

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	516096
Number of I/O	341
Number of Gates	300000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3pe3000l-1fg484m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The CCC block has these key features:

- Wide input frequency range ($f_{IN CCC}$) = 1.5 MHz up to 250 MHz
- Output frequency range (f_{OUT CCC}) = 0.75 MHz up to 250 MHz
- 2 programmable delay types for clock skew minimization
- Clock frequency synthesis

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration.
- Output duty cycle = 50% ± 1.5% or better
- Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used
- Maximum acquisition time is 300 µs
- Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns
- Four precise phases; maximum misalignment between adjacent phases of 40 ps \times 250 MHz / $\rm ^{f}OUT$ ccc

Global Clocking

Military ProASIC3/EL devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.

Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

I/Os with Advanced I/O Standards

The military ProASIC3/EL family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). In addition, 1.2 V I/O operation is supported for military ProASIC3EL devices. Military ProASIC3/EL FPGAs support different I/O standards, including single-ended, differential, and voltage-referenced (military ProASIC3EL). The I/Os are organized into banks, with two, four, or eight (military ProASIC3EL only) banks per device. The configuration of these banks determines the I/O standards supported. For military ProASIC3EL, each I/O bank is subdivided into V_{REF} minibanks, which are used by voltage-referenced I/Os. V_{REF} minibanks contain 8 to 18 I/Os. All the I/Os in a given minibank share a common V_{REF} line. Therefore, if any I/O in a given V_{REF} minibank is configured as a V_{REF} pin, the remaining I/Os in that minibank will be able to use that reference voltage.

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-data-rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)
- Double-data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II).

Military ProASIC3EL banks support LVPECL, LVDS, B-LVDS, and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads.

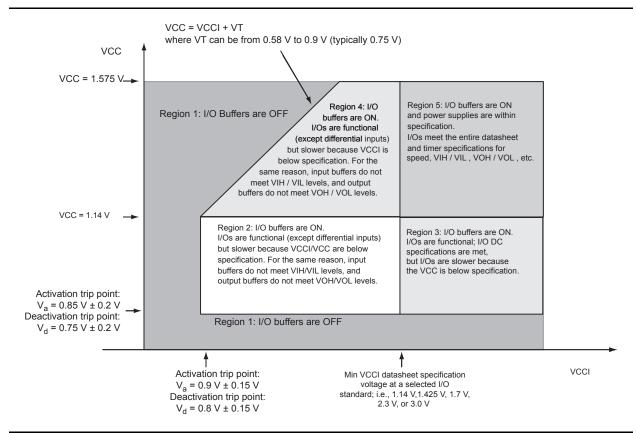


Figure 2-2 • Device Operating at 1.2 V Core Voltage – I/O State as a Function of VCCI and VCC Voltage Levels; Only A3PE600L and A3PE3000L Devices Operate at 1.2 V Core Voltage

Thermal Characteristics

Introduction

The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction temperature to be higher than the ambient temperature.

EQ 1 can be used to calculate junction temperature.

 T_J = Junction Temperature = $\Delta T + T_A$

EQ 1

where:

T_A = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ_{ia} * P

 θ_{ja} = Junction-to-ambient of the package. θ_{ja} numbers are located in Table 2-5.

P = Power dissipation

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ja} are shown for two air flow rates. The recommended maximum junction temperature is 125°C. EQ 2 shows a sample calculation of the recommended maximum power dissipation allowed for a 484-pin FBGA package at military temperature and in still air.

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{125°C - 70°C}{20.6°C/W} = 2.670$$

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- The number of combinatorial and sequential cells used in the design
- The internal clock frequencies
- The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-23 on page 2-17.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-24 on page 2-17.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-24 on page 2-17. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—P_{TOTAL}

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

P_{STAT} = (PDC0 or PDC1 or PDC2 or PDC3) + N_{BANKS}* P_{DC5} + N_{INPUTS}* PDC6 + N_{OUTPUTS}* PDC7

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

N_{BANKS} is the number of I/O banks powered in the design.

Total Dynamic Power Consumption—P_{DYN}

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}

Global Clock Contribution—P_{CLOCK}

 $P_{CLOCK} = (PAC1 + N_{SPINE} * PAC2 + N_{ROW} * PAC3 + N_{S-CELL} * PAC4) * F_{CLK}$

 $N_{\mbox{\rm SPINE}}$ is the number of global spines used in the user design—guidelines are provided in Table 2-23 on page 2-17.

 N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in Table 2-23 on page 2-17.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

PAC1, PAC2, PAC3, and PAC4 are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

 $P_{S-CELL} = N_{S-CELL} * (PAC5 + \alpha_1 / 2 * PAC6) * F_{CLK}$

 $N_{S\text{-}CELL}$ is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on page 2-17.

