

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, PWM, WDT
Number of I/O	65
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	81-UFBGA, WLCSP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l476mey6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

interrupt is generated if enabled. LSE failure can also be detected and generated an interrupt.

- Clock-out capability:
 - MCO: microcontroller clock output: it outputs one of the internal clocks for external use by the application
 - LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes (except VBAT).

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 80 MHz.

3.14 Interrupts and events

3.14.1 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 81 maskable interrupt channels plus the 16 interrupt lines of the $Cortex^{\mathbb{B}}$ -M4.

The NVIC benefits are the following:

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.14.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 36 edge detector lines used to generate interrupt/event requests and wake-up the system from Stop mode. Each external line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently A pending register maintains the status of the interrupt requests. The internal lines are connected to peripherals with wakeup from Stop mode capability. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 114 GPIOs can be connected to the 16 external interrupt lines.

3.15 Analog to digital converter (ADC)

The device embeds 3 successive approximation analog-to-digital converters with the following features:

- 12-bit native resolution, with built-in calibration
- 5.33 Msps maximum conversion rate with full resolution
 - Down to 18.75 ns sampling time
 - Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit resolution)
- Up to 24 external channels, some of them shared between ADC1 and ADC2, or ADC1, ADC2 and ADC3.
- 5 Internal channels: internal reference voltage, temperature sensor, VBAT/3, DAC1 and DAC2 outputs.
- One external reference pin is available on some package, allowing the input voltage range to be independent from the power supply
- Single-ended and differential mode inputs
- Low-power design
 - Capable of low-current operation at low conversion rate (consumption decreases linearly with speed)
 - Dual clock domain architecture: ADC speed independent from CPU frequency
- Highly versatile digital interface
 - Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions
 - Handles two ADC converters for dual mode operation (simultaneous or interleaved sampling modes)
 - Each ADC support multiple trigger inputs for synchronization with on-chip timers and external signals
 - Results stored into 3 data register or in RAM with DMA controller support
 - Data pre-processing: left/right alignment and per channel offset compensation
 - Built-in oversampling unit for enhanced SNR
 - Channel-wise programmable sampling time
 - Three analog watchdog for automatic voltage monitoring, generating interrupts and trigger for selected timers
 - Hardware assistant to prepare the context of the injected channels to allow fast context switching

3.15.1 Temperature sensor

The temperature sensor (TS) generates a voltage V_{TS} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC1_IN17 and ADC3_IN17 input channels which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

DocID025976 Rev 4

Bus	Boundary address	Size (bytes)	Peripheral
	0x4000 4000 - 0x4000 43FF	1 KB	Reserved
	0x4000 3C00 - 0x4000 3FFF	1 KB	SPI3
	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
APB1	0x4000 2400 - 0x4000 27FF	1 KB	LCD
	0x4000 1800 - 0x4000 23FF	3 KB	Reserved
	0x4000 1400 - 0x4000 17FF	1 KB	TIM7
	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
	0x4000 0C00- 0x4000 0FFF	1 KB	TIM5
	0x4000 0800 - 0x4000 0BFF	1 KB	TIM4
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

Table 18. STM32L476xx memory map and peripheral register boundaryaddresses (continued)⁽¹⁾

1. The gray color is used for reserved boundary addresses.

Figure 15. V_{REFINT} versus temperature

- 2. Guaranteed by test in production.
- 3. LCD enabled with external voltage source. Consumption from VLCD excluded. Refer to LCD controller characteristics for I_{VLCD.}
- 4. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
- 5. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in *Table 41: Low-power mode wakeup timings*.

112/232

Ш
ē
珨
Ţ.
a
2
÷
ar
aj.
8
er
S
Ē
ö

ST	
۳. ۳	
2Ľ	
176	
X	

			30110				J				/4			1
Symbol	Paramotor	Conditions		ТҮР				MAX''				Unit		
Symbol Pa	i arameter	-	V_{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
			1.8 V	114	355	1540	4146	10735	176	888	3850	10365	26838	
			2.4 V	138	407	1795	4828	12451	223	1018	4488	12070	31128	
	Supply current	no independent watchdog	3 V	150	486	2074	5589	14291	263	1215	5185	13973	35728	
_{DD} (Standby)	in Standby mode (backup		3.6 V	198	618	2608	6928	17499	383	1545	6520	17320 (2)	43748	nA
	retained),		1.8 V	317	-	-	-	-	-	-	-	-	-	
	RTC disabled	with independent	2.4 V	391	-	-	-	-	-	-	-	-	-	
		watchdog	3 V	438	-	-	-	-	-	-	-	-	-	
			3.6 V	566	-	-	-	-	-	-	-	-	-	1
		RTC clocked by LSI, no independent watchdog	1.8 V	377	621	1873	4564	11318	491	1207	4250	10867	27537	- nA
			2.4 V	464	756	2210	5348	13166	614	1436	4986	12694	31986	
			3 V	572	913	2599	6219	15197	770	1727	5815	14729	36815	
			3.6 V	722	1144	3253	7724	18696	1012	2176	7294	18275	45184	
		RTC clocked by LSI, with independent watchdog	1.8 V	456	-	-	-	-	-	-	-	-	-	
	Our also suggest		2.4 V	557	-	-	-	-	-	-	-	-	-	
	in Standby		3 V	663	-	-	-	-	-	-	-	-	-	
I _{DD} (Standby	mode (backup		3.6 V	885	-	-	-	-	-	-	-	-	-	
with RTC)	registers		1.8 V	289	527	1747	4402	11009	I	-	-	-	-	
	RTC enabled	RTC clocked by LSE	2.4 V	396	671	2108	5202	12869	I	-	-	-	-	
		bypassed at 32768Hz	3 V	528	853	2531	6095	14915	I	-	-	-	-	ΠA
			3.6 V	710	1111	3115	7470	18221	-	-	-	-	-	
			1.8 V	416	640	1862	4479	11908	-	-	-	-	-	
		RTC clocked by LSE	2.4 V	514	796	2193	5236	13689	-	-	-	-	-	
		quartz (3) in low drive mode	3 V	652	961	2589	6103	15598	-	-	-	-	-	
			3.6 V	821	1226	3235	7551	17947	-	-	-	-	-	

