Intel - EP2C50U484I8N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	3158
Number of Logic Elements/Cells	50528
Total RAM Bits	594432
Number of I/O	294
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-FBGA
Supplier Device Package	484-UBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2c50u484i8n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

About This Handbook

This handbook provides comprehensive information about the Altera $^{\circledast}$ Cyclone $^{\circledast}$ II family of devices.

How to Contact Altera

For the most up-to-date information about Altera products, refer to the following table.

Contact (1)	Contact Method	Address
Technical support	Website	www.altera.com/support
Technical training	Website	www.altera.com/training
	Email	custrain@altera.com
Product literature	Website	www.altera.com/literature
Altera literature services	Email	literature@altera.com
Non-technical support (General)	Email	nacomp@altera.com
(Software Licensing)	Email	authorization@altera.com

Note to table:

(1) You can also contact your local Altera sales office or sales representative.

Typographic Conventions

This document uses the typographic conventions shown below.

Visual Cue	Meaning
Bold Type with Initial Capital Letters	Command names, dialog box titles, checkbox options, and dialog box options are shown in bold, initial capital letters. Example: Save As dialog box.
bold type	External timing parameters, directory names, project names, disk drive names, filenames, filename extensions, and software utility names are shown in bold type. Examples: f _{MAX} , \qdesigns directory, d: drive, chiptrip.gdf file.
Italic Type with Initial Capital Letters	Document titles are shown in italic type with initial capital letters. Example: <i>AN 75: High-Speed Board Design.</i>

A LAB-wide asynchronous load signal to control the logic for the register's preset signal is not available. The register preset is achieved by using a NOT gate push-back technique. Cyclone II devices can only support either a preset or asynchronous clear signal.

In addition to the clear port, Cyclone II devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. An option set before compilation in the Quartus II software controls this pin. This chip-wide reset overrides all other control signals.

MultiTrack Interconnect

In the Cyclone II architecture, connections between LEs, M4K memory blocks, embedded multipliers, and device I/O pins are provided by the MultiTrack interconnect structure with DirectDrive[™] technology. The MultiTrack interconnect consists of continuous, performance-optimized routing lines of different speeds used for inter- and intra-design block connectivity. The Quartus II Compiler automatically places critical paths on faster interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures identical routing resource usage for any function regardless of placement within the device. The MultiTrack interconnect and DirectDrive technology simplify the integration stage of block-based designing by eliminating the re-optimization cycles that typically follow design changes and additions.

The MultiTrack interconnect consists of row (direct link, R4, and R24) and column (register chain, C4, and C16) interconnects that span fixed distances. A routing structure with fixed-length resources for all devices allows predictable and repeatable performance when migrating through different device densities.

Row Interconnects

Dedicated row interconnects route signals to and from LABs, PLLs, M4K memory blocks, and embedded multipliers within the same row. These row resources include:

- Direct link interconnects between LABs and adjacent blocks
- R4 interconnects traversing four blocks to the right or left
- R24 interconnects for high-speed access across the length of the device

Figure 2–22. Column I/O Block Connection to the Interconnect

Notes to Figure 2–22:

- (1) The 28 data and control signals consist of four data out lines, io_dataout [3..0], four output enables, io_coe [3..0], four input clock enables, io_cce_in [3..0], four output clock enables, io_cce_out [3..0], four clocks, io_cclk [3..0], four asynchronous clear signals, io_caclr [3..0], and four synchronous clear signals, io_csclr [3..0].
- (2) Each of the four IOEs in the column I/O block can have two io_datain (combinational or registered) inputs.

Table 2–20. Cyclone II MultiVolt I/O Support (Part 2 of 2) Note (1)								
V (V)		Input	out Signal Output Signal					
VCCIO (V)	1.5 V	1.8 V	2.5 V	3.3 V	1.5 V	1.8 V	2.5 V	3.3 V
3.3			 (4) 	\checkmark	 (6) 	 (6) 	 (6) 	\checkmark

Notes to Table 2–20:

(1) The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}.

