Intel - EP2C8T144C8N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	516
Number of Logic Elements/Cells	8256
Total RAM Bits	165888
Number of I/O	85
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2c8t144c8n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Another special packing mode allows the register output to feed back into the LUT of the same LE so that the register is packed with its own fan-out LUT, providing another mechanism for improved fitting. The LE can also drive out registered and unregistered versions of the LUT output.

In addition to the three general routing outputs, the LEs within an LAB have register chain outputs. Register chain outputs allow registers within the same LAB to cascade together. The register chain output allows an LAB to use LUTs for a single combinational function and the registers to be used for an unrelated shift register implementation. These resources speed up connections between LABs while saving local interconnect resources. See "MultiTrack Interconnect" on page 2–10 for more information on register chain connections.

LE Operating Modes

The Cyclone II LE operates in one of the following modes:

- Normal mode
- Arithmetic mode

Each mode uses LE resources differently. In each mode, six available inputs to the LE—the four data inputs from the LAB local interconnect, the LAB carry-in from the previous carry-chain LAB, and the register chain connection—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes.

The Quartus[®] II software, in conjunction with parameterized functions such as library of parameterized modules (LPM) functions, automatically chooses the appropriate mode for common functions such as counters, adders, subtractors, and arithmetic functions. If required, you can also create special-purpose functions that specify which LE operating mode to use for optimal performance.

Normal Mode

The normal mode is suitable for general logic applications and combinational functions. In normal mode, four data inputs from the LAB local interconnect are inputs to a four-input LUT (see Figure 2–3). The Quartus II Compiler automatically selects the carry-in or the data3 signal as one of the inputs to the LUT. LEs in normal mode support packed registers and register feedback.

Clock Modes

Table 2–8 summarizes the different clock modes supported by the M4K memory.

Table 2–8. M4K Clock Modes				
Clock Mode	Description			
Independent	In this mode, a separate clock is available for each port (ports A and B). Clock A controls all registers on the port A side, while clock B controls all registers on the port B side.			
Input/output	On each of the two ports, A or B, one clock controls all registers for inputs into the memory block: data input, wren, and address. The other clock controls the block's data output registers.			
Read/write	Up to two clocks are available in this mode. The write clock controls the block's data inputs, wraddress, and wren. The read clock controls the data output, rdaddress, and rden.			
Single	In this mode, a single clock, together with clock enable, is used to control all registers of the memory block. Asynchronous clear signals for the registers are not supported.			

Table 2–9 shows which clock modes are supported by all M4K blocks when configured in the different memory modes.

Table 2–9. Cyclone II M4K Memory Clock Modes						
Clocking Modes	True Dual-Port Mode	Single-Port Mode				
Independent	\checkmark					
Input/output	\checkmark	~	~			
Read/write		~				
Single clock	\checkmark	~	~			

M4K Routing Interface

The R4, C4, and direct link interconnects from adjacent LABs drive the M4K block local interconnect. The M4K blocks can communicate with LABs on either the left or right side through these row resources or with LAB columns on either the right or left with the column resources. Up to 16 direct link input connections to the M4K block are possible from the left adjacent LAB and another 16 possible from the right adjacent LAB. M4K block outputs can also connect to left and right LABs through each 16 direct link interconnects. Figure 2–17 shows the M4K block to logic array interface.

Embedded multipliers can operate at up to 250 MHz (for the fastest speed grade) for 18×18 and 9×9 multiplications when using both input and output registers.

Each Cyclone II device has one to three columns of embedded multipliers that efficiently implement multiplication functions. An embedded multiplier spans the height of one LAB row. Table 2–10 shows the number of embedded multipliers in each Cyclone II device and the multipliers that can be implemented.

Table 2–10. Number of Embedded Multipliers in Cyclone II Devices Note (1)					
Device	Embedded Multiplier Columns	Embedded Multipliers	9 × 9 Multipliers	18 × 18 Multipliers	
EP2C5	1	13	26	13	
EP2C8	1	18	36	18	
EP2C15	1	26	52	26	
EP2C20	1	26	52	26	
EP2C35	1	35	70	35	
EP2C50	2	86	172	86	
EP2C70	3	150	300	150	

Note to Table 2–10:

(1) Each device has either the number of 9×9 -, or 18×18 -bit multipliers shown. The total number of multipliers for each device is not the sum of all the multipliers.

