
Microchip Technology - ATMEGA168PB-MU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 27

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 32-VFQFN Exposed Pad

Supplier Device Package 32-VFQFN (5x5)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega168pb-mu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega168pb-mu-4389580
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Figure 12-3. The X-, Y-, and Z-registers
15 XH XL 0

X-regis te r 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-regis te r 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-regis te r 7 0 7 0

R31 (0x1F) R30 (0x1E)

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement. See Instruction Set Summary for details.

12.5. Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing return
addresses after interrupts and subroutine calls. The Stack is implemented as growing from higher to
lower memory locations. The Stack Pointer Register always points to the top of the Stack.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are
located. A Stack PUSH command will decrease the Stack Pointer. The Stack in the data SRAM must be
defined by the program before any subroutine calls are executed or interrupts are enabled. Initial Stack
Pointer value equals the last address of the internal SRAM and the Stack Pointer must be set to point
above start of the SRAM. See the table for Stack Pointer details.

Table 12-1. Stack Pointer Instructions

Instruction Stack pointer Description

PUSH Decremented by 1 Data is pushed onto the stack

ICALL

RCALL

Decremented by 2 Return address is pushed onto the stack with a subroutine call or
interrupt

POP Incremented by 1 Data is popped from the stack

RET

RETI

Incremented by 2 Return address is popped from the stack with return from subroutine or
return from interrupt

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually
used is implementation dependent. Note that the data space in some implementations of the AVR
architecture is so small that only SPL is needed. In this case, the SPH Register will not be present.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

28

12.5.2. Stack Pointer Low Register
When addressing I/O Registers as data space using LD and ST instructions, the provided offset must be
used. When using the I/O specific commands IN and OUT, the offset is reduced by 0x20, resulting in an
I/O address offset within 0x00 - 0x3F.

Reset value of SPL is RAMEND.

Name:  SPL
Offset:  0x5D
Reset:  0xXX
Property:
 

When addressing as I/O Register: address offset is 0x3D

Bit 7 6 5 4 3 2 1 0
 SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset x x x x x x x x

Bit 7 – SP7: Stack Pointer Address 7

Bit 6 – SP6: Stack Pointer Address 6

Bit 5 – SP5: Stack Pointer Address 5

Bit 4 – SP4: Stack Pointer Address 4

Bit 3 – SP3: Stack Pointer Address 3

Bit 2 – SP2: Stack Pointer Address 2

Bit 1 – SP1: Stack Pointer Address 1

Bit 0 – SP0: Stack Pointer Address 0

12.6. Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR CPU is
driven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal
clock division is used. The Figure below shows the parallel instruction fetches and instruction executions
enabled by the Harvard architecture and the fast-access Register File concept. This is the basic pipelining
concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

30

Flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt
condition occurs while the corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and
remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more
interrupt conditions occur while the Global Interrupt Enable bit is cleared, the corresponding Interrupt
Flag(s) will be set and remembered until the Global Interrupt Enable bit is set, and will then be executed
by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do
not necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled,
the interrupt will not be triggered. When the AVR exits from an interrupt, it will always return to the main
program and execute one more instruction before any pending interrupt is served.

The Status Register is not automatically stored when entering an interrupt routine, nor restored when
returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No
interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction.
The following example shows how this can be used to avoid interrupts during the timed EEPROM write
sequence.

Assembly Code Example

in r16, SREG ; store SREG value
cli ; disable interrupts during timed sequence
sbi EECR, EEMPE ; start EEPROM write
sbi EECR, EEPE
out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;
cSREG = SREG; /* store SREG value */
/* disable interrupts during timed sequence */
_CLI();
EECR |= (1<<EEMPE); /* start EEPROM write */
EECR |= (1<<EEPE);
SREG = cSREG; /* restore SREG value (I-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before
any pending interrupts, as shown in this example.

Assembly Code Example

sei ; set Global Interrupt Enable
sleep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending interrupt(s)

C Code Example

__enable_interrupt(); /* set Global Interrupt Enable */
__sleep(); /* enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */

Related Links
Interrupts on page 80
Memory Programming on page 374
Boot Loader Support – Read-While-Write Self-Programming on page 356

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

32

• Brown-out Reset
• 2-wire Serial Interface address match
• Timer/Counter2 interrupt
• SPM/EEPROM ready interrupt
• External level interrupt on INT0 or INT1
• Pin change interrupt

Note:  1. Timer/Counter2 will only keep running in asynchronous mode.

