Intel - EP2C5Q208C7N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	288
Number of Logic Elements/Cells	4608
Total RAM Bits	119808
Number of I/O	142
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2c5q208c7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Guidelines for IEEE Std. 1149.1 Boundary-Scan Testing	14 - 18
Boundary-Scan Description Language (BSDL) Support	14–19
Conclusion	14–19
References	14–19
Document Revision History	14–20

Section VII. PCB Layout Guidelines

Revision History		14-	-1	
------------------	--	-----	----	--

Chapter 15. Package Information for Cyclone II Devices

Introduction	
Thermal Resistance	
Package Outlines	
144-Pin Plastic Thin Quad Flat Pack (TQFP) – Wirebond	
208-Pin Plastic Quad Flat Pack (PQFP) – Wirebond	
240-Pin Plastic Quad Flat Pack (PQFP)	15–9
256-Pin FineLine Ball-Grid Array, Option 2 – Wirebond	15–11
484-Pin FineLine BGA, Option 3 – Wirebond	15–13
484-Pin Ultra FineLine BGA – Wirebond	15–15
672-Pin FineLine BGA Package, Option 3 – Wirebond	
896-Pin FineLine BGA Package – Ŵirebond	15–19

protocols. Visit the Altera IPMegaStore at www.altera.com to download IP MegaCore functions.

Nios II Embedded Processor support

The Cyclone II family offers devices with the Fast-On feature, which offers a faster power-on-reset (POR) time. Devices that support the Fast-On feature are designated with an "A" in the device ordering code. For example, EP2C5A, EP2C8A, EP2C15A, and EP2C20A. The EP2C5A is only available in the automotive speed grade. The EP2C8A and EP2C20A are only available in the industrial speed grade. The EP2C15A is only available with the Fast-On feature and is available in both commercial and industrial grades. The Cyclone II "A" devices are identical in feature set and functionality to the non-A devices except for support of the faster POR time.

Cyclone II A devices are offered in automotive speed grade. For more information, refer to the Cyclone II section in the *Automotive-Grade Device Handbook*.

For more information on POR time specifications for Cyclone II A and non-A devices, refer to the *Hot Socketing & Power-On Reset* chapter in the *Cyclone II Device Handbook*.

Table 1–1 lists the Cyclone II device family features. Table 1–2 lists the Cyclone II device package offerings and maximum user I/O pins.

Table 1–1. Cyclone II FPGA Family Features (Part 1 of 2)									
Feature	EP2C5 (2)	EP2C8 (2)	EP2C15 (1)	EP2C20 (2)	EP2C35	EP2C50	EP2C70		
LEs	4,608	8,256	14,448	18,752	33,216	50,528	68,416		
M4K RAM blocks (4 Kbits plus 512 parity bits	26	36	52	52	105	129	250		
Total RAM bits	119,808	165,888	239,616	239,616	483,840	594,432	1,152,00 0		
Embedded multipliers (3)	13	18	26	26	35	86	150		
PLLs	2	2	4	4	4	4	4		

Embedded Multiplier Routing Interface

The R4, C4, and direct link interconnects from adjacent LABs drive the embedded multiplier row interface interconnect. The embedded multipliers can communicate with LABs on either the left or right side through these row resources or with LAB columns on either the right or left with the column resources. Up to 16 direct link input connections to the embedded multiplier are possible from the left adjacent LABs and another 16 possible from the right adjacent LAB. Embedded multiplier outputs can also connect to left and right LABs through 18 direct link interconnects each. Figure 2–19 shows the embedded multiplier to logic array interface.

The reduced swing differential signaling (RSDS) and mini-LVDS standards are derivatives of the LVDS standard. The RSDS and mini-LVDS I/O standards are similar in electrical characteristics to LVDS, but have a smaller voltage swing and therefore provide increased power benefits and reduced electromagnetic interference (EMI). Cyclone II devices support the RSDS and mini-LVDS I/O standards at data rates up to 311 Mbps at the transmitter.

A subset of pins in each I/O bank (on both rows and columns) support the high-speed I/O interface. The dual-purpose LVDS pins require an external-resistor network at the transmitter channels in addition to $100-\Omega$ termination resistors on receiver channels. These pins do not contain dedicated serialization or deserialization circuitry. Therefore, internal logic performs serialization and deserialization functions.