116/232

DocID025976 Rev 4

5

	Table 60. Abo docuracy minica test conditions 4 (continued)										
Sym- bol	Parameter	(Min	Тур	Max	Unit					
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-71	-69				
THD	Total harmonic distortion	otal 26 MHz, armonic 1.65 V \leq V _{DDA} = VREF+ \leq - istortion 3.6 V,	ended	Slow channel (max speed)	-	-71	-69	dD			
			Differential	Fast channel (max speed)	-	-73	-72	uВ			
		Voltage scaling Range 2		Slow channel (max speed)	-	-73	-72				

1. Guaranteed by design.

2. ADC DC accuracy values are measured after internal calibration.

- 3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when V_{DDA} \geq 2.4 V. No oversampling.

6.3.19 Voltage reference buffer characteristics

Symbol	Parameter	Conditio	ons	Min	Тур	Max	Unit
			V _{RS} = 0	2.4	-	3.6	
	Analog supply	Normal mode	V _{RS} = 1	2.8	-	3.6	
V _{DDA}	voltage	D_{2} are ded read (2)	V _{RS} = 0	1.65	-	2.4	
			V _{RS} = 1	1.65	-	2.8	V
		Normal mode	V _{RS} = 0	2.046 ⁽³⁾	2.048	2.049 ⁽³⁾	v
V _{REFBUF} _	Voltage	Normai mode	V _{RS} = 1	2.498 ⁽³⁾	2.5	2.502 ⁽³⁾	
OUT	output	Degraded mode ⁽²⁾	V _{RS} = 0	V _{DDA} -150 mV	-	V _{DDA}	
			V _{RS} = 1	V _{DDA} -150 mV	-	V _{DDA}	
TRIM	Trim step resolution	-	-	-	±0.05	±0.1	%
CL	Load capacitor	-	-	0.5	1	1.5	μF
esr	Equivalent Serial Resistor of Cload	-	-	-	-	2	Ω
I _{load}	Static load current			-	-	4	mA
1	Line regulation	281/51/ 5361/	I _{load} = 500 μA	-	200	1000	nnm\/
^I line_reg		$2.0 V \leq V_{\text{DDA}} \leq 3.0 V$	I _{load} = 4 mA	-	100	500	ppn/v
I _{load_reg}	Load regulation	500 µA ≤ I _{load} ≤4 mA	Normal mode	-	50	500	ppm/mA
Т	Temperature	-40 °C < TJ < +125 °C	-	-	T _{coeff} _ vrefint + 50	ppm/°C	
' Coeff	coefficient	0 °C < TJ < +50 °C		-	-	T _{coeff} vrefint + 50	ppm/ C
PSRR	Power supply	DC		40	60	-	dB
1 OKK	rejection	100 kHz		25	40	-	ЧD
		CL = 0.5 µF		-	300	350	
t _{START}	Start-up time	CL = 1.1 µF		-	500	650	μs
		CL = 1.5 μF	ſ	-	650	800	
I _{INRUSH}	Control of maximum DC current drive on VREFBUF_ OUT during start-up phase (4)	-	-	-	8	-	mA

Table 71. VREFBUF characteristics⁽¹⁾

Г

Т

Т

SPI characteristics

Unless otherwise specified, the parameters given in *Table 83* for SPI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 22: General operating conditions*.