(2) These input values overdrive the input buffer, so the pin leakage current is slightly higher than the default value. To drive inputs higher than V_{CCIO} but less than 4.0 V, disable the PCI clamping diode and turn on Allow voltage overdrive for LVTTL/LVCMOS input pins option in Device setting option in the Quartus II software.

(3) When V_{CCIO} = 1.8-V, a Cyclone II device can drive a 1.5-V device with 1.8-V tolerant inputs.

(4) When $V_{CCIO} = 3.3$ -V and a 2.5-V input signal feeds an input pin or when $V_{CCIO} = 1.8$ -V and a 1.5-V input signal feeds an input pin, the V_{CCIO} supply current will be slightly larger than expected. The reason for this increase is that the input signal level does not drive to the V_{CCIO} rail, which causes the input buffer to not completely shut off.

(5) When V_{CCIO} = 2.5-V, a Cyclone II device can drive a 1.5-V or 1.8-V device with 2.5-V tolerant inputs.

(6) When V_{CCIO} = 3.3-V, a Cyclone II device can drive a 1.5-V, 1.8-V, or 2.5-V device with 3.3-V tolerant inputs.

	SRAM configuration elements allow Cyclone II devices to be reconfigured in-circuit by loading new configuration data into the device. With real-time reconfiguration, the device is forced into command mode with the nCONFIG pin. The configuration process loads different configuration data, reinitializes the device, and resumes user-mode operation. You can perform in-field upgrades by distributing new configuration files within the system or remotely.
	A built-in weak pull-up resistor pulls all user I/O pins to $V_{\mbox{CCIO}}$ before and during device configuration.
	The configuration pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The voltage level of the configuration output pins is determined by the V_{CCIO} of the bank where the pins reside. The bank V_{CCIO} selects whether the configuration inputs are 1.5-V, 1.8-V, 2.5-V, or 3.3-V compatible.
Configuration Schemes	You can load the configuration data for a Cyclone II device with one of three configuration schemes (see Table 3–4), chosen on the basis of the target application. You can use a configuration device, intelligent controller, or the JTAG port to configure a Cyclone II device. A low-cost configuration device can automatically configure a Cyclone II device at system power-up.
	Multiple Cyclone II devices can be configured in any of the three configuration schemes by connecting the configuration enable (nCE) and configuration enable output ($nCEO$) pins on each device.

Table 3–4. Data Sources for Configuration				
Configuration Scheme	Data Source			
Active serial (AS)	Low-cost serial configuration device			
Passive serial (PS)	Enhanced or EPC2 configuration device, MasterBlaster, ByteBlasterMV, ByteBlaster II or USB Blaster download cable, or serial data source			
JTAG	MasterBlaster, ByteBlasterMV, ByteBlaster II or USB Blaster download cable or a microprocessor with a Jam or JBC file			

For more information on configuration, see the *Configuring Cyclone II Devices* chapter of the *Cyclone II Handbook, Volume 2*.

Figure 5–1. Receiver Input Waveforms for Differential I/O Standards

Differential Waveform (Mathematical Function of Positive and Negative Channel)

Notes to Figure 5–1:

- (1) V_{ID} is the differential input voltage. $V_{ID} = |p n|$.
- (2) V_{ICM} is the input common mode voltage. $V_{ICM} = (p + n)/2$.
- (3) The p n waveform is a function of the positive channel (p) and the negative channel (n).

I/O Delays

Refer to Tables 5–39 through 5–43 for I/O delays.

