

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betano	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, PWM, WDT
Number of I/O	51
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l476rct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low-power run	Low-power sleep	Stop 0 / Stop 1	Stop 2
	TIMx	External trigger	Y	Y	Y	Υ	-	-
GPIO	LPTIMERx	External trigger	Y	Y	Y	Y	Y	Y (1)
	ADCx DACx DFSDM	Conversion external trigger	Y	Y	Y	Y	-	-

Table 6. STM32L476xx peripherals interconnect matrix (continued)

1. LPTIM1 only.

- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- External triggers for conversion
- Sample and hold low-power mode, with internal or external capacitor

The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

3.17 Voltage reference buffer (VREFBUF)

The STM32L476xx devices embed an voltage reference buffer which can be used as voltage reference for ADCs, DACs and also as voltage reference for external components through the VREF+ pin.

The internal voltage reference buffer supports two voltages:

- 2.048 V
- 2.5 V.

An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off.

The VREF+ pin is double-bonded with VDDA on some packages. In these packages the internal voltage reference buffer is not available.

3.18 Comparators (COMP)

The STM32L476xx devices embed two rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output channels
- Internal reference voltage or submultiple (1/4, 1/2, 3/4).

All comparators can wake up from Stop mode, generate interrupts and breaks for the timers and can be also combined into a window comparator.

3.23 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

3.24 Timers and watchdogs

The STM32L476 includes two advanced control timers, up to nine general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary outputs
Advanced control	TIM1, TIM8	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	3
General- purpose	TIM2, TIM5	32-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM3, TIM4	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1
General- purpose	TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	1
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table 10. Timer feature comparison

3.24.1 Advanced-control timer (TIM1, TIM8)

The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0-100%)
- One-pulse mode output

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.

DocID025976 Rev 4

3.27 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32L476xx devices have three embedded universal synchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4, UART5).

These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. They provide hardware management of the CTS and RTS signals, and RS485 Driver Enable. They are able to communicate at speeds of up to 10Mbit/s.

USART1, USART2 and USART3 also provide Smart Card mode (ISO 7816 compliant) and SPI-like communication capability.

All USART have a clock domain independent from the CPU clock, allowing the USARTx (x=1,2,3,4,5) to wake up the MCU from Stop mode. The wake up events from Stop mode are programmable and can be:

- Start bit detection
- Any received data frame
- A specific programmed data frame

All USART interfaces can be served by the DMA controller.

USART modes/features ⁽¹⁾	USART1	USART2	USART3	UART4	UART5	LPUART1
Hardware flow control for modem	Х	Х	Х	Х	Х	Х
Continuous communication using DMA	Х	Х	Х	Х	Х	Х
Multiprocessor communication	Х	Х	Х	Х	Х	Х
Synchronous mode	Х	Х	Х	-	-	-
Smartcard mode	Х	Х	Х	-	-	-
Single-wire half-duplex communication	Х	Х	Х	Х	Х	Х
IrDA SIR ENDEC block	Х	Х	Х	Х	х	-
LIN mode	Х	Х	Х	Х	Х	-
Dual clock domain	Х	Х	Х	Х	Х	Х
Wakeup from Stop 0 / Stop 1 modes	Х	Х	Х	Х	х	Х
Wakeup from Stop 2 mode	-	-	-	-	-	Х
Receiver timeout interrupt	Х	Х	Х	Х	Х	-
Modbus communication	Х	Х	Х	Х	х	-
Auto baud rate detection)	X (4 modes)	•	-
Driver Enable	Х	Х	Х	Х	Х	Х
LPUART/USART data length		•	7, 8 ar	nd 9 bits	•	

Table 12. STM32L4x6 USART/UART/LPUART features

1. X = supported.

3.36 Quad SPI memory interface (QUADSPI)

The Quad SPI is a specialized communication interface targeting single, dual or quad SPI flash memories. It can operate in any of the three following modes:

- Indirect mode: all the operations are performed using the QUADSPI registers
- Status polling mode: the external flash status register is periodically read and an interrupt can be generated in case of flag setting
- Memory-mapped mode: the external flash is memory mapped and is seen by the system as if it were an internal memory

