A3P1000, the note regarding dynamic power was revised to, "Dynamic Power consumption is given for software default drive strength and output slew. Output load is lower than the software default" (SAR 32449).	2-12
	Table 2-18 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings $^{\rm 1}$	
	Table 2-19 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings	
	Values for A3PE600L and A3P250 were added to Table 2-21 • Different Components Contributing to Dynamic Power Consumption in Military ProASIC3 and ProASIC3/EL Devices at 1.5 V VCC. Values in the table, and in Table 2-20 • Different Components Contributing to Dynamic Power Consumption in Military ProASIC3/EL Devices Operating at 1.2 V VCC, were updated were updated to reflect changes in the software resulting from characterization and bug fixes (SAR 30528).	2-14
	Table 2-22 • Different Components Contributing to the Static Power Consumption in Military ProASIC3/EL Devices and the "Total Static Power Consumption— P_{STAT} " calculation were updated to add PDC0 (SAR 32549).	2-14, 2-15
	The "Timing Model" was updated (SAR 29793).	2-18
	The title of Table 2-29 • Summary of AC Measuring Points was changed from "Summary of AC Memory Points" (SAR 32446).	2-25
	The following note was added to Table 2-31, and Table 2-32, Summary of I/O Timing Characteristics (SAR 32449):	2-26
	"Output delays provided in this table were extracted with an output load indicated in the Capacitive Load column. For a specific output load, refer to Designer software."	
	Resistances and short circuit currents were updated (SARs 29793, 31717):	2-30 to
	Table 2-36 • I/O Output Buffer Maximum Resistances ¹ Applicable to Pro I/Os for A3PE600L and A3PE3000L Only	2-33
	Table 2-40 • I/O Short Currents IOSH/IOSL Applicable to Pro I/Os for A3PE600L and A3PE3000L Only (SAR 31717)	
	Tables for Pro I/Os in the "Single-Ended I/O Characteristics" section (SAR 31717).	

Datasheet Information

Revision	Changes	Page
Revision 1 (continued)	The drive strength was changed from 25 mA to 20 mA for 3.3 V and 2.5 V GTL (SAR 31978). This affects the following tables:	
	Table 2-25 • Summary of Maximum and Minimum DC Input and Output Levels	2-22
	Table 2-31 • Summary of I/O Timing Characteristics—Software Default Settings (SAR	2-26
	32394)	2-27
	Table 2-32 • Summary of I/O Timing Characteristics—Software Default Settings	2-30
	Table 2-36 • I/O Output Buffer Maximum Resistances ¹ Applicable to Pro I/Os for A3PE600L and A3PE3000L Only	2-33
	Table 2-40 • I/O Short Currents IOSH/IOSL Applicable to Pro I/Os for A3PE600L and A3PE3000L Only	2-73
	Table 2-120 • Minimum and Maximum DC Input and Output Levels	2-75
	Table 2-124 • Minimum and Maximum DC Input and Output Levels	
	The values in Table 2-39 • I/O Weak Pull-Up/Pull-Down Resistances were revised (SAR 29793, 28061).	2-32
	The AC Loading diagrams in the "Single-Ended I/O Characteristics" section were updated to match summary of I/O timing tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 32449).	2-37
	The tables in the "Voltage-Referenced I/O Characteristics" section and "Differential I/O	2-73
	Characteristics" section were updated with current values (SARs 29793, 32391, 32394).	2-85
	Two note references were added to Table 2-160 • Minimum and Maximum DC Input and Output Levels to clarify the following notes: $\pm 5\%$ [VCCI] and differential input voltage = ± 350 mV [VDIFF] (SAR 29428).	2-86
	The "Global Tree Timing Characteristics" section was updated.	2-120
	Table 2-199 • A3P250 Global Resource is new (SAR 30526).	
	Available values were added or revised in the following tables (SAR 30698):	
	Table 2-195 • A3PE600L Global Resource	
	Table 2-200 • A3P1000 Global Resource	
	Table 2-197 • A3PE600L Global Resource	
	Table 2-201 • Military ProASIC3/EL CCC/PLL Specification and Table 2-202 • Military ProASIC3/EL CCC/PLL Specification were updated with current values (SAR 32521).	2-123
	The following figures were removed (SAR 29991):	N/A
	Figure 2-49 • Write Access after Write onto Same Address	
	Figure 2-50 • Read Access after Write onto Same Address	
	Figure 2-51 • Write Access after Read onto Same Address	
	The naming of the address collision parameters in the SRAM "Timing Characteristics" section was changed, and values were updated accordingly (SAR 29991).	2-129
	The values for t_{CKQ1} in Table 2-203 • RAM4K9, Table 2-204 • RAM4K9, and Table 2-205 • RAM4K9 were reversed with respect to WMODE and have been corrected (SAR 32343).	2-129, 2-130, 2-131
	Table 2-212 • FIFO through Table 2-216 • FIFO are new (SAR 32394).	2-141, 2-145
	Tables in the "Embedded FlashROM Characteristics" section were updated (SAR 32392).	2-146
	The "Pin Descriptions and Packaging" chapter was added (SAR 21642).	3-1
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	4-1