The embedded multiplier consists of the following elements:

- Multiplier block
- Input and output registers
- Input and output interfaces

Figure 2–18 shows the multiplier block architecture.

Figure 2–24. Control Signal Selection per IOE

In normal bidirectional operation, you can use the input register for input data requiring fast setup times. The input register can have its own clock input and clock enable separate from the OE and output registers. You can use the output register for data requiring fast clock-to-output performance. The OE register is available for fast clock-to-output enable timing. The OE and output register share the same clock source and the same clock enable source from the local interconnect in the associated LAB, dedicated I/O clocks, or the column and row interconnects. All registers share sclr and aclr, but each register can individually disable sclr and aclr. Figure 2–25 shows the IOE in bidirectional configuration.

Slew Rate Control

Slew rate control is performed by using programmable output drive strength.

Bus Hold

Each Cyclone II device user I/O pin provides an optional bus-hold feature. The bus-hold circuitry can hold the signal on an I/O pin at its last-driven state. Since the bus-hold feature holds the last-driven state of the pin until the next input signal is present, an external pull-up or pull-down resistor is not necessary to hold a signal level when the bus is tri-stated.

The bus-hold circuitry also pulls undriven pins away from the input threshold voltage where noise can cause unintended high-frequency switching. You can select this feature individually for each I/O pin. The bus-hold output drives no higher than $V_{\rm CCIO}$ to prevent overdriving signals.

If the bus-hold feature is enabled, the device cannot use the programmable pull-up option. Disable the bus-hold feature when the I/O pin is configured for differential signals. Bus hold circuitry is not available on the dedicated clock pins.

The bus-hold circuitry is only active after configuration. When going into user mode, the bus-hold circuit captures the value on the pin present at the end of configuration.

The bus-hold circuitry uses a resistor with a nominal resistance (R_{BH}) of approximately 7 k Ω to pull the signal level to the last-driven state. Refer to the *DC Characteristics & Timing Specifications* chapter in Volume 1 of the *Cyclone II Device Handbook* for the specific sustaining current for each V_{CCIO} voltage level driven through the resistor and overdrive current used to identify the next driven input level.

Programmable Pull-Up Resistor

Each Cyclone II device I/O pin provides an optional programmable pull-up resistor during user mode. If you enable this feature for an I/O pin, the pull-up resistor (typically 25 k Ω) holds the output to the V_{CCIO} level of the output pin's bank.

If the programmable pull-up is enabled, the device cannot use the bus-hold feature. The programmable pull-up resistors are not supported on the dedicated configuration, JTAG, and dedicated clock pins. Cyclone II devices also use the JTAG port to monitor the logic operation of the device with the SignalTap[®] II embedded logic analyzer. Cyclone II devices support the JTAG instructions shown in Table 3–1.

Table 3–1. Cyclone II JTAG Instructions (Part 1 of 2)				
JTAG Instruction	Instruction Code	Description		
SAMPLE/PRELOAD	00 0000 0101	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap II embedded logic analyzer.		
extest (1)	00 0000 1111	Allows the external circuitry and board-level interconnects to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.		
BYPASS	11 1111 1111	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation.		
USERCODE	00 0000 0111	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.		
IDCODE	00 0000 0110	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.		
HIGHZ (1)	00 0000 1011	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation, while tri-stating all of the I/O pins.		
CLAMP (1)	00 0000 1010	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation while holding I/O pins to a state defined by the data in the boundary-scan register.		
ICR instructions		Used when configuring a Cyclone II device via the JTAG port with a USB Blaster [™] , ByteBlaster [™] II, MasterBlaster [™] or ByteBlasterMV [™] download cable, or when using a Jam File or JBC File via an embedded processor.		
PULSE_NCONFIG	00 0000 0001	Emulates pulsing the nCONFIG pin low to trigger reconfiguration even though the physical pin is unaffected.		

The Cyclone II device instruction register length is 10 bits and the USERCODE register length is 32 bits. Tables 3–2 and 3–3 show the boundary-scan register length and device IDCODE information for Cyclone II devices.

