
Microchip Technology - ATMEGA168PB-AUR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 27

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 32-TQFP

Supplier Device Package 32-TQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega168pb-aur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega168pb-aur-4385205
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

15.11.1. Sleep Mode Control Register
The Sleep Mode Control Register contains control bits for power management.

When addressing I/O Registers as data space using LD and ST instructions, the provided offset must be
used. When using the I/O specific commands IN and OUT, the offset is reduced by 0x20, resulting in an
I/O address offset within 0x00 - 0x3F.

Name:  SMCR
Offset:  0x53
Reset:  0x00
Property:
 

When addressing as I/O Register: address offset is 0x33

Bit 7 6 5 4 3 2 1 0
 SM2 SM1 SM0 SE

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 3 – SM2: Sleep Mode Select 2
The SM[2:0] bits select between the five available sleep modes.

Table 15-2. Sleep Mode Select

SM2,SM1,SM0 Sleep Mode

000 Idle

001 ADC Noise Reduction

010 Power-down

011 Power-save

100 Reserved

101 Reserved

110 Standby(1)

111 Extended Standby(1)

Note: 
1. Standby mode is only recommended for use with external crystals or resonators.

Bit 2 – SM1: Sleep Mode Select 1
Refer to SM2.

Bit 1 – SM0: Sleep Mode Select 0
Refer to SM2.

Bit 0 – SE: Sleep Enable
The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s purpose,
it is recommended to write the Sleep Enable (SE) bit to one just before the execution of the SLEEP
instruction and to clear it immediately after waking up.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

66

Vector No. Program Address Source Interrupt Definition

20 0x013 USART, UDRE USART, Data Register Empty

21 0x014 USART, TX USART, Tx Complete

22 0x015 ADC ADC Conversion Complete

23 0x016 EE READY EEPROM Ready

24 0x017 ANALOG COMP Analog Comparator

25 0x018 TWI 2-wire Serial Interface (I²C)

26 0x019 SPM READY Store Program Memory Ready

27 0x01A USART, START USART Start Edge Interrupt

The most typical and general program setup for the Reset and Interrupt Vector Addresses in
ATmega48PB is:

