

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, PWM, WDT
Number of I/O	57
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	72-UFBGA, WLCSP
Supplier Device Package	72-WLCSP (4.41x3.76)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l476jey6vtr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32L476xx microcontrollers.

This document should be read in conjunction with the STM32L4x6 reference manual (RM0351). The reference manual is available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M4 core, please refer to the Cortex[®]-M4 Technical Reference Manual, available from the www.arm.com website.

3.7 Boot modes

At startup, BOOT0 pin and BOOT1 option bit are used to select one of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI, CAN and USB OTG FS in Device mode through DFU (device firmware upgrade).

3.8 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.9 Power supply management

3.9.1 **Power supply schemes**

- V_{DD} = 1.71 to 3.6 V: external power supply for I/Os (V_{DDIO1}), the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through V_{DD} pins.
- V_{DDA} = 1.62 V (ADCs/COMPs) / 1.8 (DACs/OPAMPs) to 3.6 V: external analog power supply for ADCs, DACs, OPAMPs, Comparators and Voltage reference buffer. The V_{DDA} voltage level is independent from the V_{DD} voltage.
- V_{DDUSB} = 3.0 to 3.6 V: external independent power supply for USB transceivers. The V_{DDUSB} voltage level is independent from the V_{DD} voltage.
- V_{DDIO2} = 1.08 to 3.6 V: external power supply for 14 I/Os (PG[15:2]). The V_{DDIO2} voltage level is independent from the V_{DD} voltage.
- V_{LCD} = 2.5 to 3.6 V: the LCD controller can be powered either externally through VLCD pin, or internally from an internal voltage generated by the embedded step-up converter.
- V_{BAT} = 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.
- Note: When the functions supplied by V_{DDA} , V_{DDUSB} or V_{DDIO2} are not used, these supplies should preferably be shorted to V_{DD} .
- Note: If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V tolerant (refer to Table 19: Voltage characteristics).
- Note: V_{DDIOx} is the I/Os general purpose digital functions supply. V_{DDIOx} represents V_{DDIO1} or V_{DDIO2} , with $V_{DDIO1} = V_{DD}$. V_{DDIO2} supply voltage level is independent from V_{DDIO1} .

DocID025976 Rev 4

3.11 Clocks and startup

The clock controller (see *Figure 3*) distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching:** clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management:** to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **System clock source:** four different clock sources can be used to drive the master clock SYSCLK:
 - 4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply a PLL. The HSE can also be configured in bypass mode for an external clock.
 - 16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. In this mode the MSI can feed the USB device, saving the need of an external high-speed crystal (HSE). The MSI can supply a PLL.
 - System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency at 80 MHz.
- **Auxiliary clock source:** two ultralow-power clock sources that can be used to drive the LCD controller and the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for an external clock.
 - 32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock accuracy is ±5% accuracy.
- **Peripheral clock sources:** Several peripherals (USB, SDMMC, RNG, SAI, USARTs, I2Cs, LPTimers, ADC, SWPMI) have their own independent clock whatever the system clock. Three PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, the USB/SDMMC/RNG and the two SAIs.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 4 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- **Clock security system (CSS):** this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI16 and a software