Cyclone II pin tables list the pins that support the high-speed I/O interface. The number of LVDS channels supported in each device family member is listed in Table 2–18.

Table 2–18. Cyclone II Device LVDS Channels (Part 1 of 2)								
Device	Pin Count	Number of LVDS Channels (1)						
EP2C5	144	31 (35)						
	208	56 (60)						
	256	61 (65)						
EP2C8	144	29 (33)						
	208	53 (57)						
	256	75 (79)						
EP2C15	256	52 (60)						
	484	128 (136)						
EP2C20	240	45 (53)						
	256	52 (60)						
	484	128 (136)						
EP2C35	484	131 (139)						
	672	201 (209)						
EP2C50	484	119 (127)						
	672	189 (197)						

Cyclone II devices also use the JTAG port to monitor the logic operation of the device with the SignalTap[®] II embedded logic analyzer. Cyclone II devices support the JTAG instructions shown in Table 3–1.

Table 3–1. Cyclone	Table 3–1. Cyclone II JTAG Instructions (Part 1 of 2)								
JTAG Instruction	Instruction Code	Description							
SAMPLE/PRELOAD	00 0000 0101	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap II embedded logic analyzer.							
extest (1)	00 0000 1111	Allows the external circuitry and board-level interconnects to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.							
BYPASS	11 1111 1111	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation.							
USERCODE	00 0000 0111	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.							
IDCODE	00 0000 0110	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.							
HIGHZ (1)	00 0000 1011	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation, while tri-stating all of the I/O pins.							
CLAMP (1)	00 0000 1010	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation while holding I/O pins to a state defined by the data in the boundary-scan register.							
ICR instructions		Used when configuring a Cyclone II device via the JTAG port with a USB Blaster [™] , ByteBlaster [™] II, MasterBlaster [™] or ByteBlasterMV [™] download cable, or when using a Jam File or JBC File via an embedded processor.							
PULSE_NCONFIG	00 0000 0001	Emulates pulsing the nCONFIG pin low to trigger reconfiguration even though the physical pin is unaffected.							

the power supply can provide current to the device's V_{CC} and ground planes. This condition can lead to latch-up and cause a low-impedance path from V_{CC} to ground within the device. As a result, the device extends a large amount of current, possibly causing electrical damage.

Altera has ensured by design of the I/O buffers and hot-socketing circuitry, that Cyclone II devices are immune to latch-up during hot socketing.

Hot-Socketing Feature Implementation in Cyclone II Devices

The hot-socketing feature turns off the output buffer during power up (either V_{CCINT} or V_{CCIO} supplies) or power down. The hot-socket circuit generates an internal HOTSCKT signal when either V_{CCINT} or V_{CCIO} is below the threshold voltage. Designs cannot use the HOTSCKT signal for other purposes. The HOTSCKT signal cuts off the output buffer to ensure that no DC current (except for weak pull-up leakage current) leaks through the pin. When V_{CC} ramps up slowly, V_{CC} is still relatively low even after the internal POR signal (not available to the FPGA fabric used by customer designs) is released and the configuration is finished. The CONF_DONE, nCEO, and nSTATUS pins fail to respond, as the output buffer cannot drive out because the hot-socketing circuitry keeps the I/O pins tristated at this low V_{CC} voltage. Therefore, the hot-socketing circuit has been removed on these configuration output or bidirectional pins to ensure that they are able to operate during configuration. These pins are expected to drive out during power-up and power-down sequences.

Each I/O pin has the circuitry shown in Figure 4–1.

Table 5–2 specifies the recommended operating conditions for Cyclone II devices. It shows the allowed voltage ranges for V_{CCINT}, V_{CCIO}, and the operating junction temperature (T_J). The LVTTL and LVCMOS inputs are powered by V_{CCIO} only. The LVDS and LVPECL input buffers on dedicated clock pins are powered by V_{CCINT}. The SSTL, HSTL, LVDS input buffers are powered by both V_{CCINT} and V_{CCIO}.