Address Labels Code Comments

0x000 rjmp RESET ; Reset Handler

0x001 rjmp EXT_INT0 ; IRQ0 Handler

0x002 rjmp EXT_INT1 ; IRQ1 Handler

0x003 rjmp PCINT0 ; PCINT0 Handler

0x004 rjmp PCINT1 ; PCINT1 Handler

0x005 rjmp PCINT2 ; PCINT2 Handler

0x006 rjmp WDT ; Watchdog Timer Handler

0x007 rjmp TIM2_COMPA ; Timer2 Compare A Handler

0x008 rjmp TIM2_COMPB ; Timer2 Compare B Handler

0x009 rjmp TIM2_OVF ; Timer2 Overflow Handler

0x00A rjmp TIM1_CAPT ; Timer1 Capture Handler

0x00B rjmp TIM1_COMPA ; Timer1 Compare A Handler

0x00C rjmp TIM1_COMPB ; Timer1 Compare B Handler

0x00D rjmp TIM1_OVF ; Timer1 Overflow Handler

0x00E rjmp TIM0_COMPA ; Timer0 Compare A Handler

0x00F rjmp TIM0_COMPB ; Timer0 Compare B Handler

0x010 rjmp TIM0_OVF ; Timer0 Overflow Handler

0x011 rjmp SPI_STC ; SPI Transfer Complete Handler

0x012 rjmp USART_RXC ; USART, RX Complete Handler

0x013 rjmp USART_UDRE ; USART, UDR Empty Handler

0x014 rjmp USART_TXC ; USART, TX Complete Handler

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

81

Address Labels Code Comments

0x000 rjmp RESET ; Reset Handler

0x001 rjmp EXT_INT0 ; IRQ0 Handler

0x002 rjmp EXT_INT1 ; IRQ1 Handler

0x003 rjmp PCINT0 ; PCINT0 Handler

0x004 rjmp PCINT1 ; PCINT1 Handler

0x005 rjmp PCINT2 ; PCINT2 Handler

0x006 rjmp WDT ; Watchdog Timer
Handler

0x007 rjmp TIM2_COMPA ; Timer2 Compare A
Handler

0X008 rjmp TIM2_COMPB ; Timer2 Compare B
Handler

0x009 rjmp TIM2_OVF ; Timer2 Overflow
Handler

0x00A rjmp TIM1_CAPT ; Timer1 Capture
Handler

0x00B rjmp TIM1_COMPA ; Timer1 Compare A
Handler

0x00C rjmp TIM1_COMPB ; Timer1 Compare B
Handler

0x00D rjmp TIM1_OVF ; Timer1 Overflow
Handler

0x00E rjmp TIM0_COMPA ; Timer0 Compare A
Handler

0x00F rjmp TIM0_COMPB ; Timer0 Compare B
Handler

0x010 rjmp TIM0_OVF ; Timer0 Overflow
Handler

0x011 rjmp SPI_STC ; SPI Transfer Complete
Handler

0x012 rjmp USART_RXC ; USART, RX Complete
Handler

0x013 rjmp USART_UDRE ; USART, UDR Empty
Handler

0x014 rjmp USART_TXC ; USART, TX Complete
Handler

0x015 rjmp ADC ; ADC Conversion
Complete Handler

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

84

– PCINT4: Pin Change Interrupt source 4. The PB4 pin can serve as an external interrupt
source.

• MOSI0/TXD1/OC2A/PCINT3 – Port B, Bit 3
– MOSI0: SPI0 Master Data output, Slave Data input for SPI0 channel. When the SPI0 is

enabled as a Slave, this pin is configured as an input regardless of the setting of DDB3. When
the SPI0 is enabled as a Master, the data direction of this pin is controlled by DDB3. When
the pin is forced by the SPI0 to be an input, the pull-up can still be controlled by the PORTB3
bit.

– TXD1: Transmit Data (Data output pin for the USART1). When the USART1 Transmitter is
enabled, this pin is configured as an output regardless of the value of DDB3.

– OC2A: Output Compare Match output. The PB3 pin can serve as an external output for the
Timer/Counter2 Compare Match A. The PB3 pin has to be configured as an output (DDB3 set
'1') to serve this function. The OC2A pin is also the output pin for the PWM mode timer
function.

– PCINT3: Pin Change Interrupt source 3. The PB3 pin can serve as an external interrupt
source.

• SS0/OC1B/PCINT2 – Port B, Bit 2
– SS0: Slave0 Select input. When the SPI0 is enabled as a Slave, this pin is configured as an

input regardless of the setting of DDB2. As a Slave, the SPI0 is activated when this pin is
driven low. When the SPI0 is enabled as a Master, the data direction of this pin is controlled
by DDB2. When the pin is forced by the SPI0 to be an input, the pull-up can still be controlled
by the PORTB2 bit.

– OC1B: Output Compare Match output. The PB2 pin can serve as an external output for the
Timer/Counter1 Compare Match B. The PB2 pin has to be configured as an output (DDB2 set
(one)) to serve this function. The OC1B pin is also the output pin for the PWM mode timer
function.

– PCINT2: Pin Change Interrupt source 2. The PB2 pin can serve as an external interrupt
source.

• OC1A/PCINT1 – Port B, Bit 1
– OC1A: Output Compare Match output. The PB1 pin can serve as an external output for the

Timer/Counter1 Compare Match A. The PB1 pin has to be configured as an output (DDB1 set
(one)) to serve this function. The OC1A pin is also the output pin for the PWM mode timer
function.

– PCINT1: Pin Change Interrupt source 1. The PB1 pin can serve as an external interrupt
source.

• ICP1/CLKO/PCINT0 – Port B, Bit 0
– ICP1: Input Capture Pin. The PB0 pin can act as an Input Capture Pin for Timer/Counter1.
– CLKO: Divided System Clock. The divided system clock can be output on the PB0 pin. The

divided system clock will be output if the CKOUT Fuse is programmed, regardless of the
PORTB0 and DDB0 settings. It will also be output during reset.

– PCINT0: Pin Change Interrupt source 0. The PB0 pin can serve as an external interrupt
source.