τ
=
2
2
7
S
CD)
3
ā
_
<u> </u>
3
0
×
ö
ö
Ξ.
Ē
ă.
ō
ź

	Table 16. Alternate function AF0 to AF7 (for AF8 to AF15 see Table 17) (continued)										
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7		
Port		SYS_AF	TIM1/TIM2/ TIM5/TIM8/ LPTIM1	TIM1/TIM2/ TIM3/TIM4/ TIM5	TIM8	I2C1/I2C2/I2C3	SPI1/SPI2	SPI3/DFSDM	USART1/ USART2/ USART3		
	PD0	-	-	-	-	-	SPI2_NSS	DFSDM_DATIN7	-		
	PD1	-	-	-	-	-	SPI2_SCK	DFSDM_CKIN7	-		
	PD2	-	-	TIM3_ETR	-	-	-	-	USART3_RTS_ DE		
	PD3	-	-	-	-	-	SPI2_MISO	DFSDM_DATIN0	USART2_CTS		
	PD4	-	-	-	-	-	SPI2_MOSI	DFSDM_CKIN0	USART2_RTS_ DE		
	PD5	-	-	-	-	-	-	-	USART2_TX		
	PD6	-	-	-	-	-	-	DFSDM_DATIN1	USART2_RX		
Port D	PD7	-	-	-	-	-	-	DFSDM_CKIN1	USART2_CK		
	PD8	-	-	-	-	-	-	-	USART3_TX		
	PD9	-	-	-	-	-	-	-	USART3_RX		
	PD10	-	-	-	-	-	-	-	USART3_CK		
	PD11	-	-	-	-	-	-	-	USART3_CTS		
	PD12	-	-	TIM4_CH1	-	-	-	-	USART3_RTS_ DE		
	PD13	-	-	TIM4_CH2	-	-	-	-	-		
	PD14	-	-	TIM4_CH3	-	-	-	-	-		
	PD15	-	-	TIM4_CH4	-	-	-	_	-		

DocID025976 Rev 4

76/232

6.1.6 Power supply scheme

Figure 13. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Figure 18. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 46*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit
	LSE current consumption	LSEDRV[1:0] = 00 Low drive capability	-	250	-	
		LSEDRV[1:0] = 01 Medium low drive capability	-	315	-	_
^I DD(LSE)		LSEDRV[1:0] = 10 Medium high drive capability	-	500	-	
		LSEDRV[1:0] = 11 High drive capability	-	630	-	
	Maximum critical crystal gm	LSEDRV[1:0] = 00 Low drive capability	-	-	0.5	
Gm		LSEDRV[1:0] = 01 Medium low drive capability	-	-	0.75	
Gm _{critmax}		LSEDRV[1:0] = 10 Medium high drive capability	-	- ^	1.7	μΑνν
		LSEDRV[1:0] = 11 High drive capability	-	-	2.7	
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	-	S

ſable 46. LSE	oscillator	characteristics	$(f_{LSE} =$	32.768	kHz) ⁽¹⁾
---------------	-------------------	-----------------	--------------	--------	---------------------

Symbol	Parameter		Conditions	Min	Тур	Мах	Unit	
			Range 0	99	100	101		
			Range 1	198	200	202		
			Range 2	396	400	404	kHz	
			Range 3	792	800	808		
			Range 4	0.99	1	1.01		
		MCI mode	Range 5	1.98	2	2.02		
		wisi mode	Range 6	3.96	4	4.04		
			Range 7	7.92	8	8.08		
			Range 8	15.8	16	16.16		
			Range 9	23.8	24	24.4	-	
	MSI frequency after factory calibration, done at V _{DD} =3 V and		Range 10	31.7	32	32.32		
f			Range 11	47.5	48	48.48		
IMSI			Range 0	-	98.304	-	- kHz	
	T _A =30 °C		Range 1	-	196.608	-		
			Range 2	-	393.216	-		
			Range 3	-	786.432	-		
			Range 4	-	1.016	-		
		PLL mode	Range 5	-	1.999	-		
		32.768 kHz	Range 6	-	3.998	-		
			Range 7	-	7.995	-		
			Range 8	-	15.991	-		
			Range 9	-	23.986	-		
			Range 10	-	32.014	-		
			Range 11	-	48.005	-		
(2)	MSI oscillator		T _A = -0 to 85 °C	-3.5	-	3		
∆ _{TEMP} (MSI) ⁽²⁾	frequency drift over temperature	MSI mode	T _A = -40 to 125 °C	-8	-	6	%	