Table 5–39. I/O Delay Parameters			
Symbol	Parameter		
t _{DIP}	Delay from I/O datain to output pad		
t _{OP}	Delay from I/O output register to output pad		
t _{PCOUT}	Delay from input pad to I/O dataout to core		
t _{P1}	Delay from input pad to I/O input register		

Table 5–40. Cyclone II I/O Input Delay for Column Pins (Part 1 of 3)								
	Parameter	Fast Corner		-6	-7	-7	-8	
I/O Standard		Industrial/ Automotive	Commer -cial	Speed Grade	Speed Grade (1)	Speed Grade (2)	Speed Grade	Unit
LVTTL	t _{P1}	581	609	1222	1228	1282	1282	ps
	t _{PCOUT}	367	385	760	783	854	854	ps
2.5V	t _{P1}	624	654	1192	1238	1283	1283	ps
	t _{PCOUT}	410	430	730	793	855	855	ps
1.8V	t _{P1}	725	760	1372	1428	1484	1484	ps
	t _{PCOUT}	511	536	910	983	1056	1056	ps
1.5V	t _{PI}	790	828	1439	1497	1556	1556	ps
	t _{PCOUT}	576	604	977	1052	1128	1128	ps
LVCMOS	t _{PI}	581	609	1222	1228	1282	1282	ps
	t _{PCOUT}	367	385	760	783	854	854	ps
SSTL_2_CLASS_I	t _{PI}	533	558	990	1015	1040	1040	ps
	t _{PCOUT}	319	334	528	570	612	612	ps
SSTL_2_CLASS_II	t _{PI}	533	558	990	1015	1040	1040	ps
	t _{PCOUT}	319	334	528	570	612	612	ps
SSTL_18_CLASS_I	t _{PI}	577	605	1027	1035	1045	1045	ps
	t _{PCOUT}	363	381	565	590	617	617	ps
SSTL_18_CLASS_II	t _{PI}	577	605	1027	1035	1045	1045	ps
	t _{PCOUT}	363	381	565	590	617	617	ps

Table 5–54. PLL Specifications Note (1) (Part 2 of 2)							
Symbol	Parameter	Min	Тур	Max	Unit		
f _{VCO} (3)	PLL internal VCO operating range	300	_	1,000	MHz		
tARESET	Minimum pulse width on areset signal.	10	_	-	ns		

Notes to Table 5–54:

(1) These numbers are preliminary and pending silicon characterization.

(2) The t_{JITTER} specification for the PLL[4..1]_OUT pins are dependent on the I/O pins in its VCCIO bank, how many of them are switching outputs, how much they toggle, and whether or not they use programmable current strength.

(3) If the VCO post-scale counter = 2, a 300- to 500-MHz internal VCO frequency is available.

(4) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

(5) Cyclone II PLLs can track a spread-spectrum input clock that has an input jitter within ±200 ps.

(6) For extended temperature devices, the maximum lock time is 500 us.

Duty Cycle Distortion

Duty cycle distortion (DCD) describes how much the falling edge of a clock is off from its ideal position. The ideal position is when both the clock high time (CLKH) and the clock low time (CLKL) equal half of the clock period (T), as shown in Figure 5–8. DCD is the deviation of the non-ideal falling edge from the ideal falling edge, such as D1 for the falling edge A and D2 for the falling edge B (Figure 5–8). The maximum DCD for a clock is the larger value of D1 and D2.

Figure 5–8. Duty Cycle Distortion

DCD expressed in absolution derivation, for example, D1 or D2 in Figure 5–8, is clock-period independent. DCD can also be expressed as a percentage, and the percentage number is clock-period dependent. DCD as a percentage is defined as:

Pins Notes (1), (2) (Part 2 of 2)							
Row I/O Output Standard	C6	C7	C8	Unit			
Differential SSTL-2 Class I	60	90	90	ps			
Differential SSTL-2 Class II	65	75	75	ps			
Differential SSTL-18 Class I	90	165	165	ps			
Differential HSTL-18 Class I	85	155	155	ps			
Differential HSTL-15 Class I	145	145	205	ps			
LVDS	60	60	60	ps			
Simple RSDS	60	60	60	ps			
Mini LVDS	60	60	60	ps			
PCI	195	255	255	ps			
PCI-X	195	255	255	ps			

Table 5–55. Maximum DCD for Single Data Outputs (SDR) on Row I/O

Notes to Table 5–55:

- (1) The DCD specification is characterized using the maximum drive strength available for each I/O standard.
- (2) Numbers are applicable for commercial, industrial, and automotive devices.

