

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	147456
Number of I/O	154
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3p1000-1pq208m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

 JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup behavior. Power ramp-up should be monotonic, at least until VCC and VCCPLX exceed brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-1 and Figure 2-2 on page 2-5 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V ± 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/Down Behavior of Low-Power Flash Devices" chapter of the *Military ProASIC3/EL FPGA Fabric User's Guide* for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers

Output buffers, after 200 ns delay from input buffer activation.

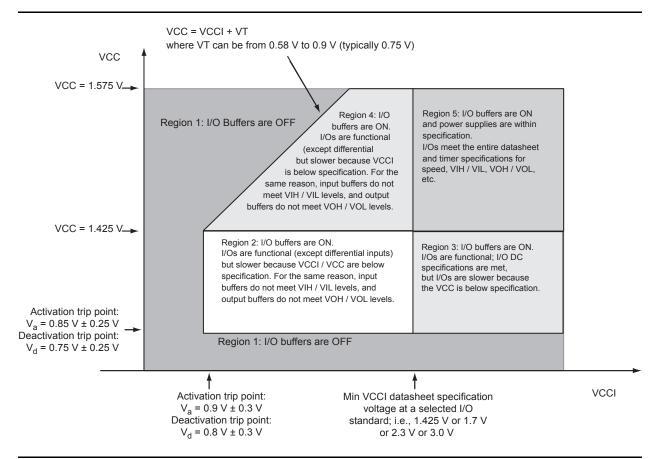


Figure 2-1 • Devices Operating at 1.5 V Core – I/O State as a Function of VCCI and VCC Voltage Levels

2-4 Revision 5

Table 2-72 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only

2.5 V LVCMOS		VIL	VII	1	VOL	VOH	I _{OL}	Іон	I _{OSL}	I _{OSH}	I _{IL} 1	l _{IH} ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μ Α ⁴	μ Α ⁵
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	16	18	15	15
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	16	18	15	15
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	32	37	15	15
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	32	37	15	15
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	65	74	15	15

Notes:

- 1. $I_{|L|}$ is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 125°C junction temperature.
- 5. Software default selection highlighted in gray.

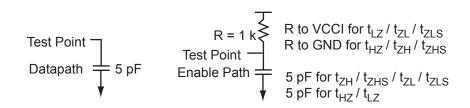


Figure 2-9 • AC Loading

Table 2-73 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (Typ) (V)	C _{LOAD} (pF)
0	2.5	1.2	_	5

Note: *Measuring point = V_{trip.} See Table 2-29 on page 2-25 for a complete table of trip points.

2-50 Revision 5

Table 2-84 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O I/O Banks

1.8 V LVCMOS		VIL	VIH		VOL	VOH	l _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 1	l _{IH} ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μ Α ⁴	μ Α ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	2	2	9	11	15	15
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	4	4	17	22	15	15
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	6	6	35	44	15	15
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	8	8	35	44	15	15

Notes:

- 1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
- 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 125°C junction temperature.
- 5. Software default selection highlighted in gray.

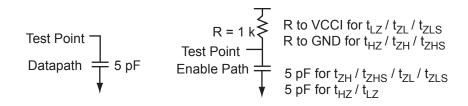


Figure 2-10 • AC Loading

Table 2-85 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (Typ) (V)	C _{LOAD} (pF)
0	1.8	0.9	1	5

Note: *Measuring point = $V_{trip.}$ See Table 2-29 on page 2-25 for a complete table of trip points.