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions		Тур	Мах	Unit
		Master mode receiver/full duplex 2.7 < V _{DD} < 3.6 V Voltage Range 1			24	
		Master mode receiver/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1			13	
		Master mode transmitter 1.71 < V _{DD} < 3.6 V Voltage Range 1			40	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode receiver 1.71 < V _{DD} < 3.6 V Voltage Range 1	-	-	40	MHz
		Slave mode transmitter/full duplex 2.7 < V _{DD} < 3.6 V Voltage Range 1			26 ⁽²⁾	-
		Slave mode transmitter/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1			16 ⁽²⁾	
		Voltage Range 2			13	-
		1.08 < V _{DDIO2} < 1.32 V ⁽³⁾			8	
t _{su(NSS)}	NSS setup time	Slave mode, SPI prescaler = 2	4 _x T _{PCLK}	-	-	ns
t _{h(NSS)}	NSS hold time	Slave mode, SPI prescaler = 2	2 _x T _{PCLK}	-	-	ns
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	T _{PCLK} -2	T _{PCLK}	T _{PCLK} +2	ns
t _{su(MI)}	Data input satup timo	Master mode	3.5	-	-	20
t _{su(SI)}		Slave mode	3		-	ns
t _{h(MI)}	Data input hold time	Master mode	6.5	-	-	ne
t _{h(SI)}		Slave mode	3	-	-	115
t _{a(SO)}	Data output access time	Slave mode	9	-	36	ns
t _{dis(SO)}	Data output disable time	Slave mode	9	_	16	ns

Table	83.	SPI	characteristics ⁽¹)
-------	-----	-----	-------------------------------	---

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$1.71 < V_{DD} < 3.6 V$, $C_{LOAD} = 20 pF$ Voltage Range 1	-	-	40	
F _{ск}	Quad SPI clock	2 < V _{DD} < 3.6 V, C _{LOAD} = 20 pF Voltage Range 1	-	-	48	MU-7
1/t _(CK)	frequency	1.71 < V _{DD} < 3.6 V, C _{LOAD} = 15 pF Voltage Range 1	-	-	48	IVITIZ
		1.71 < V _{DD} < 3.6 V C _{LOAD} = 20 pF Voltage Range 2	-	-	26	
t _{w(CKH)}	Quad SPI clock high		t _(CK) /2-2	-	t _(CK) /2	
t _{w(CKL)}	and low time	AHBCLK - 40 Minz, prese-0	t _(CK) /2	-	t _(CK) /2+2	
t _{sf(IN)} ;t _{sr(IN)}	Data input setup time	Voltago Bango 1 and 2	3.5	-	-	
t _{hf(IN)} ; t _{hr(IN)}	Data input hold time	voltage Range Tanu Z	6.5	-	-	ne
4 .4	Data autaut valid time	Voltage Range 1		11	12	115
^L vf(OUT) ^{, L} vr(OUT)		Voltage Range 2	-	15	19	
4 4 .	Data output hold time	Voltage Range 1	6	-		1
^ፒ hf(OUT) [;] ^t hr(OUT)		Voltage Range 2	8	-		

					(4)
Table 85.	QUADSPI	characteristics	in	DDR	mode ⁽¹⁾

1. Guaranteed by characterization results.

DocID025976 Rev 4

Symbol	Parameter	Conditions	Min	Max	Unit
t _{v(SD_B_ST)}	Data output valid time	Slave transmitter (after enable edge) $2.7 \le V_{DD} \le 3.6$		22	ne
		Slave transmitter (after enable edge) $1.71 \le V_{DD} \le 3.6$	-	34	115
t _{h(SD_B_ST)}	Data output hold time	Slave transmitter (after enable edge)	10	-	ns
t _{v(SD_A_MT)}	Data output valid time	Master transmitter (after enable edge) $2.7 \le V_{DD} \le 3.6$	-	27	ne
		Master transmitter (after enable edge) $1.71 \le V_{DD} \le 3.6$	-	40	115
t _{h(SD_A_MT)}	Data output hold time	Master transmitter (after enable edge)	10	-	ns

Table 86. SAI characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization results.

2. APB clock frequency must be at least twice SAI clock frequency.

USB characteristics

The STM32L476xx USB interface is fully compliant with the USB specification version 2.0 and is USB-IF certified (for Full-speed device operation).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDUSB}	USB transceiver operating volta	3.0 ⁽¹⁾	-	3.6	V	
R _{PUI}	Embedded USB_DP pull-up val	900	1250	1600		
R _{PUR}	Embedded USB_DP pull-up val reception	1400	2300	3200	Ω	
Z _{DRV} ⁽²⁾	Output driver impedance ⁽³⁾	Driving high and low	28	36	44	Ω

Table 89. I	USB	electrical	characteristics
-------------	-----	------------	-----------------

1. The STM32L476xx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V voltage range.

2. Guaranteed by design.

3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching impedance is already included in the embedded driver.

CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} +0.5	8T _{HCLK} +0.5	
t _{w(NWE)}	FMC_NWE low time	6T _{HCLK} -0.5	6T _{HCLK} +0.5	ne
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} +2	-	115
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +2	-	

Table 93. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings⁽¹⁾⁽²⁾

1. CL = 30 pF.

2. Guaranteed by characterization results.

Figure 39. Asynchronous multiplexed PSRAM/NOR read waveforms

In all timing tables, the $T_{\mbox{HCLK}}$ is the HCLK clock period.

- 1. CL = 30 pF.
- 2. Guaranteed by characterization results.

Figure 44. Synchronous non-multiplexed PSRAM write timings

7.3 LQFP100 package information

Figure 55. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591

Table 107. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat packagemechanical data

Figure 57. LQFP100 marking (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.6 LQFP64 package information

Figure 64. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 112. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-