Here is an example for calculating the DCD as a percentage for an SDR output on a row I/O on a -6 device:

If the SDR output I/O standard is SSTL-2 Class II, the maximum DCD is 65 ps (refer to Table 5-55). If the clock frequency is 167 MHz, the clock period T is:

T = 1 / f = 1 / 167 MHz = 6 ns = 6000 ps

To calculate the DCD as a percentage:

(T/2 - DCD) / T = (6000 ps/2 - 65 ps) / 6000 ps = 48.91% (for low boundary)

(T/2 + DCD) / T = (6000 ps/2 + 65 ps) / 6000 ps = 51.08% (for high boundary

Table 5–56. Maximum DCD for SDR Output on Column I/O Notes (1), (2) (Part 1 of 2)						
Column I/O Output Standard C6 C7 C8 Unit						
LVCMOS	195	285	285	ps		
LVTTL	210	305	305	ps		

7. PLLs in Cyclone II Devices

CII51007-3.1

Introduction

Cyclone[®] II devices have up to four phase-locked loops (PLLs) that provide robust clock management and synthesis for device clock management, external system clock management, and I/O interfaces. Cyclone II PLLs are versatile and can be used as a zero delay buffer, a jitter attenuator, a low skew fan out buffer, or a frequency synthesizer.

Each Cyclone II device has up to four PLLs, supporting advanced capabilities such as clock switchover and programmable switchover. These PLLs offer clock multiplication and division, phase shifting, and programmable duty cycle and can be used to minimize clock delay and clock skew, and to reduce or adjust clock-to-out (t_{CO}) and set-up (t_{SU}) times.

Cyclone II devices also support a power-down mode where unused clock networks can be turned off. The Altera[®] Quartus[®] II software enables the PLLs and their features without requiring any external devices.

Cyclone II PLLs have been characterized to operate in the commercial junction temperature range (0° to 85° C), the industrial junction temperature range (-40° to 100° C) and the extended temperature range (-40° to 125° C).

Table 7–1. Cyclone II Device PLL Availability						
Device	PLL1	PLL2	PLL3	PLL4		
EP2C5	\checkmark	\checkmark				
EP2C8	\checkmark	~				
EP2C15	\checkmark	\checkmark	~	\checkmark		
EP2C20	\checkmark	\checkmark	\checkmark	\checkmark		
EP2C35	\checkmark	\checkmark	\checkmark	\checkmark		
EP2C50	\checkmark	\checkmark	\checkmark	\checkmark		
EP2C70	\checkmark	~	\checkmark	\checkmark		

Table 7–1 shows the PLLs available in each Cyclone II device.

Figure 7–6. Phase Relationship between Cyclone II PLL Clocks in No Compensation Mode

Notes to Figure 7–6:

- (1) Internal clocks fed by the PLL are in phase with each other.
- (2) The external clock outputs can lead or lag the PLL internal clocks.

Source-Synchronous Mode

If data and clock arrive at the same time at the input pins, they are guaranteed to keep the same phase relationship at the clock and data ports of any IOE input register. Figure 7–7 shows an example waveform of the clock and data in this mode. This mode is recommended for source-synchronous data transfer. Data and clock signals at the IOE experience similar buffer delays as long as the same I/O standard is used.

Figure 10–3. SSTL-2 Class I Differential Termination

1.8-V LVTTL (EIA/JEDEC Standard EIA/JESD8-7)

The 1.8-V I/O standard is used for 1.8-V LVTTL applications. This standard defines the DC interface parameters for high-speed, low-voltage, non-terminated digital circuits driving or being driven by other 1.8-V parts.