Related Links
8-bit Timer/Counter2 with PWM and Asynchronous Operation on page 205

15.5. Power-Down Mode
When the SM[2:0] bits are written to '010', the SLEEP instruction makes the MCU enter Power-Down
mode. In this mode, the external Oscillator is stopped, while the external interrupts, the 2-wire Serial
Interface address watch, and the Watchdog continue operating (if enabled).

Only one of these events can wake up the MCU:
• External Reset
• Watchdog System Reset
• Watchdog Interrupt
• Brown-out Reset
• 2-wire Serial Interface address match
• External level interrupt on INT0 or INT1
• Pin change interrupt

This sleep mode basically halts all generated clocks, allowing operation of asynchronous modules only.

Note:  If a level triggered interrupt is used for wake-up from Power-Down, the required level must be held
long enough for the MCU to complete the wake-up to trigger the level interrupt. If the level disappears
before the end of the Start-up Time, the MCU will still wake up, but no interrupt will be generated. The
start-up time is defined by the SUT and CKSEL Fuses.

When waking up from Power-Down mode, there is a delay from the wake-up condition occurs until the
wake-up becomes effective. This allows the clock to restart and become stable after having been
stopped. The wake-up period is defined by the same CKSEL Fuses that define the Reset Time-out
period.

Related Links
Clock Sources on page 49
External Interrupts on page 95
System Clock and Clock Options on page 48

15.6. Power-save Mode
When the SM[2:0] bits are written to 011, the SLEEP instruction makes the MCU enter Power-save mode.
This mode is identical to Power-down, with one exception:

If Timer/Counter2 is enabled, it will keep running during sleep. The device can wake up from either Timer
Overflow or Output Compare event from Timer/Counter2 if the corresponding Timer/Counter2 interrupt
enable bits are set in TIMSK2, and the Global Interrupt Enable bit in SREG is set.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

62

If Timer/Counter2 is not running, Power-down mode is recommended instead of Power-save mode.

The Timer/Counter2 can be clocked both synchronously and asynchronously in Power-save mode. If
Timer/Counter2 is not using the asynchronous clock, the Timer/Counter Oscillator is stopped during
sleep. If Timer/Counter2 is not using the synchronous clock, the clock source is stopped during sleep.
Even if the synchronous clock is running in Power-save, this clock is only available for Timer/Counter2.

15.7. Standby Mode
When the SM[2:0] bits are written to '110' and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-Down with the
exception that the Oscillator is kept running. From Standby mode, the device wakes up in six clock
cycles.

15.8. Extended Standby Mode
When the SM[2:0] bits are written to '111' and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Extended Standby mode. This mode is identical to Power-Save
mode with the exception that the Oscillator is kept running. From Extended Standby mode, the device
wakes up in six clock cycles.

15.9. Power Reduction Register
The Power Reduction Register (PRR) provides a method to stop the clock to individual peripherals to
reduce power consumption. The current state of the peripheral is frozen and the I/O registers can not be
read or written. Resources used by the peripheral when stopping the clock will remain occupied, hence
the peripheral should in most cases be disabled before stopping the clock. Waking up a module, which is
done by clearing the bit in PRR, puts the module in the same state as before shutdown.

Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall power
consumption. In all other sleep modes, the clock is already stopped.

Related Links
PRR on page 69

15.10. Minimizing Power Consumption
There are several possibilities to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep mode
should be selected so that as few as possible of the device’s functions are operating. All functions not
needed should be disabled. In particular, the following modules may need special consideration when
trying to achieve the lowest possible power consumption.

15.10.1. Analog to Digital Converter
If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be disabled
before entering any sleep mode. When the ADC is turned off and on again, the next conversion will be an
extended conversion.

Related Links
Analog-to-Digital Converter on page 322

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

63

Address Labels Code Comments

0x016 rjmp EE_RDY ; EEPROM Ready
Handler

0x017 rjmp ANA_COMP ; Analog Comparator
Handler

0x018 rjmp TWI ; 2-wire Serial Interface
Handler

0x019 rjmp SPM_RDY ; Store Program Memory
Ready Handler

;

0x01A RESET: ldi r16, high(RAMEND) ; Main program start

0x01B out SPH,r16 ; Set Stack Pointer to
top of RAM

0x01C ldi r16, low(RAMEND)