Table 48. MSI oscillator characteristics⁽¹⁾

Symbol	Parameter		Conditions	(Min	Тур	Max	Unit
	Page 0 to 2 V _{DD} =1.62 V to 3.6 V -1.2		-	0.5				
			Range 0 to 3	V _{DD} =2.4 V to 3.6 V	-0.5	-	0.5	
A (MGI)(2)	MSI oscillator frequency drift	MSI modo	Bango 4 to 7	V _{DD} =1.62 V to 3.6 V	-2.5	-	0.7	0/
	over V _{DD} (reference is 3 V)	MSI Mode	Range 4 to 7	V _{DD} =2.4 V to 3.6 V	-0.8	-	0.7	70
			Bango 8 to 11	V _{DD} =1.62 V to 3.6 V	-5	-	1	
			Range o to TT	V _{DD} =2.4 V to 3.6 V	-1.6	-		
	Frequency	T _A = -40 to 8		°C	-	1	2	
(MSI) ⁽²⁾⁽⁶⁾	variation in sampling mode ⁽³⁾	MSI mode	I mode $T_A = -40$ to 125 °C		-	2	4	%
P_USB Jitter(MSI) ⁽⁶⁾	Period jitter for USB clock ⁽⁴⁾	PLL mode	for next transition	-	-	-	3.458	5
		Range 11	for paired transition	-	-	-	3.916	ns
MT USB	Medium term jitter for USB clock ⁽⁵⁾	Medium term jitter or USB clock ⁽⁵⁾ Range 11	for next transition	-	-	-	2	
Jitter(MSI) ⁽⁶⁾			for paired transition	-	-	-	1	ns
CC jitter(MSI) ⁽⁶⁾	RMS cycle-to- cycle jitter	PLL mode R	ange 11	-	-	60	-	ps
P jitter(MSI) ⁽⁶⁾	RMS Period jitter	PLL mode R	ange 11	-	-	50	-	ps
		Range 0		-	-	10	20	
		Range 1		-	-	5	10	
(1 (1 (1))	MSI oscillator	Range 2		-	-	4	8	
t _{SU} (MSI) ^(*)	start-up time	Range 3		-	-	3	7	us
		Range 4 to 7	7	-	-	3	6	
		Range 8 to 11		-	-	2.5	6	
			10 % of final frequency	-	-	0.25	0.5	
t _{STAB} (MSI) ⁽⁶⁾	MSI oscillator stabilization time	PLL mode Range 11	5 % of final frequency	-	-	0.5	1.25	ms
				1 % of final frequency	-	-	-	2.5

Table 48. MSI oscillator characteristics ⁽	¹⁾ (continued)

Figure 24. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

2. The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in *Table 61: NRST pin characteristics*. Otherwise the reset will not be taken into account by the device.

6.3.16 Analog switches booster

Symbol	Parameter	Min	Тур	Мах	Unit	
V _{DD}	Supply voltage	1.62	-	3.6	V	
V _{BOOST}	Boost supply	2.7	-	4	v	
t _{SU(BOOST)}	Booster startup time	-	-	240	μs	
I _{DD(BOOST)}	Booster consumption for $1.62 \text{ V} \leq \text{V}_{\text{DD}} \leq 2.0 \text{ V}$	-	-	250		
	Booster consumption for 2.0 V \leq V _{DD} \leq 2.7 V	-	-	500	μA	
	Booster consumption for 2.7 V \leq V _{DD} \leq 3.6 V	-	-	900		

Table 62. Analog switches booster characteristics⁽¹⁾

1. Guaranteed by design.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
	Triagon conversion	CKMODE = 00	2.5	3	3.5		
	latency Injected channels	CKMODE = 01	-	-	3.0	A 15	
LATRINJ	aborting a regular	CKMODE = 10	-	-	3.25	1/T _{ADC}	
	conversion	CKMODE = 11	-	-	3.125		
+	Sampling time	f _{ADC} = 80 MHz	0.03125	-	8.00625	μs	
۲ _S		-	2.5	-	640.5	1/f _{ADC}	
t _{ADCVREG_STUP}	ADC voltage regulator start-up time	-	-	-	20	μs	
t _{conv}		f _{ADC} = 80 MHz Resolution = 12 bits	0.1875	-	8.1625	μs	
	(including sampling time)	Resolution = 12 bits	ts + 12.5 cycles for successive approximation = 15 to 653			1/f _{ADC}	
		fs = 5 Msps	-	730	830		
I _{DDA} (ADC)	ADC consumption from the V _{DDA} supply	fs = 1 Msps	-	160	220	μA	
		fs = 10 ksps	-	16	50		
	ADC consumption from	fs = 5 Msps	-	130	160		
I _{DDV_S} (ADC)	the V_{REF+} single ended	fs = 1 Msps	-	30	40	μA	
	mode	fs = 10 ksps	-	0.6	2		
	ADC consumption from	fs = 5 Msps	-	260	310		
I _{DDV_D} (ADC)	the V_{REF+} differential	fs = 1 Msps	-	60	70	μA	
	mode	fs = 10 ksps	-	1.3	3		