The 1.8-V standard does not require input reference voltages or board terminations. Cyclone II devices support input and output levels for 1.8-V LVTTL.

November 2005 v2.1	 Updated Tables 10–2 and 10–3. Added PCI Express information. Updated Table 10–6. 	_
July 2005 v2.0	Updated Table 10–1.	_
November 2004 v1.1	Updated Table 10–7.	_
June 2004 v1.0	Added document to the Cyclone II Device Handbook.	_

- Maintain equal distance between traces in LVDS pairs, as much as possible. Routing the pair of traces close to each other maximizes the common-mode rejection ratio (CMRR).
- Longer traces have more inductance and capacitance. These traces should be as short as possible to limit signal integrity issues.
- Place termination resistors as close to receiver input pins as possible.
- Use surface mount components.
- Avoid 90° or 45° corners.
- Use high-performance connectors.
- Design backplane and card traces so that trace impedance matches the connector's and/or the termination's impedance.
- Keep equal number of vias for both signal traces.
- Create equal trace lengths to avoid skew between signals. Unequal trace lengths result in misplaced crossing points and decrease system margins as the channel-to-channel skew (TCCS) value increases.
- Limit vias because they cause discontinuities.
- Use the common bypass capacitor values such as 0.001, 0.01, and 0.1 μF to decouple the high-speed PLL power and ground planes.
- Keep switching transistor-to-transistor logic (TTL) signals away from differential signals to avoid possible noise coupling.
- Do not route TTL clock signals to areas under or above the differential signals.
- Analyze system-level signals.

For PCB layout guidelines, see AN 224: High-Speed Board Layout Guidelines.

Conclusion

Cyclone II differential I/O capabilities enable you to keep pace with increasing design complexity. Support for I/O standards including LVDS, LVPECL, RSDS, mini-LVDS, differential SSTL and differential HSTL allows Cyclone II devices to fit into a wide variety of applications. Taking advantage of these I/O capabilities and Cyclone II pricing allows you to lower your design costs while remaining on the cutting edge of technology. See the *Cyclone II Memory Blocks* chapter in Volume 1 of the *Cyclone II Device Handbook* for more information on Cyclone II M4K memory blocks.

Refer to *AN 306: Techniques for Implementing Multipliers in FPGA Devices* for more information on soft multipliers.

Architecture

Each embedded multiplier consists of the following elements:

- Multiplier stage
- Input and output registers
- Input and output interfaces

Figure 12–2 shows the multiplier block architecture.

Note to Figure 12-2:

(1) If necessary, you can send these signals through one register to match the data signal path.

Input Registers

You can send each multiplier input signal into an input register or directly into the multiplier in 9- or 18-bit sections depending on the operational mode of the multiplier. You can send each multiplier input signal through a register independently of each other (e.g., you can send the multiplier's

Reconfiguration

After all the configuration data is written into the serial configuration device successfully, the Cyclone II device does not reconfigure by itself. The intelligent host issues the PULSE_NCONFIG JTAG instruction to initialize the reconfiguration process. During reconfiguration, the master Cyclone II device is reset and the serial flash loader design no longer exists in the Cyclone II device and the serial configuration device configures all the devices in the chain with your user design.

Device Configuration Pins

This section describes the connections and functionality of all the configuration related pins on the Cyclone II device. Table 13–11 describes the dedicated configuration pins, which are required to be connected properly on your board for successful configuration. Some of these pins may not be required for your configuration schemes.