Table 3–2. Cyclone II Boundary-Scan Register Length				
Device Boundary-Scan Register Leng				
EP2C5	498			
EP2C8	597			
EP2C15	969			
EP2C20	969			
EP2C35	1,449			
EP2C50	1,374			
EP2C70	1,890			

Table 3–3. 32-Bit Cyclone II Device IDCODE						
Dovico	IDCODE (32 Bits) (1)					
Device	Version (4 Bits)	Part Number (16 Bits)	Manufacturer Identity (11 Bits)	LSB (1 Bit) (2)		
EP2C5	0000	0010 0000 1011 0001	000 0110 1110	1		
EP2C8	0000	0010 0000 1011 0010	000 0110 1110	1		
EP2C15	0000	0010 0000 1011 0011	000 0110 1110	1		
EP2C20	0000	0010 0000 1011 0011	000 0110 1110	1		
EP2C35	0000	0010 0000 1011 0100	000 0110 1110	1		
EP2C50	0000	0010 0000 1011 0101	000 0110 1110	1		
EP2C70	0000	0010 0000 1011 0110	000 0110 1110	1		

Notes to Table 3–3:

(1) The most significant bit (MSB) is on the left.

(2) The IDCODE's least significant bit (LSB) is always 1.

For more information on the Cyclone II JTAG specifications, refer to the *DC Characteristics & Timing Specifications* chapter in the *Cyclone II Device Handbook, Volume 1.*

Path Notes (1), (2) (Part 2 of 2)					
Row Pins with PLL in the Clock Path	C6	C 7	C8	Unit	
1.5-V	280	280	280	ps	
SSTL-2 Class I	150	190	230	ps	
SSTL-2 Class II	155	200	230	ps	
SSTL-18 Class I	180	240	260	ps	
HSTL-18 Class I	180	235	235	ps	
HSTL-15 Class I	205	220	220	ps	
Differential SSTL-2 Class I	150	190	230	ps	
Differential SSTL-2 Class II	155	200	230	ps	
Differential SSTL-18 Class I	180	240	260	ps	
Differential HSTL-18 Class I	180	235	235	ps	
Differential HSTL-15 Class I	205	220	220	ps	
LVDS	95	110	120	ps	
Simple RSDS	100	155	155	ps	
Mini LVDS	95	110	120	ps	
PCI	285	305	335	ps	
PCI-X	285	305	335	ps	

 Table 5–57. Maximum for DDIO Output on Row Pins with PLL in the Clock

 Path
 Notes (1), (2)
 (Part 2 of 2)

Notes to Table 5–57:

(1) The DCD specification is characterized using the maximum drive strength available for each I/O standard.

(2) Numbers are applicable for commercial, industrial, and automotive devices.

For DDIO outputs, you can calculate actual half period from the following equation:

Actual half period = ideal half period - maximum DCD

For example, if the DDR output I/O standard is SSTL-2 Class II, the maximum DCD for a -5 device is 155 ps (refer to Table 5–57). If the clock frequency is 167 MHz, the half-clock period T/2 is:

T/2 = 1/(2* f) = 1/(2*167 MHz) = 3 ns = 3000 ps

Note to Figure 7–1:

(1) This figure shows the PLL and clock inputs in the EP2C15 through EP2C70 devices. The EP2C5 and EP2C8 devices only have eight global clocks (CLK[0..3] and CLK[4..7]) and PLLs 1 and 2.

The main purpose of a PLL is to synchronize the phase and frequency of the VCO to an input reference clock. There are a number of components that comprise a PLL to achieve this phase alignment.

The PLL compares the rising edge of the reference input clock to a feedback clock using a phase-frequency detector (PFD). The PFD produces an up or down signal that determines whether the VCO needs to operate at a higher or lower frequency. The PFD output is applied to the charge pump and loop filter, which produces a control voltage for setting the frequency of the VCO. If the PFD transitions the up signal high, then the VCO frequency increases. If the PFD transitions the down signal high, then the VCO frequency decreases.

Figure 9–15. DDR Output Waveforms

Bidirectional DDR Registers

Figure 9–16 shows a bidirectional DDR interface constructed using the DDR input and DDR output examples described in the previous two sections. As with the DDR input and DDR output examples, the bidirectional DDR pin can be any available user I/O pin. The registers that implement DDR bidirectional logic are LEs in the LAB adjacent to that pin. The tri-state buffer controls when the device drives data onto the bidirectional DDR pin.