Table 5–2. Recommended Operating Conditions										
Symbol	Parameter	Conditions	Minimum	Maximum	Unit					
V _{CCINT}	Supply voltage for internal logic and input buffers	(1)	1.15	1.25	V					
V _{CCIO} (2)	Supply voltage for output buffers, 3.3-V operation	(1)	3.135 (3.00)	3.465 (3.60) <i>(3)</i>	V					
	Supply voltage for output buffers, 2.5-V operation	(1)	2.375	2.625	V					
	Supply voltage for output buffers, 1.8-V operation	(1)	1.71	1.89	V					
	Supply voltage for output buffers, 1.5-V operation	(1)	1.425	1.575	V					
TJ	Operating junction	For commercial use	0	85	°C					
	temperature	For industrial use	-40	100	°C					
		For extended temperature use	-40	125	°C					
		For automotive use	-40	125	°C					

Notes to Table 5–2:

 The V_{CC} must rise monotonically. The maximum V_{CC} (both V_{CCIO} and V_{CCINT}) rise time is 100 ms for non-A devices and 2 ms for A devices.

- (2) The V_{CCIO} range given here spans the lowest and highest operating voltages of all supported I/O standards. The recommended V_{CCIO} range specific to each of the single-ended I/O standards is given in Table 5–6, and those specific to the differential standards is given in Table 5–8.
- (3) The minimum and maximum values of 3.0 V and 3.6 V, respectively, for V_{CCIO} only applies to the PCI and PCI-X I/O standards. Refer to Table 5–6 for the voltage range of other I/O standards.

Table 5–9. DC Characteristics for User I/O Pins Using Differential I/O Standards Note (1) (Part 2 of 2)												
I/O Standard	١	/ _{op} (mV	')	ΔV_{0D}	(mV)	V _{OCM} (V)		V _{OH} (V)		V _{OL} (V)		
i/O Stalluaru	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	Min	Max
Differential 1.8-V HSTL class I and II (3)	_		_	—	_		—	—	V _{CCIO} -0.4	—		0.4
Differential SSTL-2 class I (4)	_		_	_	_		_	_	V _{TT} + 0.57	_		V _{TT} – 0.57
Differential SSTL-2 class II (4)	_		_	—	—	_	_	_	V _{TT} + 0.76	_	_	V _{TT} – 0.76
Differential SSTL-18 class I (4)	_		_	_	_	0.5 × V _{CCIO} - 0.125	0.5 × V _{CCIO}	0.5 × V _{CCIO} + 0.125	V _{TT} + 0.475	_		V _{TT} – 0.475
Differential SSTL-18 class II (4)	—	_	—			0.5 × V _{CCIO} - 0.125	0.5 × V _{CCIO}	0.5 × V _{CCIO} + 0.125	V _{CCIO} - 0.28	—	_	0.28

Notes to Table 5–9:

- (1) The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output pins.
- (2) The RSDS and mini-LVDS I/O standards are only supported on output pins.
- (3) The differential 1.8-V HSTL and differential 1.5-V HSTL I/O standards are only supported on clock input pins and PLL output clock pins.
- (4) The differential SSTL-18 and SSTL-2 I/O standards are only supported on clock input pins and PLL output clock pins.

DC Characteristics for Different Pin Types

Table 5–10 shows the types of pins that support bus hold circuitry.

Table 5–10. Bus Hold Support								
Pin Type	Bus Hold							
I/O pins using single-ended I/O standards	Yes							
I/O pins using differential I/O standards	No							
Dedicated clock pins	No							
JTAG	No							
Configuration pins	No							

Table 5–49. Mini-LVDS Transmitter Timing Specification (Part 2 of 2)											
Symbol	Conditions	–6 Speed Grade			-7 \$	–7 Speed Grade			–8 Speed Grade		
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Device	×10	100	—	311	100	—	311	100	—	311	Mbps
operation in Mbps	×8	80	_	311	80	_	311	80	—	311	Mbps
in mopo	×7	70	_	311	70	_	311	70	—	311	Mbps
	×4	40	_	311	40	_	311	40	—	311	Mbps
	×2	20	_	311	20	—	311	20	—	311	Mbps
	×1	10	_	311	10	_	311	10	—	311	Mbps
t _{DUTY}	—	45	—	55	45	—	55	45	—	55	%
TCCS	—	—		200	_	_	200	_	_	200	ps
Output jitter (peak to peak)	—	—	—	500	—	—	500	—	_	500	ps
t _{RISE}	20–80%	_		500	_	_	500	_	—	500	ps
t _{FALL}	80–20%	_		500			500		—	500	ps
t _{LOCK}		_		100	_	_	100	_	—	100	μs

In order to determine the transmitter timing requirements, mini-LVDS receiver timing requirements on the other end of the link must be taken into consideration. The mini-LVDS receiver timing parameters are typically defined as t_{SU} and t_{H} requirements. Therefore, the transmitter timing parameter specifications are t_{CO} (minimum) and t_{CO} (maximum). Refer to Figure 5–4 for the timing budget.