0x01D out SPL,r16

0x01E sei ; Enable interrupts

0x01F <instr> xxx

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2Kbytes and the IVSEL bit in
the MCUCR Register (MCUCR.IVSEL) is set before any interrupts are enabled, the most typical and
general program setup for the Reset and Interrupt Vector Addresses in ATmega88PB is:

Address Labels Code Comments

0x000 RESET: ldi r16,high(RAMEND) ; Main program start

0x001 out SPH,r16 ; Set Stack Pointer to
top of RAM

0x002 ldi r16,low(RAMEND)

0x003 out SPL,r16

0x004 sei ; Enable interrupts

0x005 <instr> xxx

;

.org 0xC01

0xC01 rjmp EXT_INT0 ; IRQ0 Handler

0xC02 rjmp EXT_INT1 ; IRQ1 Handler

...

;

0xC19 rjmp SPM_RDY ; Store Program Memory
Ready Handler

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

85

Boot Loader Support – Read-While-Write Self-Programming on page 356
ATmega168PB Boot Loader Parameters on page 370

17.4. Register Description

17.4.1. Moving Interrupts Between Application and Boot Space
The MCU Control Register controls the placement of the Interrupt Vector table.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

92

19. I/O-Ports

19.1. Overview
All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports. This
means that the direction of one port pin can be changed without unintentionally changing the direction of
any other pin with the SBI and CBI instructions. The same applies when changing drive value (if
configured as output) or enabling/disabling of pull-up resistors (if configured as input). Each output buffer
has symmetrical drive characteristics with both high sink and source capability. The pin driver is strong
enough to drive LED displays directly. All port pins have individually selectable pull-up resistors with a
supply-voltage invariant resistance. All I/O pins have protection diodes to both VCC and Ground as
indicated in the following figure.

Figure 19-1. I/O Pin Equivalent Schematic

Cpin

Logic

Rpu

See Figure
"General Digital I/O" for

Details

Pxn

All registers and bit references in this section are written in general form. A lower case “x” represents the
numbering letter for the port, and a lower case “n” represents the bit number. However, when using the
register or bit defines in a program, the precise form must be used. For example, PORTB3 for bit no. 3 in
Port B, here documented generally as PORTxn.

Three I/O memory address locations are allocated for each port, one each for the Data Register –
PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The Port Input Pins I/O location
is read only, while the Data Register and the Data Direction Register are read/write. However, writing '1'
to a bit in the PINx Register will result in a toggle in the corresponding bit in the Data Register. In addition,
the Pull-up Disable – PUD bit in MCUCR disables the pull-up function for all pins in all ports when set.

Using the I/O port as General Digital I/O is described in next section. Most port pins are multiplexed with
alternate functions for the peripheral features on the device. How each alternate function interferes with
the port pin is described in Alternate Port Functions section in this chapter. Refer to the individual module
sections for a full description of the alternate functions.

Enabling the alternate function of some of the port pins does not affect the use of the other pins in the
port as general digital I/O.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

105

19.2.2. Toggling the Pin
Writing a '1' to PINxn toggles the value of PORTxn, independent on the value of DDRxn. The SBI
instruction can be used to toggle one single bit in a port.

19.2.3. Switching Between Input and Output
When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn} = 0b11),
an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output low ({DDxn,
PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully acceptable, as a high-
impedance environment will not notice the difference between a strong high driver and a pull-up. If this is
not the case, the PUD bit in the MCUCR Register can be set to disable all pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user must use
either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn} = 0b11) as an
intermediate step.

The following table summarizes the control signals for the pin value.

Table 19-1. Port Pin Configurations

DDxn PORTxn PUD
(in MCUCR)

I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes Pxn will source current if ext. pulled low

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)

19.2.4. Reading the Pin Value
Independent of the setting of Data Direction bit DDxn, the port pin can be read through the PINxn
Register bit. As shown in Ports as General Digital I/O, the PINxn Register bit and the preceding latch
constitute a synchronizer. This is needed to avoid metastability if the physical pin changes value near the
edge of the internal clock, but it also introduces a delay. The following figure shows a timing diagram of
the synchronization when reading an externally applied pin value. The maximum and minimum
propagation delays are denoted tpd,max and tpd,min respectively.

Figure 19-3. Synchronization when Reading an Externally Applied Pin value

XXX in r17, PINx

0x00 0xFF

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX

SYSTEM CLK

tpd, max

tpd, min

Consider the clock period starting shortly after the first falling edge of the system clock. The latch is
closed when the clock is low, and goes transparent when the clock is high, as indicated by the shaded

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

107

– PCINT4: Pin Change Interrupt source 4. The PB4 pin can serve as an external interrupt
source.