Table 13–11. Dedicated Configuration Pins on the Cyclone II Device (Part 1 of 5)						
Pin Name	User Mode	Configuration Scheme	Pin Type	Description		
MSEL[10]	N/A	All	Input	This pin is a two-bit configuration input that sets the Cyclone II device configuration scheme. See Table 13–1 for the appropriate settings. You must connect these pins to V_{CC10} or ground. The MSEL[10] pins have 9-k Ω internal pull-down resistors that are always active.		
nCONFIG	N/A	All	Input	This pin is a configuration control input. If this pin is pulled low during user mode, the FPGA loses its configuration data, enters a reset state, and tri-states all I/O pins. Transitioning this pin high initiates a reconfiguration.		
				configuration device or EPC2 device, you can connect the nCONFIG pin directly to V_{CC} or to the configuration device's nINIT_CONF pin. The input buffer on this pin supports hysteresis using		

Table 13–11. Dedicated Configuration Pins on the Cyclone II Device (Part 4 of 5)							
Pin Name	lame User Configuration Mode Scheme		Pin Type	Description			
nCEO	N/A if option is on. I/O if option is off.	All	Output	This pin is an output that drives low when device configuration is complete. In single device configuration, you can leave this pin floating or use it as a user I/O pin after configuration. In multiple device configuration, this pin inputs the next device's nCE pin. The $nCEO$ of the last device in the chain can be left floating or used as a user I/O pin after configuration.			
				If you use the nCEO pin to feed next device's nCE pin, use an external 10-k Ω pull-up resistor to pull the nCEO pin high to the V _{CCIO} voltage of its I/O bank to help the internal weak pull-up resistor.			
				Use the Quartus II software to make this pin a user I/O pin.			
ASDO	N/A in AS mode I/O in PS and JTAG mode	AS	Output	This pin sends a control signal from the Cyclone II device to the serial configuration device in AS mode and is used to read out configuration data. In AS mode, ASDO has an internal pull-up that is always active.			
nCSO	N/A in AS mode I/O in PS and JTAG mode	AS	Output	This pin sends an output control signal from the Cyclone II device to the serial configuration device in AS mode that enables the configuration device. In AS mode, nCSO has an internal pull-up resistor that is always active.			

The TDO pin is tri-stated in all states except in the SHIFT_IR and SHIFT_DR states. The TDO pin is activated at the first falling edge of TCK after entering either of the shift states and is tri-stated at the first falling edge of TCK after leaving either of the shift states.

When the SHIFT_IR state is activated, TDO is no longer tri-stated, and the initial state of the instruction register is shifted out on the falling edge of TCK. TDO continues to shift out the contents of the instruction register as long as the SHIFT_IR state is active. The TAP controller remains in the SHIFT_IR state as long as TMS remains low.

During the SHIFT_IR state, an instruction code is entered by shifting data on the TDI pin on the rising edge of TCK. The last bit of the instruction code must be clocked at the same time that the next state, EXIT1_IR, is activated. Set TMS high to activate the EXIT1_IR state. Once in the EXIT1_IR state, TDO becomes tri-stated again. TDO is always tri-stated except in the SHIFT_IR and SHIFT_DR states. After an instruction code is entered correctly, the TAP controller advances to serially shift test data in one of seven modes (SAMPLE/PRELOAD, EXTEST, BYPASS, IDCODE, USERCODE, CLAMP, or HIGHZ) that are described below.

SAMPLE/PRELOAD Instruction Mode

The SAMPLE/PRELOAD instruction mode allows you to take a snapshot of device data without interrupting normal device operation. You can also use this instruction to preload the test data into the update registers prior to loading the EXTEST instruction. Figure 14–8 shows the capture, shift, and update phases of the SAMPLE/PRELOAD mode.

Disabling IEEE Std. 1149.1 BST Circuitry

The IEEE Std. 1149.1 BST circuitry for Cyclone II devices is enabled upon device power-up. Because this circuitry may be used for BST or in-circuit reconfiguration, this circuitry must be enabled only at specific times as mentioned in "Using IEEE Std. 1149.1 BST Circuitry" on page 14–16.