Table 19-3 Port B Pins Alternate Functions and Table 19-5 Overriding Signals for Alternate Functions in
PB3...PB0 relate the alternate functions of Port B to the overriding signals shown in Figure 19-5 Alternate
Port Functions(1). SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the MISO signal, while MOSI is
divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

114

19.4. Register Description

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

124

Table 20-10. Clock Select Bit Description

CA02 CA01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the counter
even if the pin is configured as an output. This feature allows software control of the counting.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

157

Assembly Code Example(1)

TIM16_ReadTCNT1:
 ; Save global interrupt flag
 in r18,SREG
 ; Disable interrupts
 cli
 ; Read TCNT1 into r17:r16
 in r16,TCNT1L
 in r17,TCNT1H
 ; Restore global interrupt flag
 out SREG,r18
 ret

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

C Code Example(1)

unsigned int TIM16_ReadTCNT1(void)
{
 unsigned char sreg;
 unsigned int i;
 /* Save global interrupt flag */
 sreg = SREG;
 /* Disable interrupts */
 _CLI();
 /* Read TCNT1 into i */
 i = TCNT1;
 /* Restore global interrupt flag */
 SREG = sreg;
 return i;
}

Note: 
1. The example code assumes that the part specific header file is included. For I/O Registers located

in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced
with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”.

Atomic Write
The following code examples show how to do an atomic write of the TCNT1 Register contents. Writing
any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Assembly Code Example(1)

TIM16_WriteTCNT1:
 ; Save global interrupt flag
 in r18,SREG
 ; Disable interrupts
 cli
 ; Set TCNT1 to r17:r16
 out TCNT1H,r17
 out TCNT1L,r16
 ; Restore global interrupt flag
 out SREG,r18
 ret

The assembly code example requires that the r17:r16 register pair contains the value to
be written to TCNT1.

C Code Example(1)

void TIM16_WriteTCNT1(unsigned int i)
{
 unsigned char sreg;
 unsigned int i;

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

168

23.11.4. TC2 Output Compare Register A

Name:  OCR2A
Offset:  0xB3
Reset:  0x00
Property:
 

-

Bit 7 6 5 4 3 2 1 0
 OCR2A[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 – OCR2A[7:0]: Output Compare 2 A
The Output Compare Register A contains an 8-bit value that is continuously compared with the counter
value (TCNT2). A match can be used to generate an Output Compare interrupt, or to generate a
waveform output on the OC2A pin.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

225

23.11.6. TC2 Interrupt Mask Register

Name:  TIMSK2
Offset:  0x70
Reset:  0x00
Property:
 

-

Bit 7 6 5 4 3 2 1 0
 OCIE2B OCIE2A TOIE2

Access R/W R/W R/W
Reset 0 0 0

Bit 2 – OCIE2B: Timer/Counter2, Output Compare B Match Interrupt Enable
When the OCIE2B bit is written to '1' and the I-bit in the Status Register is set (one), the Timer/Counter2
Compare Match B interrupt is enabled. The corresponding interrupt is executed if a compare match in
Timer/Counter2 occurs, i.e., when the OCF2B bit is set in TIFR2.

Bit 1 – OCIE2A: Timer/Counter2, Output Compare A Match Interrupt Enable
When the OCIE2A bit is written to '1' and the I-bit in the Status Register is set (one), the Timer/Counter2
Compare Match A interrupt is enabled. The corresponding interrupt is executed if a compare match in
Timer/Counter2 occurs, i.e., when the OCF2A bit is set in TIFR2.

Bit 0 – TOIE2: Timer/Counter2, Overflow Interrupt Enable
When the TOIE2 bit is written to '1' and the I-bit in the Status Register is set (one), the Timer/Counter2
Overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter2
occurs, i.e., when the TOV2 bit is set in TIFR2.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

227

More advanced initialization routines can be written to include frame format as
parameters, disable interrupts, and so on. However, many applications use a fixed setting
of the baud and control registers, and for these types of applications the initialization
code can be placed directly in the main routine, or be combined with initialization code for
other I/O modules.