• MOSI0/TXD1/OC2A/PCINT3 – Port B, Bit 3
– MOSI0: SPI0 Master Data output, Slave Data input for SPI0 channel. When the SPI0 is

enabled as a Slave, this pin is configured as an input regardless of the setting of DDB3. When
the SPI0 is enabled as a Master, the data direction of this pin is controlled by DDB3. When
the pin is forced by the SPI0 to be an input, the pull-up can still be controlled by the PORTB3
bit.

– TXD1: Transmit Data (Data output pin for the USART1). When the USART1 Transmitter is
enabled, this pin is configured as an output regardless of the value of DDB3.

– OC2A: Output Compare Match output. The PB3 pin can serve as an external output for the
Timer/Counter2 Compare Match A. The PB3 pin has to be configured as an output (DDB3 set
'1') to serve this function. The OC2A pin is also the output pin for the PWM mode timer
function.

– PCINT3: Pin Change Interrupt source 3. The PB3 pin can serve as an external interrupt
source.

• SS0/OC1B/PCINT2 – Port B, Bit 2
– SS0: Slave0 Select input. When the SPI0 is enabled as a Slave, this pin is configured as an

input regardless of the setting of DDB2. As a Slave, the SPI0 is activated when this pin is
driven low. When the SPI0 is enabled as a Master, the data direction of this pin is controlled
by DDB2. When the pin is forced by the SPI0 to be an input, the pull-up can still be controlled
by the PORTB2 bit.

– OC1B: Output Compare Match output. The PB2 pin can serve as an external output for the
Timer/Counter1 Compare Match B. The PB2 pin has to be configured as an output (DDB2 set
(one)) to serve this function. The OC1B pin is also the output pin for the PWM mode timer
function.

– PCINT2: Pin Change Interrupt source 2. The PB2 pin can serve as an external interrupt
source.

• OC1A/PCINT1 – Port B, Bit 1
– OC1A: Output Compare Match output. The PB1 pin can serve as an external output for the

Timer/Counter1 Compare Match A. The PB1 pin has to be configured as an output (DDB1 set
(one)) to serve this function. The OC1A pin is also the output pin for the PWM mode timer
function.

– PCINT1: Pin Change Interrupt source 1. The PB1 pin can serve as an external interrupt
source.

• ICP1/CLKO/PCINT0 – Port B, Bit 0
– ICP1: Input Capture Pin. The PB0 pin can act as an Input Capture Pin for Timer/Counter1.
– CLKO: Divided System Clock. The divided system clock can be output on the PB0 pin. The

divided system clock will be output if the CKOUT Fuse is programmed, regardless of the
PORTB0 and DDB0 settings. It will also be output during reset.

– PCINT0: Pin Change Interrupt source 0. The PB0 pin can serve as an external interrupt
source.

Table 19-3 Port B Pins Alternate Functions and Table 19-5 Overriding Signals for Alternate Functions in
PB3...PB0 relate the alternate functions of Port B to the overriding signals shown in Figure 19-5 Alternate
Port Functions(1). SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the MISO signal, while MOSI is
divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

114

– SDA0: 2-wire Serial Interface0 Data. When the TWEN bit in TWCR0 is set (one) to enable the
2-wire Serial Interface, pin PC4 is disconnected from the port and becomes the Serial Data
I/O pin for the 2-wire Serial Interface0. In this mode, there is a spike filter on the pin to
suppress spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain
driver with slew-rate limitation.

– PCINT12: Pin Change Interrupt source 12. The PC4 pin can serve as an external interrupt
source.

– PC4 can also be used as ADC input Channel 4. The ADC input channel 4 uses digital power.

• ADC3/PCINT11 – Port C, Bit 3
– PC3 can also be used as ADC input Channel 3. The ADC input channel 3 uses analog power.
– PCINT11: Pin Change Interrupt source 11. The PC3 pin can serve as an external interrupt

source.

• ADC2/PCINT10 – Port C, Bit 2
– PC2 can also be used as ADC input Channel 2. The ADC input channel 2 uses analog power.
– PCINT10: Pin Change Interrupt source 10. The PC2 pin can serve as an external interrupt

source.