Table 10–1. Cyclone II Supported I/O Standards and Constraints (Part 2 of 2)								
I/O Standard	Туре	V _{ccio} Level		Top and Bottom I/O Pins		Side I/O Pins		
		Input	Output	CLK, DQS	User I/O Pins	CLK, DQS	PLL_OUT	User I/O Pins
Differential HSTL-15 class I	Pseudo	(4)	1.5 V	—	—		✓ (6)	_
or class II	differential (3)	1.5 V	(4)	✓ (5)	—	✓ (5)	_	_
Differential HSTL-18 class I	I Pseudo differential (3)	(4)	1.8 V	—	—		 (6) 	_
or class II		1.8 V	(4)	✓ (5)	—	✓ (5)		
LVDS	Differential	2.5 V	2.5 V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
RSDS and mini-LVDS (7)	Differential	(4)	2.5 V	—	\checkmark	—	\checkmark	\checkmark
LVPECL (8)	Differential	3.3 V/ 2.5 V/ 1.8 V/ 1.5 V	(4)	~	_	~	_	_

Notes to Table 10–1:

- (1) These pins support SSTL-18 class II and 1.8- and 1.5-V HSTL class II inputs.
- (2) PCI-X does not meet the IV curve requirement at the linear region. PCI-clamp diode is not available on top and bottom I/O pins.
- (3) Pseudo-differential HSTL and SSTL outputs use two single-ended outputs with the second output programmed as inverted. Pseudo-differential HSTL and SSTL inputs treat differential inputs as two single-ended HSTL and SSTL inputs and only decode one of them.
- (4) This I/O standard is not supported on these I/O pins.
- (5) This I/O standard is only supported on the dedicated clock pins.
- (6) PLL_OUT does not support differential SSTL-18 class II and differential 1.8 and 1.5-V HSTL class II.
- (7) mini-LVDS and RSDS are only supported on output pins.
- (8) LVPECL is only supported on clock inputs, not DQS and dual-purpose clock pins.

3.3-V LVTTL (EIA/JEDEC Standard JESD8-B)

The 3.3-V LVTTL I/O standard is a general-purpose, single-ended standard used for 3.3-V applications. The LVTTL standard defines the DC interface parameters for digital circuits operating from a 3.0-/3.3-V power supply and driving or being driven by LVTTL-compatible devices.

The LVTTL input standard specifies a wider input voltage range of $-0.3 \text{ V} \leq V_{I} \leq 3.9 \text{ V}$. Altera recommends an input voltage range of $-0.5 \text{ V} \leq V_{I} \leq 4.1 \text{ V}$.

I/O Driver Impedance Matching (R_S) and Series Termination (R_S)

Cyclone II devices support driver impedance matching to the impedance of the transmission line, typically 25 or 50 Ω When used with the output drivers, on-chip termination (OCT) sets the output driver impedance to 25 or 50 Ω by choosing the driver strength. Once matching impedance is selected, driver current can not be changed. Table 10–7 provides a list of output standards that support impedance matching. All I/O banks and I/O pins support impedance matching and series termination. Dedicated configuration pins and JTAG pins do not support impedance matching or series termination.

Table 10–7. Selectable I/O Drivers with Impedance Matching and Series Termination				
I/O Standard	Target R_{S} (Ω)			
3.3-V LVTTL/CMOS	25 (1)			
2.5-V LVTTL/CMOS	50 (1)			
1.8-V LVTTL/CMOS	50 (1)			
SSTL-2 class I	50 (1)			
SSTL-18 class I	50 (1)			

Note to Table 10–7:

(1) These RS values are nominal values. Actual impedance varies across process, voltage, and temperature conditions. Tolerance is specified in the DC Characteristics and Timing Specifications chapter in volume 1 of the Cyclone II Handbook.

Pad Placement and DC Guidelines

This section provides pad placement guidelines for the programmable I/O standards supported by Cyclone II devices and includes essential information for designing systems using the devices' selectable I/O capabilities. This section also discusses the DC limitations and guidelines.