Related Links
About Code Examples on page 22

25.7. Data Transmission – The USART Transmitter
The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the UCSRnB Register.
When the Transmitter is enabled, the normal port operation of the TxDn pin is overridden by the USART
and given the function as the Transmitter’s serial output. The baud rate, mode of operation and frame
format must be set up once before doing any transmissions. If synchronous operation is used, the clock
on the XCKn pin will be overridden and used as transmission clock.

25.7.1. Sending Frames with 5 to 8 Data Bits
A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The CPU
can load the transmit buffer by writing to the UDRn I/O location. The buffered data in the transmit buffer
will be moved to the Shift Register when the Shift Register is ready to send a new frame. The Shift
Register is loaded with new data if it is in idle state (no ongoing transmission) or immediately after the last
stop bit of the previous frame is transmitted. When the Shift Register is loaded with new data, it will
transfer one complete frame at the rate given by the Baud Register, U2Xn bit or by XCKn depending on
mode of operation.

The following code examples show a simple USART transmit function based on polling of
the Data Register Empty (UDRE) Flag. When using frames with less than eight bits, the
most significant bits written to the UDR0 are ignored. The USART 0 has to be initialized
before the function can be used. For the assembly code, the data to be sent is assumed
to be stored in Register R17.

Assembly Code Example

USART_Transmit:
 ; Wait for empty transmit buffer
 in r17, UCSR0A
 sbrs r17, UDRE
 rjmp USART_Transmit
 ; Put data (r16) into buffer, sends the data
 out UDR0,r16
 ret

C Code Example

void USART_Transmit(unsigned char data)
{
 /* Wait for empty transmit buffer */
 while (!(UCSR0A & (1<<UDRE)))
 ;
 /* Put data into buffer, sends the data */
 UDR0 = data;
}

The function simply waits for the transmit buffer to be empty by checking the UDRE Flag,
before loading it with new data to be transmitted. If the Data Register Empty interrupt is
utilized, the interrupt routine writes the data into the buffer.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

247

The Data OverRun (DOR) Flag indicates data loss due to a receiver buffer full condition. A Data OverRun
occurs when the receive buffer is full (two characters), a new character is waiting in the Receive Shift
Register, and a new start bit is detected. If the DOR Flag is set, one or more serial frames were lost
between the last frame read from UDR, and the next frame read from UDR. For compatibility with future
devices, always write this bit to zero when writing to UCSRnA. The DOR Flag is cleared when the frame
received was successfully moved from the Shift Register to the receive buffer.

The Parity Error (UPE) Flag indicates that the next frame in the receive buffer had a Parity Error when
received. If Parity Check is not enabled the UPE bit will always read '0'. For compatibility with future
devices, always set this bit to zero when writing to UCSRnA. For more details see Parity Bit Calculation
and 'Parity Checker' below.

25.8.5. Parity Checker
The Parity Checker is active when the high USART Parity Mode bit 1 in the USART Control and Status
Register n C (UCSRnC.UPM[1]) is written to '1'. The type of Parity Check to be performed (odd or even)
is selected by the UCSRnC.UPM[0] bit. When enabled, the Parity Checker calculates the parity of the
data bits in incoming frames and compares the result with the parity bit from the serial frame. The result
of the check is stored in the receive buffer together with the received data and stop bits. The USART
Parity Error Flag in the USART Control and Status Register n A (UCSRnA.UPE) can then be read by
software to check if the frame had a Parity Error.

The UPEn bit is set if the next character that can be read from the receive buffer had a Parity Error when
received and the Parity Checking was enabled at that point (UPM[1] = 1). This bit is valid until the receive
buffer (UDRn) is read.

25.8.6. Disabling the Receiver
In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing receptions
will therefore be lost. When disabled (i.e., UCSRnB.RXEN is written to zero) the Receiver will no longer
override the normal function of the RxDn port pin. The Receiver buffer FIFO will be flushed when the
Receiver is disabled. Remaining data in the buffer will be lost.

25.8.7. Flushing the Receive Buffer
The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer will be emptied of
its contents. Unread data will be lost. If the buffer has to be flushed during normal operation, due to for
instance an error condition, read the UDRn I/O location until the RXCn Flag is cleared.