• SCK1/ADC1/PCINT9 – Port C, Bit 1

– PC1 can also be used as ADC input Channel 1. The ADC input channel 1 uses analog power.
– SCK1: Master Clock output, Slave Clock input pin for SPI1 channel. When the SPI1 is

enabled as a Slave, this pin is configured as an input regardless of the setting of DDB5. When
the SPI1 is enabled as a Master, the data direction of this pin is controlled by DDC1. When
the pin is forced by the SPI1 to be an input, the pull-up can still be controlled by the PORTC1
bit.

– PCINT9: Pin Change Interrupt source 9. The PC1 pin can serve as an external interrupt
source.

• ADC0/MISO1/PCINT8 – Port C, Bit 0
– PC0 can also be used as ADC input Channel 0. The ADC input channel 0 uses analog power.
– MISO1: Master1 Data input, Slave Data output pin for SPI1 channel. When the SPI1 is

enabled as a Master, this pin is configured as an input regardless of the setting of DDC0.
When the SPI1 is enabled as a Slave, the data direction of this pin is controlled by DDC0.
When the pin is forced by the SPI1 to be an input, the pull-up can still be controlled by the
PORTC0 bit.

– PCINT8: Pin Change Interrupt source 8. The PC0 pin can serve as an external interrupt
source.

The tables below relate the alternate functions of Port C to the overriding signals shown in Figure 19-5 
Alternate Port Functions(1).

Table 19-7. Overriding Signals for Alternate Functions in PC6...PC4(1)

Signal
Name

PC6/RESET/PCINT14 PC5/SCL0/ADC5/PCINT13 PC4/SDA0/ADC4/PCINT12

PUOE RSTDISBL TWEN0 TWEN0

PUOV 1 PORTC5 • PUD PORTC4 • PUD

DDOE RSTDISBL TWEN0 TWEN0

DDOV 0 SCL_OUT0 SDA_OUT0

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

117

Table 19-9. Port D Pins Alternate Functions

Port Pin Alternate Function

PD7 AIN1 (Analog Comparator Negative Input)

PCINT23 (Pin Change Interrupt 23)

PD6 AIN0 (Analog Comparator Positive Input)

OC0A (Timer/Counter0 Output Compare Match A Output)

PCINT22 (Pin Change Interrupt 22)

PD5 T1 (Timer/Counter 1 External Counter Input)

OC0B (Timer/Counter0 Output Compare Match B Output)

PCINT21 (Pin Change Interrupt 21)

PD4 XCK0 (USART0 External Clock Input/Output)

T0 (Timer/Counter 0 External Counter Input)

PCINT20 (Pin Change Interrupt 20)

PD3 INT1 (External Interrupt 1 Input)

OC2B (Timer/Counter2 Output Compare Match B Output)

PCINT19 (Pin Change Interrupt 19)

PD2 INT0 (External Interrupt 0 Input)

PCINT18 (Pin Change Interrupt 18)

PD1 TXD0 (USART0 Output Pin)

PCINT17 (Pin Change Interrupt 17)

PD0 RXD1 (USART1 Input Pin)

PCINT16 (Pin Change Interrupt 16)

The alternate pin configuration is as follows:

• AIN1/OC2B/PCINT23 – Port D, Bit 7

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

119

21.2.2. Registers
The Timer/Counter (TCNT1), Output Compare Registers (OCRA/B), and Input Capture Register (ICR1)
are all 16-bit registers. Special procedures must be followed when accessing the 16-bit registers. These
procedures are described in section Accessing 16-bit Registers.

The Timer/Counter Control Registers (TCCR1A/B/C) are 8-bit registers and have no CPU access
restrictions. Interrupt requests (abbreviated to Int.Req. in the block diagram) signals are all visible in the
Timer Interrupt Flag Register (TIFR1). All interrupts are individually masked with the Timer Interrupt Mask
Register (TIMSK1). TIFR1 and TIMSK1 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the T1
pin. The Clock Select logic block controls which clock source and edge the Timer/Counter uses to
increment (or decrement) its value. The Timer/Counter is inactive when no clock source is selected. The
output from the Clock Select logic is referred to as the timer clock (clkT1).

The double buffered Output Compare Registers (OCR1A/B) are compared with the Timer/Counter value
at all time. The result of the compare can be used by the Waveform Generator to generate a PWM or
variable frequency output on the Output Compare pin (OC1A/B). See Output Compare Units. The
compare match event will also set the Compare Match Flag (OCF1A/B) which can be used to generate
an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge triggered)
event on either the Input Capture pin (ICP1) or on the Analog Comparator pins. The Input Capture unit
includes a digital filtering unit (Noise Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined by either
the OCR1A Register, the ICR1 Register, or by a set of fixed values. When using OCR1A as TOP value in
a PWM mode, the OCR1A Register can not be used for generating a PWM output. However, the TOP
value will in this case be double buffered allowing the TOP value to be changed in run time. If a fixed TOP
value is required, the ICR1 Register can be used as an alternative, freeing the OCR1A to be used as
PWM output.