Quartus II software provides user controlled restriction relaxation options for some placement constraints. When a default restriction is relaxed by a user, the Quartus II fitter generates warnings.

For more information about how Quartus II software checks I/O restrictions, refer to the *I/O Management* chapter in volume 2 of the *Quartus II Handbook*.

If V_{CCIO} is between 3.0 V and 3.6 V and the PCI clamping diode is enabled, the voltage at point B in Figure 10–21 is 4.3 V or less. To limit large current draw from the 5.0-V device, R_2 should be small enough for a fast signal rise time and large enough so that it does not violate the high-level output current (I_{OH}) specifications of the devices driving the trace. The PCI clamping diode in the Cyclone II device can support 25 mA of current.

To compute the required value of R_2 , first calculate the model of the pull-up transistors on the 5.0-V device. This output resistor (R_1) can be modeled by dividing the 5.0-V device supply voltage (V_{CC}) by the I_{OH} : $R_1 = V_{CC}/I_{OH}$.

Figure 10–22 shows an example of typical output drive characteristics of a 5.0-V device.

You can use I/O pins and internal logic to implement a high-speed I/O receiver and transmitter in Cyclone II devices. Cyclone II devices do not contain dedicated serialization or deserialization circuitry. Therefore, shift registers, internal global phase-locked loops (PLLs), and I/O cells are used to perform serial-to-parallel conversions on incoming data and parallel-to-serial conversion on outgoing data.

I/O Standards Support

This section provides information on the I/O standards that Cyclone II devices support.

LVDS Standard Support in Cyclone II Devices

The LVDS I/O standard is a high-speed, low-voltage swing, low power, and general purpose I/O interface standard. The Cyclone II device meets the ANSI/TIA/EIA-644 standard.

I/O banks on all four sides of the Cyclone II device support LVDS channels. See the pin tables on the Altera web site for the number of LVDS channels supported throughout different family members. Cyclone II LVDS receivers (input) support a data rate of up to 805 Mbps while LVDS transmitters (output) support up to 640 Mbps. The maximum internal clock frequency for a receiver and for a transmitter is 402.5 MHz. The maximum input data rate of 805 Mbps and the maximum output data rate of 640 Mbps is only achieved when DDIO registers are used. The LVDS standard does not require an input reference voltage; however, it does require a 100- Ω termination resistor between the two signals at the input buffer.

For LVDS data rates in Cyclone II devices with different speed grades, see the *DC Characteristics & Timing Specifications* chapter of the *Cyclone II Device Handbook*.

Table 11–1 shows LVDS I/O specifications.

Table 11–1. LVDS I/O Specifications (Part 1 of 2) Note (1)						
Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{CCINT}	Supply voltage		1.15	1.2	1.25	V
V _{CCIO}	I/O supply voltage		2.375	2.5	2.625	۷
V _{OD}	Differential output voltage	$R_L = 100 \ \Omega$	250		600	mV
ΔV_{OD}	Change in V _{OD} between H and L	R _L = 100 Ω			50	mV
V _{OS}	Output offset voltage	$R_L = 100 \Omega$	1.125	1.25	1.375	V

Table 13–1. Cyclone II Configuration Schemes Image: Configuration Schemes						
Configuration Scheme MSEL1 MSEL0						
AS (20 MHz)	0	0				
PS	0	1				
Fast AS (40 MHz) (1)	1	0				
JTAG-based Configuration (2)	(3)	(3)				

Notes to Table 13–1:

- Only the EPCS16 and EPCS64 devices support a DCLK up to 40 MHz clock; other EPCS devices support a DCLK up to 20 MHz. Refer to the *Serial Configuration* Devices Data Sheet for more information.
- (2) JTAG-based configuration takes precedence over other configuration schemes, which means MSEL pin settings are ignored.
- (3) Do not leave the MSEL pins floating; connect them to V_{CCIO} or ground. These pins support the non-JTAG configuration scheme used in production. If you are only using JTAG configuration, you should connect the MSEL pins to ground.

You can download configuration data to Cyclone II FPGAs with the AS, PS, or JTAG interfaces using the options in Table 13–2.