The AC timing requirements for mini-LVDS are shown in Figure 5-6.

Figure 5–6. mini-LVDS Transmitter AC Timing Specification

Notes to Figure 5–6:

(1) The data setup time, t_{SU} , is $0.225 \times TUI$.

(2) The data hold time, $t_{\rm H}$, is 0.225 × TUI.

February 2007 v3.1	 Added document revision history. Added V_{CCA} minimum and maximum limitations in Table 5–1. Updated <i>Note (1)</i> in Table 5–2. Updated the maximum V_{CC} rise time for Cyclone II "A" devices in Table 5–2. Updated R_{CONF} information in Table 5–3. Changed V₁ to I_i in Table 5–3. Updated LVPECL clock inputs in <i>Note (6)</i> to Table 5–8. Updated <i>Note (1)</i> to Table 5–12. Updated Table 5–45. Added Table 5–45. Added Table 5–45. Added Table 5–46 with information on toggle rate derating factors. Corrected calculation of the period based on a 640 Mbps data rate as 1562.5 ps in <i>Note (2)</i> to Table 5–50. Updated "PLL Timing Specifications" section. Updated V_{CO} range of 300–500 MHz in <i>Note (3)</i> to Table 5–54. Updated chapter with extended temperature information. 	
December 2005 v2.2	Updated PLL Timing Specifications	_
November 2005 v2.1	Updated technical content throughout.	_
July 2005 v2.0	Updated technical content throughout.	_
November 2004 v1.1	Updated the "Differential I/O Standards" section. Updated Table 5–54.	_
June 2004 v1.0	Added document to the Cyclone II Device Handbook.	_

Figure 7–12. Cyclone II Clock Control Blocks Placement

The inputs to the four clock control blocks on each side are chosen from among the following clock sources:

- Four clock input pins
- Three PLL counter outputs
- Two DPCLK pins and two CDPCLK pins from both the left and right sides and four DPCLK pins and two CDPCLK pins from both the top and bottom
- Four signals from internal logic

Figure 9–5. Data & Clock Relationship During a QDRII SRAM Report

Notes to Figure 9–5:

- (1) The timing parameter nomenclature is based on the Cypress QDRII SRAM data sheet for CY7C1313V18.
- (2) t_{CO} is the data clock-to-out time and t_{DOH} is the data output hold time between burst.
- (3) t_{CLZ} and t_{CHZ} are bus turn-on and turn-off times, respectively.
- (4) t_{COD} is the skew between CQn and data edges.
- (5) t_{CCQO} and t_{CQOH} are skew measurements between the C or C# clocks (or the K or K# clocks in single-clock mode) and the CQ or CQn clocks.

When writing to QDRII SRAM devices, the write clock generates the data while the K clock is 90° shifted from the write clock, creating a centeraligned arrangement. Figure 9–13 shows waveforms of the circuit shown in Figure 9–11. The first set of waveforms in Figure 9–13 shows the edge-aligned relationship between the DQ and DQS signals at the Cyclone II device pins. The second set of waveforms in Figure 9–13 shows what happens if the shifted DQS signal is not inverted. In this case, the last data, $Q_{n\nu}$ does not get latched into the logic array as DQS goes to tri-state after the read postamble time. The third set of waveforms in Figure 9–13 shows a proper read operation with the DQS signal inverted after the 90° shift. The last data, Q_n , does get latched. In this case the outputs of register A_I and register C_I , which correspond to dataout_h and dataout_l ports, are now switched because of the DQS inversion. Register A_I , register B_I , and register C_I refer to the nomenclature in Figure 9–11.