Related Links
Analog Comparator on page 315

21.3. Block Diagram
The Power Reduction TC1 bit in the Power Reduction Register (PRR.PRTIM1) must be written to zero to
enable the TC1 module.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

165

Table 23-1. Definitions

Constant Description

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its maximum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be the fixed value 0xFF (MAX) or the value
stored in the OCR2A Register. The assignment is dependent on the mode of operation.

23.2.2. Registers
The Timer/Counter (TCNT2) and Output Compare Register (OCR2A and OCR2B) are 8-bit registers.
Interrupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register (TIFR2).
All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK2). TIFR2 and
TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from the
TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by the
Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock source he
Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock
source is selected. The output from the Clock Select logic is referred to as the timer clock (clkT2).

The double buffered Output Compare Register (OCR2A and OCR2B) are compared with the Timer/
Counter value at all times. The result of the compare can be used by the Waveform Generator to
generate a PWM or variable frequency output on the Output Compare pins (OC2A and OC2B). See
Output Compare Unit for details. The compare match event will also set the Compare Flag (OCF2A or
OCF2B) which can be used to generate an Output Compare interrupt request.

23.3. Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal synchronous or an external asynchronous clock source:

The clock source clkT2 is by default equal/synchronous to the MCU clock, clkI/O.

When the Asynchronous TC2 bit in the Asynchronous Status Register (ASSR.AS2) is written to '1', the
clock source is taken from the Timer/Counter Oscillator connected to TOSC1 and TOSC2.

For details on asynchronous operation, see the description of the ASSR. For details on clock sources and
prescaler, see Timer/Counter Prescaler.

23.4. Counter Unit
The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Below is the
block diagram of the counter and its surroundings.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

207

23.11.2. TC2 Control Register B

Name:  TCCR2B
Offset:  0xB1
Reset:  0x00
Property:
 

-

Bit 7 6 5 4 3 2 1 0
 FOC2A FOC2B WGM22 CS22 CS21 CS20

Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 7 – FOC2A: Force Output Compare A
The FOC2A bit is only active when the WGM bits specify a non-PWM mode.

To ensure compatibility with future devices, this bit must be set to zero when TCCR2B is written when
operating in PWM mode. When writing a logical one to the FOC2A bit, an immediate Compare Match is
forced on the Waveform Generation unit. The OC2A output is changed according to its COM2A1:0 bits
setting. Note that the FOC2A bit is implemented as a strobe. Therefore it is the value present in the
COM2A1:0 bits that determines the effect of the forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR2A as
TOP.

The FOC2A bit is always read as zero.

Bit 6 – FOC2B: Force Output Compare B
The FOC2B bit is only active when the WGM bits specify a non-PWM mode.

To ensure compatibility with future devices, this bit must be set to zero when TCCR2B is written when
operating in PWM mode. When writing a logical one to the FOC2B bit, an immediate Compare Match is
forced on the Waveform Generation unit. The OC2B output is changed according to its COM2B1:0 bits
setting. Note that the FOC2B bit is implemented as a strobe. Therefore it is the value present in the
COM2B1:0 bits that determines the effect of the forced compare.

A FOC2B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR2B as
TOP.

The FOC2B bit is always read as zero.

Bit 3 – WGM22: Waveform Generation Mode
Refer to TCCR2A.

Bits 2:0 – CS2n: Clock Select [n = 0..2]
The three Clock Select bits select the clock source to be used by the Timer/Counter.

Table 23-10. Clock Select Bit Description

CA22 CA21 CS20 Description

0 0 0 No clock source (Timer/Counter stopped).

0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

222

24.5.3. SPI Data Register 0
When addressing I/O Registers as data space using LD and ST instructions, the provided offset must be
used. When using the I/O specific commands IN and OUT, the offset is reduced by 0x20, resulting in an
I/O address offset within 0x00 - 0x3F.

Name:  SPDR
Offset:  0x4E
Reset:  0xXX
Property:
 

When addressing as I/O Register: address offset is 0x2E

Bit 7 6 5 4 3 2 1 0
 SPID[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset x x x x x x x x

Bits 7:0 – SPID[7:0]: SPI Data
The SPI Data Register is a read/write register used for data transfer between the Register File and the
SPI Shift Register. Writing to the register initiates data transmission. Reading the register causes the Shift
Register Receive buffer to be read.