F_{CLK} is the global clock signal frequency.

Military ProASIC3/EL DC and Switching Characteristics

User I/O Characteristics

Timing Model

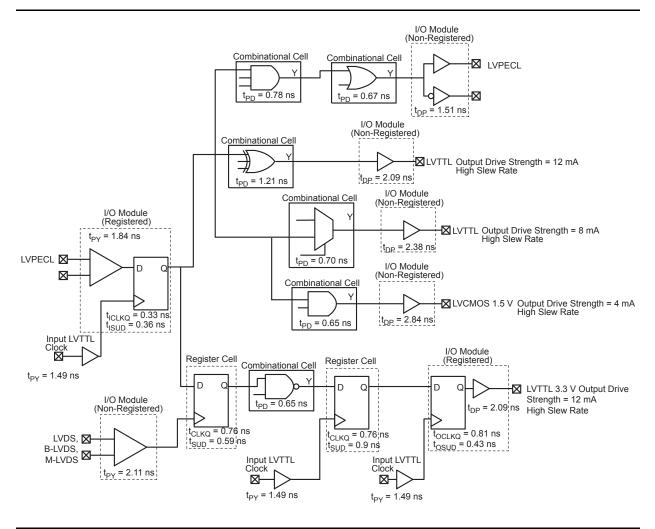


Figure 2-3 • Timing Model Operating Conditions: –1 Speed, Military Temperature Range (T_J = 125°C), Worst-Case VCC = 1.14 V (example for A3PE3000L and A3PE600L)

Military ProASIC3/EL DC and Switching Characteristics

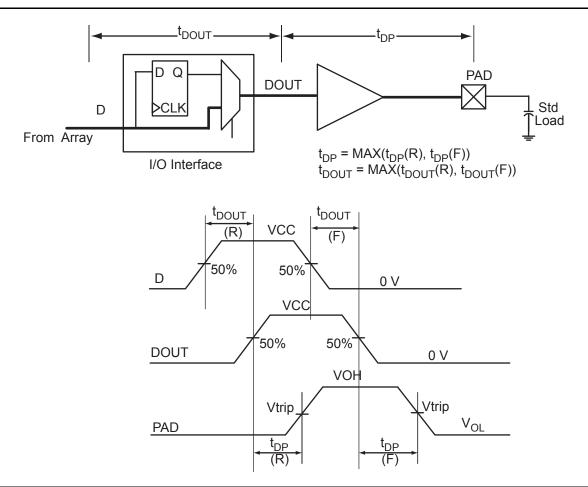


Figure 2-5 • Output Buffer Model and Delays (example)

1.5 V Core Voltage

Table 2-32 • Summary of I/O Timing Characteristics—Software Default Settings -1 Speed Grade, Military-Case Conditions: T_J = 125°C, VCC = 1.425 V, Worst Case VCCI Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