Figure 9–13. DQ Captures With Noninverted & Inverted Shifted DQS

Figure 11–12. Differential SSTL Class I Interface

Differential HSTL Support in Cyclone II Devices

The differential HSTL AC and DC specifications are the same as the HSTL single-ended specifications. The differential HSTL I/O standard is available on the GCLK pins only, treating differential inputs as two single-ended HSTL, and only decoding one of them. The differential HSTL output I/O standard is only supported at the PLLCLKOUT pins using two single-ended HSTL output buffers with the second output programmed as inverted. The standard requires two differential inputs with an external termination voltage (V_{TT}) of $0.5 \times V_{CCIO}$ to which termination resistors are connected.

For the HSTL signaling characteristics, see the *DC Characteristics & Timing Specifications* chapter and the *Selectable I/O Standards in Cyclone II Devices* chapter in Volume 1 of the *Cyclone II Device Handbook*.

Figure 12-4. 9-Bit Multiplier Mode

Note to Figure 12–4: (1) If necessary, you can send these signals through one register to match the data signal path.

All 9-bit multiplier inputs and results can be independently sent through registers. The multiplier inputs can accept signed integers, unsigned integers, or a combination of both. Each embedded multiplier only has one signa signal to control the sign representation of both data A inputs (one for each 9×9 multiplier) and one signb signal to control the sign representation of both data B inputs. Therefore, all of the data A inputs feeding the same embedded multiplier must have the same sign representation. Similarly, all of the data B inputs feeding the same embedded multiplier must have the same sign representation.

Configuration Stage

After the Cyclone II device's nSTATUS pin transitions high, the MAX II device should send the configuration data on the DATAO pin one bit at a time. If you are using configuration data in RBF, HEX, or TTF format, send the least significant bit (LSB) of each data byte first. For example, if the RBF contains the byte sequence 02 1B EE 01 FA, you should transmit the serial bitstream 0100-0000 1101-1000 0111-0111 1000-0000 0101-1111 to the device first.

The Cyclone II device receives configuration data on its DATAO pin and the clock on the DCLK pin. Data is latched into the FPGA on the rising edge of DCLK. Data is continuously clocked into the target device until the CONF_DONE pin transitions high. After the Cyclone II device receives all the configuration data successfully, it releases the open-drain CONF_DONE pin, which is pulled high by an external 10-k Ω pull-up resistor. A low-to-high transition on CONF_DONE indicates configuration is complete and initialization of the device can begin. The CONF_DONE pin must have an external 10-k Ω pull-up resistor in order for the device to initialize.

The configuration clock (DCLK) speed must be below the specified system frequency (see Table 13–7) to ensure correct configuration. No maximum DCLK period exists, which means you can pause configuration by halting DCLK for an indefinite amount of time.

Initialization Stage

In Cyclone II devices, the initialization clock source is either the Cyclone II internal oscillator (typically 10 MHz) or the optional CLKUSR pin. The internal oscillator is the default clock source for initialization. If you use the internal oscillator, the Cyclone II device makes sure to provide enough clock cycles for proper initialization. Therefore, if the internal oscillator is the initialization clock source, sending the entire configuration file to the device is sufficient to configure and initialize the device. You do not need to provide additional clock cycles externally during the initialization stage. Driving DCLK back to the device after configuration is complete does not affect device operation. Additionally, if you use the internal oscillator as the clock source, you can use the CLKUSR pin as a user I/O pin.

If you want to delay the initialization of the device, you can use the CLKUSR pin. Using the CLKUSR pin allows you to control when your device enters user mode. You can delay the device from entering user mode for an indefinite amount of time.

DATA3, you can leave the corresponding bit 3 line blank in the Quartus II software. On the printed circuit board (PCB), leave the DATA3 line from the enhanced configuration device unconnected. Use the Quartus II **Convert Programming Files** window (Tools menu) setup for this scheme.

You can also connect two FPGAs to one of the configuration device's DATA pins while the other DATA pins drive one device each. For example, you could use the 2-bit PS mode to drive two FPGAs with DATA bit 0 (two EP2C5 devices) and the third device (an EP2C8 device) with DATA bit 1. In this example, the memory space required for DATA bit 0 is the sum of the SOF file size for the two EP2C5 devices.