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

240

25.12.2. USART Control and Status Register 0 A

Name:  UCSR0A
Offset:  0xC0
Reset:  0x20
Property:
 

-

Bit 7 6 5 4 3 2 1 0
 RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0

Access R R/W R R R R R/W R/W
Reset 0 0 1 0 0 0 0 0

Bit 7 – RXC0: USART Receive Complete
This flag bit is set when there are unread data in the receive buffer and cleared when the receive buffer is
empty (i.e., does not contain any unread data). If the Receiver is disabled, the receive buffer will be
flushed and consequently the RXC0 bit will become zero. The RXC0 Flag can be used to generate a
Receive Complete interrupt (see description of the RXCIE0 bit).

Bit 6 – TXC0: USART Transmit Complete
This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and there are
no new data currently present in the transmit buffer (UDR0). The TXC0 Flag bit is automatically cleared
when a transmit complete interrupt is executed, or it can be cleared by writing a one to its bit location. The
TXC0 Flag can generate a Transmit Complete interrupt (see description of the TXCIE0 bit).

Bit 5 – UDRE0: USART Data Register Empty
The UDRE0 Flag indicates if the transmit buffer (UDR0) is ready to receive new data. If UDRE0 is one,
the buffer is empty, and therefore ready to be written. The UDRE0 Flag can generate a Data Register
Empty interrupt (see description of the UDRIE0 bit). UDRE0 is set after a reset to indicate that the
Transmitter is ready.

Bit 4 – FE0: Frame Error
This bit is set if the next character in the receive buffer had a Frame Error when received. I.e., when the
first stop bit of the next character in the receive buffer is zero. This bit is valid until the receive buffer
(UDR0) is read. The FEn bit is zero when the stop bit of received data is one. Always set this bit to zero
when writing to UCSR0A.

This bit is reserved in Master SPI Mode (MSPIM).

Bit 3 – DOR0: Data OverRun
This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive buffer is
full (two characters), it is a new character waiting in the Receive Shift Register, and a new start bit is
detected. This bit is valid until the receive buffer (UDR0) is read. Always set this bit to zero when writing
to UCSR0A.

This bit is reserved in Master SPI Mode (MSPIM).

Bit 2 – UPE0: USART Parity Error
This bit is set if the next character in the receive buffer had a Parity Error when received and the Parity
Checking was enabled at that point (UPM01 = 1). This bit is valid until the receive buffer (UDR0) is read.
Always set this bit to zero when writing to UCSR0A.

This bit is reserved in Master SPI Mode (MSPIM).

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

262

The UDORDn bit in UCSRnC sets the frame format used by the USART in MSPIM mode. The Receiver
and Transmitter use the same setting. Note that changing the setting of any of these bits will corrupt all
ongoing communication for both the Receiver and Transmitter.

16-bit data transfer can be achieved by writing two data bytes to UDRn. A UART transmit complete
interrupt will then signal that the 16-bit value has been shifted out.

26.5.1. USART MSPIM Initialization
The USART in MSPIM mode has to be initialized before any communication can take place. The
initialization process normally consists of setting the baud rate, setting master mode of operation (by
setting DDR_XCKn to one), setting frame format and enabling the Transmitter and the Receiver. Only the
transmitter can operate independently. For interrupt driven USART operation, the Global Interrupt Flag
should be cleared (and thus interrupts globally disabled) when doing the initialization.

Note:  To ensure immediate initialization of the XCKn output the baud-rate register (UBRRn) must be
zero at the time the transmitter is enabled. Contrary to the normal mode USART operation the UBRRn
must then be written to the desired value after the transmitter is enabled, but before the first transmission
is started. Setting UBRRn to zero before enabling the transmitter is not necessary if the initialization is
done immediately after a reset since UBRRn is reset to zero.

Before doing a re-initialization with changed baud rate, data mode, or frame format, be sure that there is
no ongoing transmissions during the period the registers are changed. The TXCn Flag can be used to
check that the Transmitter has completed all transfers, and the RXCn Flag can be used to check that
there are no unread data in the receive buffer. Note that the TXCn Flag must be cleared before each
transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C function that are
equal in functionality. The examples assume polling (no interrupts enabled). The baud rate is given as a
function parameter. For the assembly code, the baud rate parameter is assumed to be stored in the
r17:r16 registers.