-		-		1		1	1	1	1	1					1	1	
Standard	Drive Strength (mA)	Equivalent Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF) ²	External Resistor (Ω)	t _{bour} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{PY} (ns)	t _{PYS} (ns)	t _{EOUT} (ns)	t _{ZL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	5	_	0.52	1.97	0.03	1.23		0.34			2.63	2.89	3.23	2.71
3.3 V LVCOMS Wide Range ³	100 µA	12 mA	High	5	_	0.52	2.89	0.03	1.61	2.44	0.34	2.88	2.12	3.89	4.25	4.12	3.36
2.5 V LVCMOS	12 mA	12 mA	High	5	-	0.52	2.01	0.03	1.49	1.93	0.34	2.02	1.65	2.71	2.78	3.27	2.89
1.8 V LVCMOS	12 mA	12 mA	High	5	-	0.52	2.24	0.03	1.44	2.14	0.34	2.26	1.84	3.02	3.41	3.51	3.08
1.5 V LVCMOS	12 mA	12 mA	High	5	-	0.52	2.60	0.03	1.60	2.35	0.34	2.62	2.14	3.21	3.52	3.87	3.39
3.3 V PCI	Per PCI spec	_	High	10	25 ⁴	0.52	2.25	0.03	2.03	2.88	0.34	2.27	1.58	2.64	2.89	3.52	2.83
3.3 V PCI-X	Per PCI-X spec	_	High	10	25 ⁴	0.52	2.25	0.03	2.03	2.88	0.34	2.27	1.58	2.64	2.89	3.52	2.83
3.3 V GTL	20 mA ⁵	20 mA ⁵	High	10	25	0.52	1.68	0.03	1.79	-	0.34	1.58	1.68	-	-	2.83	2.92
2.5 V GTL	20 mA ⁵	20 mA ⁵	High	10	25	0.52	1.72	0.03	1.73	Ι	0.34	1.69	1.72	-	-	2.93	2.97
3.3 V GTL+	35 mA	35 mA	High	10	25	0.52	1.66	0.03	1.79	-	0.34	1.63	1.66	-	-	2.88	2.90
2.5 V GTL+	33 mA	33 mA	High	10	25	0.52	1.75	0.03	1.73	-	0.34	1.76	1.69	-	-	3.00	2.94
HSTL (I)	8 mA	8 mA	High	20	25	0.52	2.57	0.03	2.14	Ι	0.34	2.59	2.55	-		3.84	3.79
HSTL (II)	15 mA ⁵	15 mA ⁵	High	20	50	0.52	2.44	0.03	2.14	-	0.34	2.46	2.19	-	-	3.71	3.43
SSTL2 (I)	15 mA	15 mA	High	30	25	0.52	1.68	0.03	1.58	-	034	1.69	1.46	-	-	1.69	1.46
SSTL2 (II)	18 mA	18 mA	High	30	50	0.52	1.72	0.03	1.58	-	0.34	1.73	1.39	-	-	1.73	1.39
SSTL3 (I)	14 mA	14 mA	High	30	25	0.52	1.83	0.03	1.51	-	0.34	1.84	1.45	-	-	1.84	1.45
SSTL3 (II)	21 mA	21 mA	High	30	50	0.52	1.63	0.03	1.51	-	0.34	1.64	1.31	-	-	1.64	1.31
LVDS	24 mA	-	High	-	-	0.52	1.48	0.03	1.86	-	-	-	-	-	-	-	-
LVPECL	24 mA	-	High	-	-	0.52	1.40	0.03	1.61	-	—	-	-	-	-	-	-
Notos:																	

Notes:

1. Note that 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only.

2. Output delays provided in this table were extracted with an output load indicated in the Capacitive Load column. For a specific output load, refer to Designer software.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-14 on page 2-71 for connectivity. This resistor is not required during normal operation.

5. Output drive strength is below JEDEC specification.

6. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Military ProASIC3/EL DC and Switching Characteristics

1.5 V DC Core Voltage

Table 2-88 •1.8 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Drive	Speed													
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.61	9.02	0.04	1.69	2.52	0.40	9.17	7.57	2.61	1.01	10.63	9.04	ns
	-1	0.52	7.68	0.03	1.44	2.14	0.34	7.80	6.44	2.22	0.86	9.04	7.69	ns
4 mA	Std.	0.61	7.41	0.04	1.69	2.52	0.40	7.52	6.36	3.07	2.56	8.99	7.83	ns
	-1	0.52	6.30	0.03	1.44	2.14	0.34	6.40	5.41	2.62	2.18	7.64	6.66	ns
6 mA	Std.	0.61	6.26	0.04	1.69	2.52	0.40	6.35	5.53	3.38	3.14	7.82	7.00	ns
	-1	0.52	5.33	0.03	1.44	2.14	0.34	5.40	4.71	2.88	2.67	6.65	5.95	ns
8 mA	Std.	0.61	5.88	0.04	1.69	2.52	0.40	5.96	5.37	3.45	3.30	7.42	6.83	ns
	-1	0.52	5.00	0.03	1.44	2.14	0.34	5.07	4.57	2.94	2.81	6.32	5.81	ns
12 mA	Std.	0.61	5.76	0.04	1.69	2.52	0.40	5.85	5.38	3.55	3.88	7.31	6.84	ns
	-1	0.52	4.90	0.03	1.44	2.14	0.34	4.97	4.57	3.02	3.30	6.22	5.82	ns
16 mA	Std.	0.61	5.76	0.04	1.69	2.52	0.40	5.85	5.38	3.55	3.88	7.31	6.84	ns
	–1	0.52	4.90	0.03	1.44	2.14	0.34	4.97	4.57	3.02	3.30	6.22	5.82	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-89 • 1.8 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Applicable to Pro I/Os for A3PE600L and A3PE300L Only