Table 63. ADC characteristics^{(1) (2)} (continued)

1. Guaranteed by design

2. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4V). It is disable when V_{DDA} \geq 2.4 V.

 V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 4: Pinouts and pin description for further details.

6.3.20 Comparator characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
V _{DDA}	Analog supply voltage	-		1.62	-	3.6		
V _{IN}	Comparator input voltage range	-		0	-	V _{DDA}	V	
V _{BG} ⁽²⁾	Scaler input voltage		-		V _{REFINT}	-		
V _{SC}	Scaler offset voltage		-	-	±5	±10	mV	
	Scaler static consumption	BRG_EN=0 (br	ridge disable)	-	200	300	nA	
IDDA(SCALER)	from V _{DDA}	BRG_EN=1 (br	BRG_EN=1 (bridge enable)		0.8	1	μA	
t _{START_SCALER}	Scaler startup time		-	-	100	200	μs	
		High-speed	V _{DDA} ≥ 2.7 V	-	-	5		
	Comparator startup time to	mode	V _{DDA} < 2.7 V	-	-	7		
t _{START}	reach propagation delay	Madium mada	V _{DDA} ≥ 2.7 V	-	-	15	μs	
	specification	medium mode	V _{DDA} < 2.7 V	-	-	25		
		Ultra-low-powe	Ultra-low-power mode			80		
	Propagation delay for 200 mV step with 100 mV overdrive	High-speed		V _{DDA} ≥ 2.7 V	-	55	80	ns
		mode	V _{DDA} < 2.7 V	-	65	100		
t _D ⁽³⁾		Madium mada	V _{DDA} ≥ 2.7 V	-	0.55	0.9		
		medium mode	V _{DDA} < 2.7 V	-	0.65	1	μs	
		Ultra-low-powe	r mode	-	5	12		
V _{offset}	Comparator offset error	Full common		-	±5	±20	mV	
		No hysteresis		-	0	-	- mV	
Ň	Comparator hysteresis	Low hysteresis	-	8	-			
V _{hys}		Medium hyster	-	15	-			
		High hysteresis	-	27	-			
			Static	-	400	600		
		Ultra-low- power mode	With 50 kHz ±100 mV overdrive square signal	-	1200	-	nA	
			Static	-	5	7		
I _{DDA} (COMP)	Comparator consumption from V _{DDA}	Medium mode	With 50 kHz ±100 mV overdrive square signal	-	6	-		
			Static	-	70	100	μA	
		High-speed mode	With 50 kHz ±100 mV overdrive square signal	-	75	-		

Table 72	2. COMP	characteristics ⁽¹⁾)
----------	---------	--------------------------------	---

- 1. Guaranteed by design.
- 2. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD connected.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	r(SO)	Slave mode 2.7 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	19	ns
t _{v(SO)}		Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	30	
	Data output valid time	Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 2	-	12.5	33	
-		Slave mode 1.08 < V_{DDIO2} < 1.32 $V^{(3)}$	-	25	62.5	
t _{v(MO)}		Master mode	-	2.5	12.5	
t _{h(SO)}		Slave mode	9	-	-	
-	Data output hold time	Slave mode 1.08 < V_{DDIO2} < 1.32 $V^{(3)}$	24	-	-	ns
t _{h(MO)}		Master mode	0	-	-	

Table 83. SPI characteristics ⁽¹⁾	(continued)
--	-------------

1. Guaranteed by characterization results.

2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50 %.