Assembly Code Example

 clr r18
 out UBRRnH,r18
 out UBRRnL,r18
 ; Setting the XCKn port pin as output, enables master mode.
 sbi XCKn_DDR, XCKn
 ; Set MSPI mode of operation and SPI data mode 0.
 ldi r18, (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn)
 out UCSRnC,r18
 ; Enable receiver and transmitter.
 ldi r18, (1<<RXENn)|(1<<TXENn)
 out UCSRnB,r18
 ; Set baud rate.
 ; IMPORTANT: The Baud Rate must be set after the transmitter is enabled!
 out UBRRnH, r17
 out UBRRnL, r18
 ret

C Code Example

{
 UBRRn = 0;
 /* Setting the XCKn port pin as output, enables master mode. */
 XCKn_DDR |= (1<<XCKn);
 /* Set MSPI mode of operation and SPI data mode 0. */
 UCSRnC = (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn);
 /* Enable receiver and transmitter. */
 UCSRnB = (1<<RXENn)|(1<<TXENn);
 /* Set baud rate. */

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

274

Figure 27-7. SCL Synchronization Between Multiple Masters
T Alow T Ahigh

SCL from
Master A

SCL from
Master B

SCL Bus
Line

TBlow TBhigh

Masters Start
Counting Low Period

Masters Start
Counting High Period

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting data. If the
value read from the SDA line does not match the value the Master had output, it has lost the arbitration.
Note that a Master can only lose arbitration when it outputs a high SDA value while another Master
outputs a low value. The losing Master should immediately go to Slave mode, checking if it is being
addressed by the winning Master. The SDA line should be left high, but losing masters are allowed to
generate a clock signal until the end of the current data or address packet. Arbitration will continue until
only one Master remains, and this may take many bits. If several masters are trying to address the same
Slave, arbitration will continue into the data packet.

Figure 27-8. Arbitration Between Two Masters

SD A from
Master A

SD A from
Master B

SD A Line

Synchroniz ed
SCL Line

START Master A Loses
Arbitration, SD AA SD A

Note that arbitration is not allowed between:

• A REPEATED START condition and a data bit
• A STOP condition and a data bit
• A REPEATED START and a STOP condition

It is the user software’s responsibility to ensure that these illegal arbitration conditions never occur. This
implies that in multi-master systems, all data transfers must use the same composition of SLA+R/W and

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

283

Note:  The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.

Load Command “Chip Erase”:

1. Set XA1, XA0 to “10”. This enables command loading.
2. Set BS1 to “0”.
3. Set DATA to “1000 0000”. This is the command for Chip Erase.
4. Give XTAL1 a positive pulse. This loads the command.
5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.
6. Wait until RDY/BSY goes high before loading a new command.

33.7.4. Programming the Flash
The Flash is organized in pages as number of Words in a Page and number of Pages in the Flash. When
programming the Flash, the program data is latched into a page buffer. This allows one page of program
data to be programmed simultaneously. The following procedure describes how to program the entire
Flash memory:

Step A. Load Command “Write Flash”
1. Set XA1, XA0 to “10”. This enables command loading.
2. Set BS1 to “0”.
3. Set DATA to “0001 0000”. This is the command for Write Flash.
4. Give XTAL1 a positive pulse. This loads the command.

Step B. Load Address Low Byte
1. Set XA1, XA0 to “00”. This enables address loading.
2. Set BS1 to “0”. This selects low address.
3. Set DATA = Address low byte (0x00 - 0xFF).
4. Give XTAL1 a positive pulse. This loads the address low byte.

Step C. Load Data Low Byte
1. Set XA1, XA0 to “01”. This enables data loading.
2. Set DATA = Data low byte (0x00 - 0xFF).
3. Give XTAL1 a positive pulse. This loads the data byte.

Step D. Load Data High Byte
1. Set BS1 to “1”. This selects high data byte.
2. Set XA1, XA0 to “01”. This enables data loading.
3. Set DATA = Data high byte (0x00 - 0xFF).
4. Give XTAL1 a positive pulse. This loads the data byte.

Step E. Latch Data
1. Set BS1 to “1”. This selects high data byte.
2. Give PAGEL a positive pulse. This latches the data bytes. (Please refer to the figure, Programming

the Flash Waveforms, in this section for signal waveforms)

Atmel ATmega48PB/88PB/168PB [DATASHEET]
Atmel-42176G-ATmega48PB/88PB/168PB_Datasheet_Complete-03/2016

382