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.61	4.01	0.04	1.69	2.52	0.40	4.06	3.94	2.60	1.03	5.52	5.40	ns
	-1	0.52	3.41	0.03	1.44	2.14	0.34	3.45	3.35	2.21	0.88	4.70	4.60	ns
4 mA	Std.	0.61	3.22	0.04	1.69	2.52	0.40	3.26	2.89	3.07	2.65	4.72	4.36	ns
	-1	0.52	2.74	0.03	1.44	2.14	0.34	2.77	2.46	2.61	2.26	4.02	3.71	ns
6 mA	Std.	0.61	2.74	0.04	1.69	2.52	0.40	2.77	2.38	3.38	3.23	4.23	3.84	ns
	-1	0.52	2.33	0.03	1.44	2.14	0.34	2.36	2.02	2.88	2.75	3.60	3.27	ns
8 mA	Std.	0.61	2.65	0.04	1.69	2.52	0.40	2.68	2.28	3.45	3.40	4.14	3.75	ns
	-1	0.52	2.26	0.03	1.44	2.14	0.34	2.28	1.94	2.93	2.89	3.52	3.19	ns
12 mA	Std.	0.61	2.64	0.04	1.69	2.52	0.40	2.66	2.16	3.55	4.01	4.13	3.63	ns
	-1	0.52	2.24	0.03	1.44	2.14	0.34	2.26	1.84	3.02	3.41	3.51	3.08	ns
16 mA	Std.	0.61	2.64	0.04	1.69	2.52	0.40	2.66	2.16	3.55	4.01	4.13	3.63	ns
	-1	0.52	2.24	0.03	1.44	2.14	034	2.26	1.84	3.02	3.41	3.51	3.08	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Military ProASIC3/EL DC and Switching Characteristics

1.5 V DC Core Voltage

Table 2-100 • 1.5 V LVCMOS Low SlewMilitary-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 VApplicable to Pro I/Os for A3PE600L and A3PE3000L Only

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.61	9.39	0.04	1.88	2.77	0.40	9.54	7.77	3.22	2.47	11.00	9.24	ns
	–1	0.52	7.99	0.03	1.60	2.35	0.34	8.11	6.61	2.74	2.10	9.36	7.86	ns
4 mA	Std.	0.61	8.01	0.04	1.88	2.77	0.40	8.13	6.77	3.58	3.14	9.59	8.24	ns
	–1	0.52	6.81	0.03	1.60	2.35	0.34	6.91	5.76	3.05	2.67	8.16	7.01	ns
6 mA	Std.	0.61	7.51	0.04	1.88	2.77	0.40	7.62	6.59	3.66	3.32	9.09	8.05	ns
	–1	0.52	6.39	0.03	1.60	2.35	0.34	6.48	5.60	3.12	2.83	7.73	6.85	ns
8 mA	Std.	0.61	7.41	0.04	1.88	2.77	0.40	7.52	6.59	3.41	3.99	8.99	8.06	ns
	–1	0.52	6.30	0.03	1.60	2.35	0.34	6.40	5.61	2.90	3.40	7.64	6.85	ns
12 mA	Std.	0.61	7.41	0.04	1.88	2.77	0.40	7.52	6.59	3.41	3.99	8.99	8.06	ns
	–1	0.52	6.30	0.03	1.60	2.35	0.34	6.40	5.61	2.90	3.40	7.64	6.85	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-101 • 1.5 V LVCMOS High Slew

Military-Case Conditions: T _J = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V	/
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only	

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.61	3.78	0.04	1.88	2.77	0.40	3.82	3.43	3.21'	2.58	5.29	4.89	ns
	–1	0.52	3.21	0.03	1.60	2.35	0.34	3.25	2.92	2.73	2.20	4.50	4.16	ns
4 mA	Std.	0.61	3.20	0.04	1.88	2.77	0.40	3.23	2.79	3.57	3.25	4.70	4.25	ns
	–1	0.52	2.72	0.03	1.60	2.35	0.34	2.75	2.37	3.04	2.77	4.00	3.62	ns
6 mA	Std.	0.61	3.09	0.04	1.88	2.77	0.40	3.12	2.67	3.65	3.44	4.59	4.13	ns
	–1	0.52	2.63	0.03	1.60	2.35	0.34	2.65	2.27	3.11	2.93	3.90	3.52	ns
8 mA	Std.	0.61	3.05	0.04	1.88	2.77	0.40	3.09	2.52	3.77	4.14	4.55	3.98	ns
	–1	0.52	2.60	0.03	1.60	2.35	0.34	2.62	2.14	3.21	3.52	3.87	3.39	ns
12 mA	Std.	0.61	3.05	0.04	1.88	2.77	0.40	3.09	2.52	3.77	4.14	4.55	3.98	ns
	–1	0.52	2.60	0.03	1.60	2.35	0.34	2.62	2.14	3.21	3.52	3.87	3.39	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Military ProASIC3/EL DC and Switching Characteristics

Table 2-147 • SSTL2 Class I

Military-Case Conditions: $T_J = 125^{\circ}C$, $V_{CC} = 1.425 V$, Worst-Case VCCI = 2.3 V, VREF = 1.25 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