Table 13–2. Cyclone II Device Configuration Schemes				
Configuration Scheme	Description			
AS configuration	Configuration using serial configuration devices (EPCS1, EPCS4, EPCS16 or EPCS64 devices)			
PS configuration	Configuration using enhanced configuration devices (EPC4, EPC8, and EPC16 devices), EPC2 and EPC1 configuration devices, an intelligent host (microprocessor), or a download cable			
JTAG-based configuration	Configuration via JTAG pins using a download cable, an intelligent host (microprocessor), or the Jam™ Standard Test and Programming Language (STAPL)			

Reset Stage

When nCONFIG or nSTATUS are low, the device is in reset. After POR, the Cyclone II device releases nSTATUS. An external 10-k Ω pull-up resistor pulls the nSTATUS signal high, and the Cyclone II device enters configuration mode.

V_{CCINT} and V_{CCIO} of the banks where the configuration and JTAG pins reside need to be fully powered to the appropriate voltage levels in order to begin the configuration process.

Configuration Stage

The serial clock (DCLK) generated by the Cyclone II device controls the entire configuration cycle and provides the timing for the serial interface. Cyclone II devices use an internal oscillator to generate DCLK. Using the MSEL[] pins, you can select either a 20- or 40-MHz oscillator. Although you can select either 20- or 40-MHz oscillator when designing with serial configuration devices, the 40-MHz oscillator provides faster configuration times. There is some variation in the internal oscillator frequency because of the process, temperature, and voltage conditions in Cyclone II devices. The internal oscillator is designed such that its maximum frequency is guaranteed to meet EPCS device specifications.

Table 13–5 shows the AS DCLK output frequencies.

Table 13–5. AS DCLK Output Frequency Note (1)								
Oscillator Selected	Minimum	Minimum Typical		Units				
40 MHz	20	26	40	MHz				
20 MHz	10	13	20	MHz				

Note to Table 13–5:

(1) These values are preliminary.

In both AS and Fast AS configuration schemes, the serial configuration device latches input and control signals on the rising edge of DCLK and drives out configuration data on the falling edge. Cyclone II devices drive out control signals on the falling edge of DCLK and latch configuration data on the falling edge of DCLK.

In configuration mode, the Cyclone II device enables the serial configuration device by driving its nCSO output pin low, which connects to the chip select (nCS) pin of the configuration device. The Cyclone II device uses the serial clock (DCLK) and serial data output (ASDO) pins to send operation commands and/or read address signals to the serial

If your system has multiple Cyclone II devices (in the same density and package) with the same configuration data, you can configure them in one configuration cycle by connecting all device's nCE pins to ground and connecting all the Cyclone II device's configuration pins (nCONFIG, nSTATUS, DCLK, DATAO, and CONF_DONE) together. You can also use the nCEO pin as a user I/O pin after configuration. The configuration signals may require buffering to ensure signal integrity and prevent clock skew problems. Make sure the DCLK and DATA lines are buffered for every fourth device. All devices start and complete configuration at the same time. Figure 13–11 shows multiple device PS configuration data.

Figure 13–11. Multiple Device PS Configuration When Both FPGAs Receive the Same Data

Notes to Figure 13–11:

- (1) The pull-up resistor should be connected to a supply that provides an acceptable input signal for all devices in the chain. V_{CC} should be high enough to meet the V_{IH} specification of the I/O on the devices and the external host.
- (2) The nCEO pins of both devices can be left unconnected or used as user I/O pins when configuring the same configuration data into multiple devices.

You can use a single configuration chain to configure Cyclone II devices with other Altera devices. Connect all the Cyclone II device's and all other Altera device's CONF_DONE and nSTATUS pins together so all devices in the chain complete configuration at the same time or that an error reported by one device initiates reconfiguration in all devices.

For more information on configuring multiple Altera devices in the same configuration chain, see *Configuring Mixed Altera FPGA Chains* in the *Configuration Handbook*.

DATA3, you can leave the corresponding bit 3 line blank in the Quartus II software. On the printed circuit board (PCB), leave the DATA3 line from the enhanced configuration device unconnected. Use the Quartus II **Convert Programming Files** window (Tools menu) setup for this scheme.