The Quad SPI interface supports:

- Three functional modes: indirect, status-polling, and memory-mapped
- SDR and DDR support
- Fully programmable opcode for both indirect and memory mapped mode
- Fully programmable frame format for both indirect and memory mapped mode
- Each of the 5 following phases can be configured independently (enable, length, single/dual/quad communication)
 - Instruction phase
 - Address phase
 - Alternate bytes phase
 - Dummy cycles phase
 - Data phase
- Integrated FIFO for reception and transmission
- 8, 16, and 32-bit data accesses are allowed
- DMA channel for indirect mode operations
- Programmable masking for external flash flag management
- Timeout management
- Interrupt generation on FIFO threshold, timeout, status match, operation complete, and access error

		Pin N	Numb							Pin functions	
LQFP64	WLCSP72	WLCSP81	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
45	C1	C1	71	A12	104	PA12	I/O	FT_u	-	TIM1_ETR, USART1_RTS_DE, CAN1_TX, OTG_FS_DP, EVENTOUT	-
46	C2	C2	72	A11	105	PA13 (JTMS-SWDIO)	I/O	FT	(3)	JTMS-SWDIO, IR_OUT, OTG_FS_NOE, EVENTOUT	-
47	B1	B1	-	-	-	VSS	S	-	-	-	-
48	A1	A1	73	C11	106	VDDUSB	S	-	-	-	-
-	-	-	74	F11	107	VSS	S	-	-	-	-
-	-	-	75	G11	108	VDD	S	-	-	-	-
49	B2	B2	76	A10	109	PA14 (JTCK-SWCLK)	I/O	FT	(3)	JTCK-SWCLK, EVENTOUT	-
50	A2	A2	77	A9	110	PA15 (JTDI)	I/O	FT_I	(3)	JTDI, TIM2_CH1, TIM2_ETR, SPI1_NSS, SPI3_NSS, UART4_RTS_DE, TSC_G3_IO1, LCD_SEG17, SAI2_FS_B, EVENTOUT	-
51	D3	D3	78	B11	111	PC10	I/O	FT_I	-	SPI3_SCK, USART3_TX, UART4_TX, TSC_G3_IO2, LCD_COM4/LCD_SEG28/ LCD_SEG40, SDMMC1_D2, SAI2_SCK_B, EVENTOUT	-
52	C3	C3	79	C10	112	PC11	I/O	FT_I	_	SPI3_MISO, USART3_RX, UART4_RX, TSC_G3_IO3, LCD_COM5/LCD_SEG29/ LCD_SEG41, SDMMC1_D3, SAI2_MCLK_B, EVENTOUT	-
53	В3	В3	80	B10	113	PC12	I/O	FT_I	-	SPI3_MOSI, USART3_CK, UART5_TX, TSC_G3_IO4, LCD_COM6/LCD_SEG30/ LCD_SEG42, SDMMC1_CK, SAI2_SD_B, EVENTOUT	-
-	-	-	81	C9	114	PD0	I/O	FT	-	SPI2_NSS, DFSDM_DATIN7, CAN1_RX, FMC_D2, EVENTOUT	-

Table 15. STM32L476xxSTM32L476xx pin definitions	(continued)	
	(0011111000)	