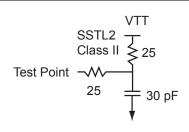
Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.61	1.98	0.04	1.85	0.40	1.99	1.71	1	-	1.99	1.71	ns
–1	0.52	1.68	0.03	1.58	0.34	1.69	1.46	_	-	1.69	1.46	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

SSTL2 Class II

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Military ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL2 Class II		VIL	VIH		VOL	VOH	I_{OL}	I _{OH}	I _{OSL}	I _{OSH}	۱ _L 1	I _{IH} ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA⁴	μA ⁴
18 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI-0.43	18	18	169	124	15	15


Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. II_H is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 125°C junction temperature.

Figure 2-22 • AC Loading

Table 2-149 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = V_{trip} . See Table 2-29 on page 2-25 for a complete table of trip points.

Timing Characteristics

Table 2-150 • SSTL2 Class II

Military-Case Conditions: $T_J = 125^{\circ}C$, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V, VREF = 1.25 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.80	2.15	0.05	2.09	0.52	2.18	1.75	-	-	2.18	1.75	ns
-1	0.68	1.83	0.05	1.78	0.44	1.86	1.49	_	-	1.86	1.49	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Characteristics

1.2 V DC Core Voltage

Table 2-162 • LVDS

Military-Case Conditions: $T_J = 125^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.80	1.87	0.05	2.48	ns
-1	0.68	1.59	0.05	2.11	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.5 V DC Core Voltage

Table 2-163 • LVDS

Military-Case Conditions: T_J = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.61	1.75	0.04	2.18	ns
–1	0.52	1.48	0.03	1.86	ns

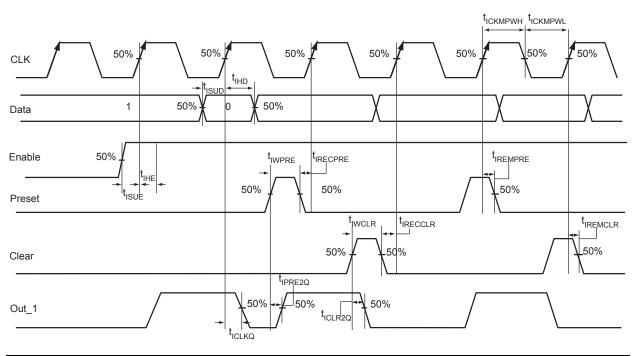
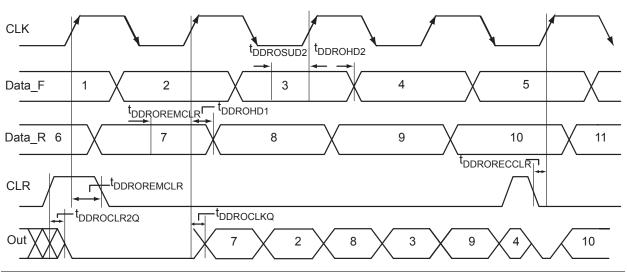

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-164 • LVDS

Military-Case Conditions: $T_J = 125^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.63	2.07	0.05	1.82	ns
-1	0.54	1.76	0.04	1.55	ns


Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Input Register

Military ProASIC3/EL DC and Switching Characteristics

Eiguro	2-36 .	Output	סחח	Timina	Diagram	
riyure	2-30 -	Output	DDK	ruuuy	Diagraili	

Timing Characteristics

Table 2-186 • Output DDR Propagation DelaysMilitary-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L

Parameter	Description	-1	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	0.97	1.14	ns
t _{DDRISUD1}	Data_F Data Setup for Output DDR	0.52	0.62	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.52	0.62	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	1.11	1.30	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.31	0.36	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	0.22	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width HIGH for the Output DDR	0.31	0.36	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width LOW for the Output DDR	0.28	0.32	ns
F _{DDROMAX}	Maximum Frequency for the Output DDR	160	160	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Military ProASIC3/EL Low Power Flash FPGAs