You can also connect two FPGAs to one of the configuration device's DATA pins while the other DATA pins drive one device each. For example, you could use the 2-bit PS mode to drive two FPGAs with DATA bit 0 (two EP2C5 devices) and the third device (an EP2C8 device) with DATA bit 1. In this example, the memory space required for DATA bit 0 is the sum of the SOF file size for the two EP2C5 devices.

1,223,980 bits + 1,223,980 bits = 2,447,960 bits

The memory space required for DATA bit 1 is the SOF file size for on EP2C8 device (1,983,792 bits). Since the memory space required for DATA bit 0 is larger than the memory space required for DATA bit 1, the size of the POF file is $2 \times 2,447,960 = 4,895,920$.

For more information on using *n*-bit PS modes with enhanced configuration devices, see the *Using Altera Enhanced Configuration Devices* in the *Configuration Handbook*.

When configuring SRAM-based devices using *n*-bit PS modes, use Table 13–8 to select the appropriate configuration mode for the fastest configuration times.

Table 13–8. Recommended Configuration Using n-Bit PS Modes				
Number of Devices (1)	Recommended Configuration Mode			
1	1-bit PS			
2	2-bit PS			
3	4-bit PS			
4	4-bit PS			
5	8-bit PS			
6	8-bit PS			
7	8-bit PS			
8	8-bit PS			

Note to Table 13-8:

(1) Assume that each DATA line is only configuring one device, not a daisy chain of devices.

For more information on how to use the USB-Blaster, MasterBlaster, ByteBlaster II or ByteBlasterMV cables, refer to the following documents:

- USB-Blaster USB Port Download Cable Data Sheet
- MasterBlaster Serial/USB Communications Cable Data Sheet
- ByteBlaster II Parallel Port Download Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet

JTAG Configuration

The Joint Test Action Group (JTAG) has developed a specification for boundary-scan testing. This boundary-scan test (BST) architecture allows you to test components on PCBs with tight lead spacing. The BST architecture can test pin connections without using physical test probes and capture functional data while a device is operating normally. The JTAG circuitry can also be used to shift configuration data into the device. The Quartus II software automatically generates SOF files that can be used for JTAG configuration with a download cable in the Quartus II programmer.

For more information on JTAG boundary-scan testing, see the following documents:

- IEEE 1149.1 (JTAG) Boundary-Scan Testing for Cyclone II Devices chapter in Volume 2 of the Cyclone II Device Handbook
- Jam Programming & Testing Language Specification

Cyclone II devices are designed such that JTAG instructions have precedence over any device configuration modes. This means that JTAG configuration can take place without waiting for other configuration modes to complete. For example, if you attempt JTAG configuration of Cyclone II devices during PS configuration, PS configuration terminates and JTAG configuration begins. If the Cyclone II MSEL pins are set to AS or fast AS mode, the Cyclone II device does not output a DCLK signal when JTAG configuration takes place.

You cannot use the Cyclone II decompression feature if you are configuring your Cyclone II device when using JTAG-based configuration. Г

Table 13–11. Dedicated Configuration Pins on the Cyclone II Device (Part 5 of 5)					
Pin Name	User Mode	Configuration Scheme	Pin Type	Description	
DCLK	N/A	PS, AS	Input (PS) Output (AS)	In PS configuration, DCLK is the clock input used to clock data from an external source into the target device. Data is latched into the Cyclone II device on the rising edge of DCLK.	
				In AS mode, DCLK is an output from the Cyclone II device that provides timing for the configuration interface. In AS mode, DCLK has an internal pull-up that is always active.	
				After configuration, this pin is tri-stated. If you are using a configuration device, it drives DCLK low after configuration is complete. If your design uses a control host, drive DCLK either high or low. Toggling this pin after configuration does not affect the configured device.	
				The input buffer on this pin supports hysteresis using Schmitt trigger circuitry.	
DATA0	ATAO N/A All Input	This is the data input pin. In serial configuration modes, bit-wide configuration data is presented to the target device on the DATA0 pin.			
				In AS mode, DATA0 has an internal pull-up resistor that is always active.	
				After configuration, EPC1 and EPC1441 devices tri-state this pin, while enhanced configuration and EPC2 devices drive this pin high.	
				The input buffer on this pin supports hysteresis using Schmitt trigger circuitry.	

٦