The following code shows how to flush the receive buffer of USART0.

Assembly Code Example

USART_Flush:
 in r16, UCSR0A
 sbrs r16, RXC
 ret
 in r16, UDR0
 rjmp USART_Flush

C Code Example

void USART_Flush(void)
{
 unsigned char dummy;
 while (UCSR0A & (1<<RXC)) dummy = UDR0;
}

Related Links
About Code Examples on page 22

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

252

Baud
Rate
[bps]

fosc = 3.6864MHz fosc = 4.0000MHz fosc = 7.3728MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%

0.5M – – 0 -7.8% – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – – – – – – – – – 0 -7.8%

Max.(1) 230.4kbps 460.8kbps 250kbps 0.5Mbps 460.8kbps 921.6kbps

(1) UBRRn = 0, Error = 0.0%

Table 25-8. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies

Baud
Rate
[bps]

fosc = 8.0000MHz fosc = 11.0592MHz fosc = 14.7456MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%

4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%

9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%

14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%

19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%

28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%

38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%

57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%

76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%

115.2k 3 8.5% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%

230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%

250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%

0.5M 0 0.0% 1 0.0% – – 2 -7.8% 1 -7.8% 3 -7.8%

1M – – 0 0.0% – – – – 0 -7.8% 1 -7.8%

Max.(1) 0.5Mbps 1Mbps 691.2kbps 1.3824Mbps 921.6kbps 1.8432Mbps

(1) UBRRn = 0, Error = 0.0%

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

259

Status
Code
(TWSR)

Prescaler
Bits are 0

Status of the 2-wire
Serial Bus and 2-wire
Serial Interface
Hardware

Application Software Response Next Action Taken by TWI Hardware

To/from TWDR To TWCRn

STA STO TWINT TWEA

0x30 Data byte has been
transmitted;
NOT ACK has been
received

Load data byte
or

0 0 1 X Data byte will be transmitted and ACK or
NOT ACK will be received

No TWDR
action or

1 0 1 X Repeated START will be transmitted

No TWDR
action or

0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset

No TWDR
action

1 1 1 X STOP condition followed by a START
condition will be transmitted and TWSTO
Flag will be reset

0x38 Arbitration lost in SLA
+W or data bytes

No TWDR
action or

0 0 1 X 2-wire Serial Bus will be released and not
addressed Slave mode entered

No TWDR
action

1 0 1 X A START condition will be transmitted
when the bus becomes free

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

292

Figure 27-13. Data Transfer in Master Receiver Mode

Device 1
MASTER

RECEIVER

Device 2
SLA VE

TRANSMITTER
Device 3 Device n

SD A

SCL

........ R1 R2

VCC

A START condition is sent by writing to the TWI Control register (TWCRn) a value of the type
TWCRn=1x10x10x:

• TWCRn.TWEN must be written to '1' to enable the 2-wire Serial Interface
• TWCRn.TWSTA must be written to '1' to transmit a START condition
• TWCRn.TWINT must be cleared by writing a '1' to it.

The TWI will then test the 2-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT Flag is set by hardware, and
the status code in TWSRn will be 0x08 (see Status Code table below). In order to enter MR mode, SLA
+R must be transmitted. This is done by writing SLA+R to TWDR. Thereafter, the TWINT flag should be
cleared (by writing '1' to it) to continue the transfer. This is accomplished by writing the a value to TWCRn
of the type TWCRn=1x00x10x.

When SLA+R have been transmitted and an acknowledgment bit has been received, TWINT is set again
and a number of status codes in TWSRn are possible. Possible status codes in Master mode are 0x38,
0x40, or 0x48. The appropriate action to be taken for each of these status codes is detailed in the table
below. Received data can be read from the TWDR Register when the TWINT Flag is set high by
hardware. This scheme is repeated until the last byte has been received. After the last byte has been
received, the MR should inform the ST by sending a NACK after the last received data byte. The transfer
is ended by generating a STOP condition or a repeated START condition. A repeated START condition is
sent by writing to the TWI Control register (TWCRn) a value of the type TWCRn=1x10x10x again. A
STOP condition is generated by writing TWCRn=1xx01x10x:

After a repeated START condition (status code 0x10) the 2-wire Serial Interface can access the same
Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables the Master
to switch between Slaves, Master Transmitter mode and Master Receiver mode without losing control
over the bus.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

294

Figure 27-19. Combining Several TWI Modes to Access a Serial EEPROM
Master Transmitter Master Receiv er

S = ST AR T Rs = REPEA TED ST AR T P = ST OP

Transmitted from master to sla v e Transmitted from sla v e to master

S SLA+W A ADDRESS A Rs SLA+R A DATA A P

27.8. Multi-master Systems and Arbitration
If multiple masters are connected to the same bus, transmissions may be initiated simultaneously by one
or more of them. The TWI standard ensures that such situations are handled in such a way that one of
the masters will be allowed to proceed with the transfer, and that no data will be lost in the process. An
example of an arbitration situation is depicted below, where two masters are trying to transmit data to a
Slave Receiver.

Figure 27-20. An Arbitration Example

Device 1
MASTER

TRANSMITTER

Device 2
MASTER

TRANSMITTER

Device 3
SLA VE

RECEIVER
Device n

SD A

SCL

........ R1 R2

VCC

Several different scenarios may arise during arbitration, as described below:

• Two or more masters are performing identical communication with the same Slave. In this case,
neither the Slave nor any of the masters will know about the bus contention.

• Two or more masters are accessing the same Slave with different data or direction bit. In this case,
arbitration will occur, either in the READ/WRITE bit or in the data bits. The masters trying to output
a '1' on SDA while another Master outputs a zero will lose the arbitration. Losing masters will switch
to not addressed Slave mode or wait until the bus is free and transmit a new START condition,
depending on application software action.

• Two or more masters are accessing different slaves. In this case, arbitration will occur in the SLA
bits. Masters trying to output a '1' on SDA while another Master outputs a zero will lose the
arbitration. Masters losing arbitration in SLA will switch to Slave mode to check if they are being
addressed by the winning Master. If addressed, they will switch to SR or ST mode, depending on
the value of the READ/WRITE bit. If they are not being addressed, they will switch to not addressed
Slave mode or wait until the bus is free and transmit a new START condition, depending on
application software action.

This is summarized in the next figure. Possible status values are given in circles.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

306

Figure 27-21. Possible Status Codes Caused by Arbitration

Own
Address / General Call

received

Arbitration lost in SLA

TWI bus will be released and not addressed slave mode will be entered
A START condition will be transmitted when the bus becomes free

No

Arbitration lost in Data

Direction

Yes

Write Data byte will be received and NOT ACK will be returned
Data byte will be received and ACK will be returned

Last data byte will be transmitted and NOT ACK should be received
Data byte will be transmitted and ACK should be received

Read
B0

68/78

38

SLASTART Data STOP

27.9. Register Description

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

307

29.9.3. ADC Data Register Low (ADLAR=0)
When an ADC conversion is complete, the result is found in these two registers.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if the result
is left adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise,
ADCL must be read first, then ADCH.

The ADLAR bit and the MUXn bits in ADMUX affect the way the result is read from the registers. If
ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result is right adjusted.

Name:  ADCL
Offset:  0x78
Reset:  0x00
Property:
 

ADLAR = 0

Bit 7 6 5 4 3 2 1 0
 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 7:0 – ADCn: ADC Conversion Result [n = 7:0]
These bits represent the result from the conversion. Refer to ADC Conversion Result for details.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

338

Figure. The debugWIRE Setup shows the schematic of a target MCU, with debugWIRE enabled, and the
emulator connector. The system clock is not affected by debugWIRE and will always be the clock source
selected by the CKSEL Fuses.

When designing a system where debugWIRE will be used, the following observations must be made for
correct operation:

• Pull-up resistors on the dW/(RESET) line must not be smaller than 10kΩ. The pull-up resistor is not
required for debugWIRE functionality

• Connecting the RESET pin directly to VCC will not work.
• Capacitors connected to the RESET pin must be disconnected when using debugWire.
• All external reset sources must be disconnected.