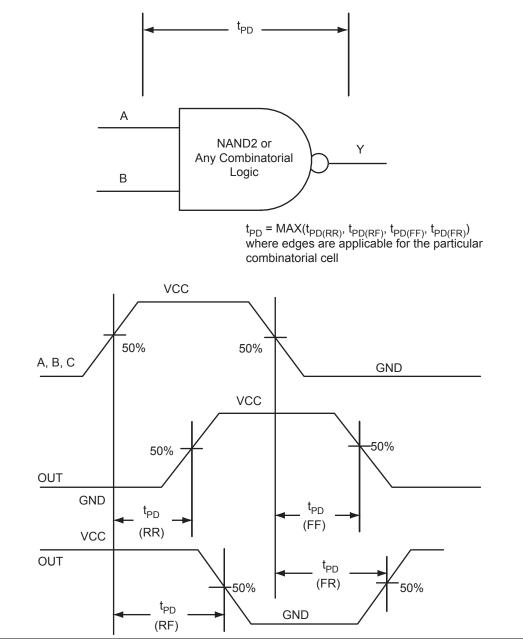


Figure 2-38 • Timing Model and Waveforms

Military ProASIC3/EL DC and Switching Characteristics

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-123. Table 2-195 to Table 2-198 on page 2-121 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Timing Characteristics

1.2 V DC Core Voltage

Table 2-195 • A3PE600L Global Resource Military-Case Conditions: T_J = 125°C, VCC = 1.14 V

		-	-1	Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input LOW Delay for Global Clock	0.95	1.23	1.12	1.44	ns
t _{RCKH}	Input HIGH Delay for Global Clock	0.94	1.26	1.10	1.48	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock					ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock					ns
t _{RCKSW}	Maximum Skew for Global Clock		0.32		0.38	ns
F _{RMAX}	Maximum Frequency for Global Clock					MHz
' RMAX						

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-196 • A3PE3000L Global Resource Military-Case Conditions: T_J = 125°C, VCC = 1.14 V

		-	-1	Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input LOW Delay for Global Clock	1.81	2.09	2.13	2.42	ns
t _{RCKH}	Input HIGH Delay for Global Clock	1.80	2.13	2.12	2.45	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock					ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock					ns
t _{RCKSW}	Maximum Skew for Global Clock		0.32		0.38	ns
F _{RMAX}	Maximum Frequency for Global Clock					MHz

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

^{2.} Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

^{3.} For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-201 • Military ProASIC3/EL CCC/PLL Specification

For Devices Operating at 1.2 V DC Core Voltage: Applicable to A3PE600L and A3PE3000L Only

Parameter	Min.	Тур.	Max.	Units
Clock Conditioning Circuitry Input Frequency f _{IN_CCC}	1.5		250	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		250	MHz
Delay Increments in Programmable Delay Blocks ^{1, 2.3}		360		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Serial Clock (SCLK) for Dynamic PLL ⁴			100	MHz
Input cycle-to-cycle jitter (peak magnitude)			1	ns
Acquisition Time				
LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁵				
LockControl = 0			25	ns
LockControl = 1			1.5	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1,2}	1.2		15.65	ns
Delay Range in Block: Programmable Delay 2 ^{1,2}	0.025		15.65	ns
Delay Range in Block: Fixed Delay ^{1,2}		3.5		ns
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT}	Max. Peak-to-Peak Period Jitter ^{6,7}			
	$SSO \leq 2$	$SSO \leq 4$	$SSO \leq 8$	$SSO \leq 16$
0.75 MHz to 50 MHz	0.50%	0.60%	0.80%	1.60%
50 MHz to 160 MHz	2.50%	4.00%	6.00%	12.00%

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 for deratings.

2. $T_J = 25^{\circ}C$, VCC = 1.2 V.

3. When the CCC/PLL core is generated by Mircosemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero online help associated with the core for more information.

4. Maximum value obtained for a -1 speed grade device in worst-case military conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.

 Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength and high slew rate. VCC/VCCPLL = 1.14V, VQ/PQ/TQ type of packages, 20 pF load.

7. Switching I/Os are placed outside of the PLL bank.

Parameter	Description	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	4.88	5.73	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	ns
t _{BKS}	BLK Setup Time	1.66	1.95	ns
t _{BKH}	BLK Hold Time	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.22	0.26	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	ns
t _{CKQ1}	Clock HIGH to New Data Valid on RD (flow-through)	2.84	3.33	ns
t _{CKQ2}	Clock HIGH to New Data Valid on RD (pipelined)		1.27	ns
t _{RCKEF}	RCLK HIGH to Empty Flag Valid		2.43	ns
t _{WCKFF}	WCLK HIGH to Full Flag Valid		2.31	ns
t _{CKAF}	Clock HIGH to Almost Empty/Full Flag Valid	7.45	8.76	ns
t _{RSTFG}	RESET LOW to Empty/Full Flag Valid	2.04	2.40	ns
t _{RSTAF}	RESET LOW to Almost Empty/Full Flag Valid	7.38	8.67	ns
t _{RSTBQ}	RESET LOW to Data Out LOW on RD (flow-through)	1.11	1.31	ns
	RESET LOW to Data Out LOW on RD (pipelined)	1.11	1.31	ns
t _{REMRSTB}	RESET Removal	0.34	0.40	ns
t _{RECRSTB}	RESET Recovery		2.12	ns
t _{MPWRSTB}	RESET Minimum Pulse Width		0.30	ns
t _{CYC}	Clock Cycle Time	3.89	4.57	ns
F _{MAX}	Maximum Frequency for FIFO	257	219	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

GL Globals

FF

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs " chapter of the *Military ProASIC3/EL FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter (for A3P250 and A3P1000) or "I/O Structures in IGLOOe and ProASIC3E Devices" (for A3PE600L and A3PE3000L) of the *Military ProASIC3/EL FPGA Fabric User's Guide* for an explanation of the naming of global pins.