2-56 Revision 5

Timing Characteristics

1.2 V DC Core Voltage

Table 2-86 • 1.8 V LVCMOS Low Slew
Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.80	9.16	0.05	2.00	2.82	0.52	9.32	7.69	2.77	1.20	11.53	9.89	ns
	-1	0.68	7.79	0.05	1.70	2.40	0.44	7.93	6.54	2.36	1.02	9.81	8.42	ns
4 mA	Std.	0.80	7.55	0.05	2.00	2.82	0.52	7.68	6.48	3.23	2.76	9.88	8.68	ns
	– 1	0.68	6.42	0.05	1.70	2.40	0.44	6.53	5.51	2.75	2.35	8.41	7.38	ns
6 mA	Std.	0.80	6.40	0.05	2.00	2.82	0.52	6.51	5.65	3.54	3.34	8.71	7.85	ns
	– 1	0.68	5.44	0.05	1.70	2.40	0.44	5.54	4.80	3.01	2.84	7.41	6.68	ns
8 mA	Std.	0.80	6.01	0.05	2.00	2.82	0.52	6.12	5.48	3.61	3.50	8.32	7.69	ns
	– 1	0.68	5.11	0.05	1.70	2.40	0.44	5.20	4.66	3.07	2.98	7.08	6.54	ns
12 mA	Std.	0.80	5.90	0.05	2.00	2.82	0.52	6.00	5.49	3.71	4.08	8.21	7.70	ns
	– 1	0.68	5.02	0.05	1.70	2.40	0.44	5.11	4.67	3.16	3.47	6.98	6.55	ns
16 mA	Std.	0.80	5.90	0.05	2.00	2.82	0.52	6.00	5.49	3.71	4.08	8.21	7.70	ns
	-1	0.68	5.02	0.05	1.70	2.40	0.44	5.11	4.67	3.16	3.47	6.98	6.55	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-87 • 1.8 V LVCMOS High Slew
Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.80	4.14	0.05	2.00	2.82	0.52	4.21	4.05	2.76	1.23	6.42	6.26	ns
	-1	0.68	3.52	0.05	1.70	2.40	0.44	3.58	3.45	2.35	1.04	5.46	5.32	ns
4 mA	Std.	0.80	3.36	0.05	2.00	2.82	0.52	3.41	3.01	3.22	2.85	5.62	5.21	ns
	– 1	0.68	2.86	0.05	1.70	2.40	0.44	2.90	2.56	2.74	2.42	4.78	4.43	ns
6 mA	Std.	0.80	2.88	0.05	2.00	2.82	0.52	2.93	2.49	3.54	3.43	5.13	4.70	ns
	– 1	0.68	2.45	0.05	1.70	2.40	0.44	2.49	2.12	3.01	2.92	4.36	3.99	ns
8 mA	Std.	0.80	2.79	0.05	2.00	2.82	0.52	2.83	2.40	3.60	3.59	5.04	4.60	ns
	-1	0.68	2.37	0.05	1.70	2.40	0.44	2.41	2.04	3.06	3.05	4.29	3.91	ns
12 mA	Std.	0.80	2.78	0.05	2.00	2.82	0.52	2.82	2.28	3.71	4.21	5.02	4.48	ns
	-1	0.68	2.36	0.05	1.70	2.40	0.44	2.40	1.94	3.16	3.58	4.27	3.81	ns
16 mA	Std.	0.80	2.78	0.05	2.00	2.82	0.52	2.82	2.28	3.71	4.21	5.02	4.48	ns
	– 1	0.68	2.36	0.05	1.70	2.40	0.44	2.40	1.94	3.16	3.58	4.27	3.81	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Revision 5 2-57

Revision 5 2-65

2-70 Revision 5

3.3 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

Table 2-128 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL+		VIL	VIH		VOL	VOH	l _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} ¹	l _{IH} ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μ Α ⁴	μ Α ⁴
35 mA	-0.3	VREF - 0.1	VREF + 0.1	3.6	0.6	_	35	35	268	181	15	15

Notes:

- 1. $I_{|L|}$ is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.
- 2. II_H is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 125°C junction temperature.

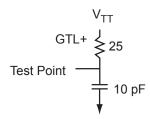


Figure 2-17 • AC Loading

Table 2-129 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF - 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = V_{trip} . See Table 2-29 on page 2-25 for a complete table of trip points.