30.4. Software Break Points
debugWIRE supports Break Points function in Program Memory by the AVR Break instruction. Setting a
break point in Atmel Studio will insert a BREAK instruction in the Program Memory. The Instruction
replaced by the BREAK instruction will be stored. When program execution is continued, the stored
instruction will be executed before continuing from the Program Memory. A break can be inserted
manually by putting the BREAK instruction in the program.

The Flash must be re-programmed each time when a Break Point is changed. This is automatically
handled by Atmel Studio through the debugWIRE interface. The use of Break Points will therefore reduce
the Flash Data retention. Devices used for debugging purposes should not be shipped to end customers.

30.5. Limitations of debugWIRE
The debugWIRE communication pin (dW) is physically located on the same pin as External Reset
(RESET). An External Reset source is therefore not supported when the debugWIRE is enabled.

A programmed DWEN Fuse enables some parts of the clock system to be running in all sleep modes.
This will increase the power consumption while in sleep. Thus, the DWEN Fuse should be disabled when
debugWire is not used.

30.6. Register Description
The following section describes the registers used with the debugWire.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

345

31. Self-Programming the Flash

31.1. Overview
In ATmega48PB, there is no Read-While-Write support and no separate Boot Loader Section. The SPM
instruction can be executed from the entire Flash.

The device provides a Self-Programming mechanism for downloading and uploading program code by
the MCU itself. The Self-Programming can use any available data interface and associated protocol to
read code and write (program) that code into the Program Memory.

The Program Memory is updated in a page by page fashion. Before programming a page with the data
stored in the temporary page buffer, the page must be erased. The temporary page buffer is filled with
one word at a time using SPM, and the buffer can be filled either before the Page Erase command or
between a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase
• Fill temporary page buffer
• Perform a Page Erase
• Perform a Page Write

Alternative 2, fill the buffer after Page Erase
• Perform a Page Erase
• Fill temporary page buffer
• Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example in the
temporary page buffer) before the erase, and then be re-written. When using alternative 1, the Boot
Loader provides an effective Read-Modify-Write feature which allows the user software to first read the
page, do the necessary changes, and then write back the modified data. If alternative 2 is used, it is not
possible to read the old data while loading since the page is already erased. The temporary page buffer
can be accessed in a random sequence. It is essential that the page address used in both the Page
Erase and Page Write operation is addressing the same page.

31.1.1. Performing Page Erase by Store Program Memory (SPM)
To execute Page Erase, set up the address in the Z-pointer (R30 and R31), write “0x00000011” to Store
Program Memory Control and Status Register (SPMCSR) and execute Store Program Memory (SPM)
within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored. The page address must
be written to PCPAGE ([Z12:Z6]) in the Z-register. Other bits in the Z-pointer will be ignored during this
operation.

• The CPU is halted during the Page Erase operation
Note:  If an interrupt occurs in the time sequence the four cycle access cannot be guaranteed. In
order to ensure atomic operation you should disable interrupts before writing to SPMCSR.

31.1.2. Filling the Temporary Buffer (Page Loading)
To write an instruction word, set up the address in the Z-pointer (R30 and R31) and data in R1:R0, write
“0x00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The content
of PCWORD ([Z5:Z1]) in the Z-register is used to address the data in the temporary buffer. The temporary
buffer will auto-erase after a Page Write operation or by writing the RWWSRE bit in SPMCSR. It is also

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

347

Figure 32-3. Addressing the Flash During SPM

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE
PCMSB PAGEMSB

PROGRAM
COUNTER

Note:  The different variables used in this figure are listed in the Related Links.

Related Links
Page Size on page 378
ATmega88PB Boot Loader Parameters on page 369

32.8. Self-Programming the Flash
The program memory is updated in a page by page fashion. Before programming a page with the data
stored in the temporary page buffer, the page must be erased. The temporary page buffer is filled one
word at a time using SPM and the buffer can be filled either before the Page Erase command or between
a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase
• Fill temporary page buffer
• Perform a Page Erase
• Perform a Page Write

Alternative 2, fill the buffer after Page Erase
• Perform a Page Erase
• Fill temporary page buffer
• Perform a Page Write

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

362