Flash*Freeze Mode Activation Pin

Flash*Freeze is available on A3PE600L and A3PE3000L devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O. The FF pin can be configured as a Schmitt trigger input.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

Table 3-1 shows the Flash*Freeze pin location on the available packages for Military ProASIC3/EL devices. The Flash*Freeze pin location is independent of device, allowing migration to larger or smaller devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology and Low Power Modes" chapter of the *Military ProASIC3/EL FPGA Fabric User Guide* for more information on I/O states during Flash*Freeze mode.

Military ProASIC3/EL Packages	Flash*Freeze Pin
FG484	W6
FG896	AH4

Table 3-1 • Flash*Freeze Pin Location in Military ProASIC3/EL Packages (device-independent)

Military ProASIC3/EL Low Power Flash FPGAs

FG484			FG484		FG484
Pin Number	A3PE600L Function	Pin Number	A3PE600L Function	Pin Number	A3PE600L Function
R8	VMV5	T21	IO64PDB3V1	V12	IO83PDB5V0
R9	VCCIB5	T22	IO62NDB3V1	V13	IO77NDB4V1
R10	VCCIB5	U1	NC	V14	IO77PDB4V1
R11	IO84NDB5V0	U2	IO107PDB6V0	V15	IO69NDB4V0
R12	IO84PDB5V0	U3	IO107NDB6V0	V16	GDB2/IO69PDB4V0
R13	VCCIB4	U4	GEB1/IO103PDB6V0	V17	TDI
R14	VCCIB4	U5	GEB0/IO103NDB6V0	V18	GNDQ
R15	VMV3	U6	VMV6	V19	TDO
R16	VCCPLD	U7	VCCPLE	V20	GND
R17	GDB1/IO66PPB3V1	U8	IO101NPB5V2	V21	NC
R18	GDC1/IO65PDB3V1	U9	IO95PPB5V1	V22	IO63NDB3V1
R19	IO61NDB3V1	U10	IO92PDB5V1	W1	NC
R20	VCC	U11	IO90PDB5V1	W2	NC
R21	IO59NDB3V0	U12	IO82PDB5V0	W3	NC
R22	IO62PDB3V1	U13	IO76NDB4V1	W4	GND
T1	NC	U14	IO76PDB4V1	W5	IO100NDB5V2
T2	IO110NDB6V0	U15	VMV4	W6	FF/GEB2/IO100PDB5V2
Т3	NC	U16	ТСК	W7	IO99NDB5V2
T4	IO105PDB6V0	U17	VPUMP	W8	IO88NDB5V0
T5	IO105NDB6V0	U18	TRST	W9	IO88PDB5V0
T6	GEC1/IO104PPB6V0	U19	GDA0/IO67NDB3V1	W10	IO89NDB5V0
Τ7	VCOMPLE	U20	NC	W11	IO80NDB4V1
Т8	GNDQ	U21	IO64NDB3V1	W12	IO81NDB4V1
Т9	GEA2/IO101PPB5V2	U22	IO63PDB3V1	W13	IO81PDB4V1
T10	IO92NDB5V1	V1	NC	W14	IO70NDB4V0
T11	IO90NDB5V1	V2	NC	W15	GDC2/IO70PDB4V0
T12	IO82NDB5V0	V3	GND	W16	IO68NDB4V0
T13	IO74NDB4V1	V4	GEA1/IO102PDB6V0	W17	GDA2/IO68PDB4V0
T14	IO74PDB4V1	V5	GEA0/IO102NDB6V0	W18	TMS
T15	GNDQ	V6	GNDQ	W19	GND
T16	VCOMPLD	V7	GEC2/IO99PDB5V2	W20	NC
T17	VJTAG	V8	IO95NPB5V1	W21	NC
T18	GDC0/IO65NDB3V1	V9	IO91NDB5V1	W22	NC
T19	GDA1/IO67PDB3V1	V10	IO91PDB5V1	Y1	VCCIB6
T20	NC	V11	IO83NDB5V0	Y2	NC