If the IEEE Std. 1149.1 circuitry will not be utilized at any time, the circuitry should be permanently disabled. Table 14–3 shows the pin connections necessary for disabling the IEEE Std. 1149.1 circuitry in Cyclone II devices to ensure that the circuitry is not inadvertently enabled when it is not needed.

Table 14–3. Disabling IEEE Std. 1149.1 Circuitry			
JTAG Pins (1)	Connection for Disabling		
TMS	V _{CC}		
TCK	GND		
TDI	V _{cc}		
TDO	Leave open		

Note to Table 14–3:

(1) There is no software option to disable JTAG in Cyclone II devices. The JTAG pins are dedicated.

Guidelines for IEEE Std. 1149.1 Boundary-Scan Testing Use the following guidelines when performing boundary-scan testing with IEEE Std. 1149.1 devices:

- If the 10-bit checkerboard pattern "1010101010" does not shift out of the instruction register via the TDO pin during the first clock cycle of the SHIFT_IR state, the TAP controller has not reached the proper state. To solve this problem, try one of the following procedures:
 - Verify that the TAP controller has reached the SHIFT_IR state correctly. To advance the TAP controller to the SHIFT_IR state, return to the RESET state and send the code 01100 to the TMS pin.
 - Check the connections to the V_{CC}, GND, JTAG, and dedicated configuration pins on the device.

Table 15–4 provides θ_{JA} (junction-to-ambient thermal resistance) values, θ_{JC} (junction-to-case thermal resistance) values, θ_{JB} (junction-to-board thermal resistance) values for Cyclone II devices on a typical board.

Table 15–4. Thermal Resistance of Cyclone II Devices for Typical Board									
Device	Pin Count	Package	θ _{JA} (° C/W) Still Air	θ _{JA} (° C/W) 100 ft./min.	θ _{JA} (° C/W) 200 ft./min.	θ _{JA} (° C/W) 400 ft./min.	θ _{JC} (° C/W)	θ _{JB} (° C/W)	
EP2C5	256	FineLine BGA	30.2	25.8	22.9	20.6	8.7	14.8	
EP2C8	256	FineLine BGA	27.9	23.2	20.5	18.4	7.1	12.3	
EP2C15	256	FineLine BGA	24.7	20.1	17.5	15.3	5.5	9.1	
	484	FineLine BGA	20.5	16.2	13.9	12.2	4.2	7.2	
EP2C20	256	FineLine BGA	24.7	20.1	17.5	15.3	5.5	9.1	
	484	FineLine BGA	20.5	16.2	13.9	12.2	4.2	7.2	
EP2C35	484	FineLine BGA	18.8	14.5	12.3	10.6	3.3	5.7	
	484	Ultra FineLine BGA	20	15.5	13.2	11.3	5	5.3	
	672	FineLine BGA	17.4	13.3	11.3	9.8	3.1	5.5	
EP2C50	484	FineLine BGA	17.7	13.5	11.4	9.8	2.8	4.5	
	484	FineLine BGA	18.1	13.8	11.7	10.1	2.8	4.6	
	484	Ultra FineLine BGA	19	14.6	12.3	10.6	4.4	4.4	
	484	Ultra FineLine BGA	19.4	15	12.7	10.9	4.4	4.6	
	672	FineLine BGA	16.5	12.4	10.5	9	2.6	4.6	
EP2C70	672	FineLine BGA	15.7	11.7	9.8	8.3	2.2	3.8	
	672	FineLine BGA	15.9	11.9	9.9	8.4	2.2	3.9	
	896	FineLine BGA	14.6	10.7	8.9	7.6	2.1	3.7	

Package Outlines

The package outlines on the following pages are listed in order of ascending pin count.

144-Pin Plastic Thin Quad Flat Pack (TQFP) - Wirebond

- All dimensions and tolerances conform to ASME Y14.5M 1994.
- Controlling dimension is in millimeters.
- Pin 1 may be indicated by an ID dot, or a special feature, in its proximity on package surface.