Timing Characteristics

Table 2-130 • 3.3 V GTL+

Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.80	2.04	0.05	2.34	0.52	2.07	2.03	-	-	4.28	4.24	ns
-1	0.68	1.74	0.05	1.99	0.44	1.76	1.73	-	-	3.64	3.61	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-131 • 3.3 V GTL+

Military-Case Conditions: T_J = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zhs}	Units
Std.	0.61	1.95	0.04	2.11	0.40	1.92	1.95	-	_	3.38	3.41	ns
-1	0.52	1.66	0.03	1.79	0.34	1.63	1.66	_	-	2.88	2.90	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-76 Revision 5

HSTL Class I

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). Military ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-136 • Minimum and Maximum DC Input and Output Levels

HSTL Class I		VIL	VIH		VOL	V _{OH}	I_{OL}	I_{OH}	I _{OSL}	I _{OSH}	$I_{\rm IL}^{1}$	l _{IH} ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μ Α ⁴	μ Α ⁴
8 mA	-0.3	VREF - 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	8	8	32	39	15	15

Notes:

- 1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.
- II_H is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 125°C junction temperature.

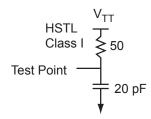


Figure 2-19 • AC Loading

Table 2-137 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF - 0.1	VREF + 0.1	0.75	0.75	0.75	20

Note: *Measuring point = V_{trip} . See Table 2-29 on page 2-25 for a complete table of trip points.

Timing Characteristics

Table 2-138 • HSTL Class I

Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V, VREF = 0.75 V

Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zhs}	Units
Std.	0.80	3.15	0.05	2.76	0.52	3.20	3.11	-	-	5.41	5.32	ns
– 1	0.68	2.68	0.05	2.34	0.44	2.73	2.65	-	_	4.60	4.52	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-78 Revision 5

Table 2-147 • SSTL2 Class I

Military-Case Conditions: $T_J = 125^{\circ}C$, $V_{CC} = 1.425 V$, Worst-Case VCCI = 2.3 V, VREF = 1.25 V

Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zhs}	Units
Std.	0.61	1.98	0.04	1.85	0.40	1.99	1.71	-	-	1.99	1.71	ns
–1	0.52	1.68	0.03	1.58	0.34	1.69	1.46	_	-	1.69	1.46	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

SSTL2 Class II

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Military ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-148 • Minimum and Maximum DC Input and Output Levels

SSTL2 Class II		VIL	VIH		VOL	VOH	I_{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 1	I_{IH}^2
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mΑ	mA	Max. mA ³	Max. mA ³	μ Α ⁴	μ Α ⁴

Notes:

- 1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.
- 2. II_H is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 125°C junction temperature.

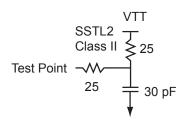


Figure 2-22 • AC Loading

Table 2-149 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF - 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = V_{trip} . See Table 2-29 on page 2-25 for a complete table of trip points.

Timing Characteristics

Table 2-150 • SSTL2 Class II

Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V, VREF = 1.25 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zhs}	Units
Std.	0.80	2.15	0.05	2.09	0.52	2.18	1.75	-	_	2.18	1.75	ns
-1	0.68	1.83	0.05	1.78	0.44	1.86	1.49	_	-	1.86	1.49	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-82 Revision 5

Table 2-187 • Output DDR Propagation Delays
Military-Case Conditions: T_J = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L

Parameter	Description	-1	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	0.74	0.87	ns
t _{DDRISUD1}	Data_F Data Setup for Output DDR	0.40	0.47	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.40	0.47	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	0.85	1.00	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.24	0.28	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	0.22	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width HIGH for the Output DDR	0.31	0.36	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width LOW for the Output DDR	0.28	0.32	ns
F _{DDROMAX}	Maximum Frequency for the Output DDR	250	250	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-188 • Output DDR Propagation Delays
Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000

Parameter	Description	-1	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	0.84	0.99	ns
t _{DDRISUD1}	Data_F Data Setup for Output DDR	0.46	0.54	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.46	0.54	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	0.96	1.13	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.27	0.31	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.25	0.30	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width HIGH for the Output DDR	0.41	0.48	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width LOW for the Output DDR	0.37	0.43	ns
F _{DDROMAX}	Maximum Frequency for the Output DDR	309	263	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Revision 5 2-109

Pin Descriptions and Packaging

JTAG Pins

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 3-2 for more information.

Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pins

VJTAG	Tie-Off Resistance
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 kΩ

Notes:

- 1. Equivalent parallel resistance if more than one device is on the JTAG chain
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin is pulled down.

TDI Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin


The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-2 and must satisfy the parallel resistance value requirement. The values in Table 3-2 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

3-4 Revision 5

PQ208

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/products/fpga-soc/solutions.

Revision 5 4-3

Military ProASIC3/EL Low Power Flash FPGAs

Revision 5 4-5

FG484		FG484		FG484	
Pin		Pin		Pin	
Number	A3PE3000L Function	Number	A3PE3000L Function	Number	A3PE3000L Function
A1	GND	AA14	IO170NDB4V2	B5	IO08PDB0V0
A2	GND	AA15	IO170PDB4V2	B6	IO14NDB0V1
A3	VCCIB0	AA16	IO166NDB4V1	B7	IO14PDB0V1
A4	IO10NDB0V1	AA17	IO166PDB4V1	B8	IO18NDB0V2
A5	IO10PDB0V1	AA18	IO160NDB4V0	B9	IO24NDB0V2
A6	IO16NDB0V1	AA19	IO160PDB4V0	B10	IO34PDB0V4
A7	IO16PDB0V1	AA20	IO158NPB4V0	B11	IO40PDB0V4
A8	IO18PDB0V2	AA21	VCCIB3	B12	IO46NDB1V0
A9	IO24PDB0V2	AA22	GND	B13	IO54NDB1V1
A10	IO28NDB0V3	AB1	GND	B14	IO62NDB1V2
A11	IO28PDB0V3	AB2	GND	B15	IO62PDB1V2
A12	IO46PDB1V0	AB3	VCCIB5	B16	IO68NDB1V3
A13	IO54PDB1V1	AB4	IO216NDB5V2	B17	IO68PDB1V3
A14	IO56NDB1V1	AB5	IO216PDB5V2	B18	IO72PDB1V3
A15	IO56PDB1V1	AB6	IO210NDB5V2	B19	IO74PDB1V4
A16	IO64NDB1V2	AB7	IO210PDB5V2	B20	IO76NPB1V4
A17	IO64PDB1V2	AB8	IO208NDB5V1	B21	VCCIB2
A18	IO72NDB1V3	AB9	IO208PDB5V1	B22	GND
A19	IO74NDB1V4	AB10	IO197NDB5V0	C1	VCCIB7
A20	VCCIB1	AB11	IO197PDB5V0	C2	IO303PDB7V3
A21	GND	AB12	IO174NDB4V2	C3	IO305PDB7V3
A22	GND	AB13	IO174PDB4V2	C4	IO06NPB0V0
AA1	GND	AB14	IO172NDB4V2	C5	GND
AA2	VCCIB6	AB15	IO172PDB4V2	C6	IO12NDB0V1
AA3	IO228PDB5V4	AB16	IO168NDB4V1	C7	IO12PDB0V1
AA4	IO224PDB5V3	AB17	IO168PDB4V1	C8	VCC
AA5	IO218NDB5V3	AB18	IO162NDB4V1	C9	VCC
AA6	IO218PDB5V3	AB19	IO162PDB4V1	C10	IO34NDB0V4
AA7	IO212NDB5V2	AB20	VCCIB4	C11	IO40NDB0V4
AA8	IO212PDB5V2	AB21	GND	C12	IO48NDB1V0
AA9	IO198PDB5V0	AB22	GND	C13	IO48PDB1V0
AA10	IO198NDB5V0	B1	GND	C14	VCC
AA11	IO188PPB4V4	B2	VCCIB7	C15	VCC
AA12	IO180NDB4V3	В3	IO06PPB0V0	C16	IO70NDB1V3
AA13	IO180PDB4V3	B4	IO08NDB0V0	C17	IO70PDB1V3

4-24 Revision 5