FG896		
Pin Number A3PE3000L Function		
N20	VCC	
N21	VCCIB2	
N22	IO106NDB2V3	
N23	IO106PDB2V3	
N24	IO108PDB2V3	
N25	IO108NDB2V3	
N26	IO95NDB2V1	
N27	IO99NDB2V2	
N28	IO99PDB2V2	
N29	IO107PDB2V3	
N30	IO107NDB2V3	
P1	IO276NDB7V0	
P2	IO278NDB7V0	
P3	IO280NDB7V0	
P4	IO284NDB7V1	
P5	IO279NDB7V0	
P6	GFC1/IO275PDB7V0	
P7	GFC0/IO275NDB7V0	
P8	IO277PDB7V0	
P9	IO277NDB7V0	
P10	VCCIB7	
P11	VCC	
P12	GND	
P13	GND	
P14	GND	
P15	GND	
P16	GND	
P17	GND	
P18	GND	
P19	GND	
P20	VCC	
P21	VCCIB2	
P22	GCC1/IO112PDB2V3	
P23	IO110PDB2V3	
P24	IO110NDB2V3	
P25	IO109PPB2V3	

Datasheet Information

Revision	Changes	Page
Revision 1 (continued)	The drive strength was changed from 25 mA to 20 mA for 3.3 V and 2.5 V GTL (SAR 31978). This affects the following tables:	
. ,	Table 2-25 • Summary of Maximum and Minimum DC Input and Output Levels	2-22
	Table 2-31 • Summary of I/O Timing Characteristics—Software Default Settings (SAR	2-26
	32394)	2-27
	Table 2-32 • Summary of I/O Timing Characteristics—Software Default Settings	2-30
	Table 2-36 • I/O Output Buffer Maximum Resistances ¹ Applicable to Pro I/Os for A3PE600L and A3PE3000L Only	2-33
	Table 2-40 • I/O Short Currents IOSH/IOSL Applicable to Pro I/Os for A3PE600L and A3PE3000L Only	2-73
	Table 2-120 • Minimum and Maximum DC Input and Output Levels	2-75
	Table 2-124 • Minimum and Maximum DC Input and Output Levels	
	The values in Table 2-39 • I/O Weak Pull-Up/Pull-Down Resistances were revised (SAR 29793, 28061).	2-32
	The AC Loading diagrams in the "Single-Ended I/O Characteristics" section were updated to match summary of I/O timing tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 32449).	2-37
Т	The tables in the "Voltage-Referenced I/O Characteristics" section and "Differential I/O	2-73
	Characteristics" section were updated with current values (SARs 29793, 32391, 32394).	2-85
	Two note references were added to Table 2-160 • Minimum and Maximum DC Input and Output Levels to clarify the following notes: $\pm 5\%$ [VCCI] and differential input voltage = ± 350 mV [VDIFF] (SAR 29428).	2-86
	The "Global Tree Timing Characteristics" section was updated.	2-120
Available Table 2-19 Table 2-20	Table 2-199 • A3P250 Global Resource is new (SAR 30526).	
	Available values were added or revised in the following tables (SAR 30698):	
	Table 2-195 • A3PE600L Global Resource	
	Table 2-200 • A3P1000 Global Resource	
	Table 2-197 • A3PE600L Global Resource	
	Table 2-201 • Military ProASIC3/EL CCC/PLL Specification and Table 2-202 • Military ProASIC3/EL CCC/PLL Specification were updated with current values (SAR 32521).	2-123
Figure 2-49 • Figure 2-50 • Figure 2-51 • The naming of section was of Table 2-205 • corrected (SA Table 2-212 • Tables in the 32392). The "Pin Des Package name	The following figures were removed (SAR 29991):	N/A
	Figure 2-49 • Write Access after Write onto Same Address	
	Figure 2-50 • Read Access after Write onto Same Address	
	Figure 2-51 • Write Access after Read onto Same Address	
	The naming of the address collision parameters in the SRAM "Timing Characteristics" section was changed, and values were updated accordingly (SAR 29991).	2-129
	The values for t_{CKQ1} in Table 2-203 • RAM4K9, Table 2-204 • RAM4K9, and Table 2-205 • RAM4K9 were reversed with respect to WMODE and have been corrected (SAR 32343).	2-129, 2-130, 2-131
	Table 2-212 • FIFO through Table 2-216 • FIFO are new (SAR 32394).	2-141, 2-145
	Tables in the "Embedded FlashROM Characteristics" section were updated (SAR 32392).	2-146
	The "Pin Descriptions and Packaging" chapter was added (SAR 21642).	3-1
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	4-1