3. SPI mapped on Port G.

Symbol	Parameter	Conditions		Max	Unit	
t _{v(SD_B_ST)}	Data output valid time	Slave transmitter (after enable edge) $2.7 \le V_{DD} \le 3.6$	-	22	ns	
		Slave transmitter (after enable edge) $1.71 \le V_{DD} \le 3.6$	-	34		
t _{h(SD_B_ST)}	Data output hold time	Slave transmitter (after enable edge)	10	-	ns	
t _{v(SD_A_MT)}	Data output valid time	Master transmitter (after enable edge) $2.7 \le V_{DD} \le 3.6$	-	27	ns	
		Master transmitter (after enable edge) $1.71 \le V_{DD} \le 3.6$	- 40		115	
t _{h(SD_A_MT)}	Data output hold time	Master transmitter (after enable edge)	10	-	ns	

Table 86. SAI characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization results.

2. APB clock frequency must be at least twice SAI clock frequency.

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} +0.5	8T _{HCLK} +0.5	
t _{w(NWE)}	FMC_NWE low time	6T _{HCLK} -0.5	6T _{HCLK} +0.5	ne
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} +2	-	115
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +2	-	

Table 93. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings⁽¹⁾⁽²⁾

1. CL = 30 pF.

2. Guaranteed by characterization results.

Figure 39. Asynchronous multiplexed PSRAM/NOR read waveforms

Figure 40. Asynchronous multiplexed PSRAM/NOR write waveforms

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	4T _{HCLK} -0.5	4T _{HCLK} +2	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} -0.5	T _{HCLK} +1	
t _{w(NWE)}	FMC_NWE low time	2xT _{HCLK} -1.5	2xT _{HCLK} +1. 5	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK} -0.5	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	3	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	1	
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} -0.5	T _{HCLK} +1	ns
t _{h(AD_NADV)}	FMC_AD(adress) valid hold time after FMC_NADV high	T _{HCLK} -2	-	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK} -1	-	
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} +0.5	-	
$t_{v(BL_NE)}$	FMC_NEx low to FMC_BL valid	-	1.5	
t _{v(Data_NADV)}	FMC_NADV high to Data valid	-	T _{HCLK} +4	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} +0.5	-	

 Table 96. Asynchronous multiplexed PSRAM/NOR write timings⁽¹⁾⁽²⁾

1. CL = 30 pF.

2. Guaranteed by characterization results.

Table 97. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings ⁽¹⁾⁽²⁾
--

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	9T _{HCLK} -0.5	9T _{HCLK} +2	
t _{w(NWE)}	FMC_NWE low time	7T _{HCLK} -1.5	7T _{HCLK} +1.5	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} +2	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} -3	-	

1. CL = 30 pF.

2. Guaranteed by characterization results.

Synchronous waveforms and timings

Figure 41 through *Figure 44* represent synchronous waveforms and *Table 98* through *Table 101* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable
- MemoryType = FMC_MemoryType_CRAM
- WriteBurst = FMC_WriteBurst_Enable
- CLKDivision = 1
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

In all timing tables, the $T_{\mbox{HCLK}}$ is the HCLK clock period.

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} -1	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2	
t _{d(CLKH_NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} +0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	2.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	1	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	3.5	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	1.5	ns
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{HCLK} +1	-	
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	4	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{su(ADV-CLKH)}	FMC_A/D[15:0] valid data before FMC_CLK high	0	-	
t _{h(CLKH-ADV)}	FMC_A/D[15:0] valid data after FMC_CLK high	2.5	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	0	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	4	-	

Table 98. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

1. CL = 30 pF.

2. Guaranteed by characterization results.

Figure 60. WLCSP81 marking (package top view)

7.5 WLCSP72 package information

Figure 61. WLCSP72 - 72-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale package outline

1. Drawing is not to scale.

DocID025976 Rev 4