1,223,980 bits + 1,223,980 bits = 2,447,960 bits

The memory space required for DATA bit 1 is the SOF file size for on EP2C8 device (1,983,792 bits). Since the memory space required for DATA bit 0 is larger than the memory space required for DATA bit 1, the size of the POF file is $2 \times 2,447,960 = 4,895,920$.

For more information on using *n*-bit PS modes with enhanced configuration devices, see the *Using Altera Enhanced Configuration Devices* in the *Configuration Handbook*.

When configuring SRAM-based devices using n-bit PS modes, use Table 13–8 to select the appropriate configuration mode for the fastest configuration times.

Table 13–8. Recommended Configuration Using n-Bit PS Modes	
Number of Devices (1)	Recommended Configuration Mode
1	1-bit PS
2	2-bit PS
3	4-bit PS
4	4-bit PS
5	8-bit PS
6	8-bit PS
7	8-bit PS
8	8-bit PS

Note to Table 13-8:

(1) Assume that each DATA line is only configuring one device, not a daisy chain of devices.

You can use a single configuration chain to configure Cyclone II devices with other Altera devices. To ensure that all devices in the chain complete configuration at the same time or that an error flagged by one device initiates reconfiguration in all devices, connect all the Cyclone II device CONF_DONE pins and connect all Cyclone II device nSTATUS pins together.

For more information on configuring multiple Altera devices in the same configuration chain, see the *Configuring Mixed Altera FPGA Chains* chapter in the *Configuration Handbook*.

During PS configuration, the design must meet the setup and hold timing parameters and maximum DCLK frequency. The enhanced configuration and EPC2 devices are designed to meet these interface timing specifications.

Figure 13–18 shows the timing waveform for the PS configuration scheme using a configuration device.

Figure 13–18. Cyclone II PS Configuration Using a Configuration Device Timing Waveform

Note to Figure 13–18:

- (1) Cyclone II devices enter user mode 299 clock cycles after CONF_DONE goes high. The initialization clock can come from the Cyclone II internal oscillator or the CLKUSR pin.
 - For timing information, refer to the *Enhanced Configuration Devices* (EPC4, EPC8, and EPC16) Data Sheet or the *Configuration Devices for* SRAM-based LUT Devices Data Sheet in the *Configuration Handbook*.

For more information on device configuration options and how to create configuration files, see the *Software Settings* section in Volume 2 of the *Configuration Handbook*.

Combining JTAG & Active Serial Configuration Schemes

You can combine the AS configuration scheme with JTAG-based configuration. Set the MSEL[1..0] pins to 00 (AS mode) or 10 (Fast AS mode) in this setup, which uses two 10-pin download cable headers on the board. The first header programs the serial configuration device in the system via the AS programming interface, and the second header configures the Cyclone II directly via the JTAG interface.

If you try configuring the device using both schemes simultaneously, JTAG configuration takes precedence and AS configuration is terminated.

When a blank serial configuration device is attached to Cyclone II device, turn on the **Halt on-chip configuration controller** option under the Tools menu by clicking **Options**. The Options dialog box appears. In the **Category** list, select **Programmer** before starting the JTAG configuration with the Quartus II programmer. This option stops the AS reconfiguration loop from a blank serial configuration device before starting the JTAG configuration. This includes using the Serial Flash Loader IP because JTAG is used for configuring the Cyclone II device. Users do not need to recompile their Quartus II designs after turning on this Option.

Programming Serial Configuration Devices In-System Using the JTAG Interface

Cyclone II devices in a single device chain or in a multiple device chain support in-system programming of a serial configuration device using the JTAG interface via the serial flash loader design. The board's intelligent host or download cable can use the four JTAG pins on the Cyclone II device to program the serial configuration device in system, even if the host or download cable cannot access the configuration device's configuration pins (DCLK, DATA, ASDI, and nCS pins).

The serial flash loader design is a JTAG-based in-system programming solution for Altera serial configuration devices. The serial flash loader is a bridge design for the FPGA that uses its JTAG interface to access the EPCS JIC (JTAG Indirect Configuration Device Programming) file and then uses the AS interface to program the EPCS device. Both the JTAG interface and AS interface are bridged together inside the serial flash loader design.

In a multiple device chain, you only need to configure the master Cyclone II device which is controlling the serial configuration device. The slave devices in the multiple device chain which are configured by the serial configuration device do not need to be configured when using this