Τ
=
2
0
_
ថ
മ
Q
p
_
_
Q
Φ
S
o.
⊐.
σ
Ĕ.
ō
ž

STM32L476xx

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Po	ort	SYS_AF	TIM1/TIM2/ TIM5/TIM8/ LPTIM1	TIM1/TIM2/ TIM3/TIM4/ TIM5	TIM8	12C1/12C2/12C3	SPI1/SPI2	SPI3/DFSDM	USART1/ USART2/ USART3
	PB0	-	TIM1_CH2N	TIM3_CH3	TIM8_CH2N	-	-	-	USART3_CK
	PB1	-	TIM1_CH3N	TIM3_CH4	TIM8_CH3N	-	-	DFSDM_DATIN0	USART3_RTS DE
	PB2	RTC_OUT	LPTIM1_OUT	-	-	I2C3_SMBA	-	DFSDM_CKIN0	-
	PB3	JTDO- TRACESWO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK	USART1_RTS DE
	PB4	NJTRST	-	TIM3_CH1	-	-	SPI1_MISO	SPI3_MISO	USART1_CTS
	PB5	-	LPTIM1_IN1	TIM3_CH2	-	I2C1_SMBA	SPI1_MOSI	SPI3_MOSI	USART1_CK
	PB6	-	LPTIM1_ETR	TIM4_CH1	TIM8_BKIN2	I2C1_SCL	-	DFSDM_DATIN5	USART1_TX
Port B	PB7	-	LPTIM1_IN2	TIM4_CH2	TIM8_BKIN	I2C1_SDA	-	DFSDM_CKIN5	USART1_RX
POILE	PB8	-	-	TIM4_CH3	-	I2C1_SCL	-	DFSDM_DATIN6	-
	PB9	-	IR_OUT	TIM4_CH4	-	I2C1_SDA	SPI2_NSS	DFSDM_CKIN6	-
	PB10	-	TIM2_CH3	-	-	I2C2_SCL	SPI2_SCK	DFSDM_DATIN7	USART3_TX
	PB11	-	TIM2_CH4	-	-	I2C2_SDA	-	DFSDM_CKIN7	USART3_RX
	PB12	-	TIM1_BKIN	-	TIM1_BKIN_ COMP2	I2C2_SMBA	SPI2_NSS	DFSDM_DATIN1	USART3_CK
	PB13	-	TIM1_CH1N	-	-	I2C2_SCL	SPI2_SCK	DFSDM_CKIN1	USART3_CTS
	PB14	-	TIM1_CH2N	-	TIM8_CH2N	I2C2_SDA	SPI2_MISO	DFSDM_DATIN2	USART3_RTS DE
	PB15	RTC_REFIN	TIM1_CH3N	-	TIM8_CH3N	-	SPI2_MOSI	DFSDM_CKIN2	-

DocID025976 Rev 4

5

74/232

6.1.6 Power supply scheme

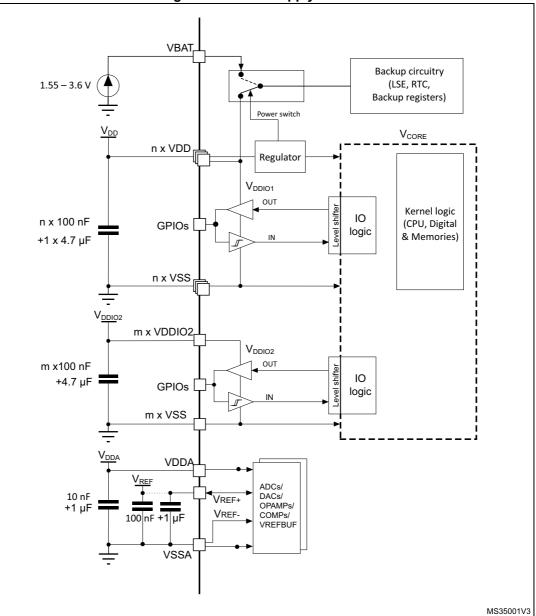


Figure 13. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

Ē	
čtr	
ical	
l ch	
ara	
cte	
rist	
ics	

	Т	able 33. Cur	rent con	sumption	in Lov	v-powe	er sleep	modes	, Flash	in powe	er-dowr	ו			
Symbol	Parameter	Conditions			ТҮР					MAX ⁽¹⁾					
		-	Voltage scaling	f _{HCLK}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
				2 MHz	81	110	217	395	754	115	182	375	750	1500	
I _{DD} (LPSleep	Supply current in low-power	f _{HCLK} = f _{MSI} all peripherals disable		1 MHz	50	78	185	362	720	80	149	342	717	1456	uА
)	sleep mode		400 kHz	28	57	163	340	698	60	122	314	689	1429	μΛ	
	•			100 kHz	18	47	155	332	686	50	114	313	688	1438	

- -

1. Guaranteed by characterization results, unless otherwise specified.

- -

Symbol	Parameter	Conditions			ТҮР					MAX ⁽¹⁾				
Symbol	Parameter	-	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
			1.8 V	1.14	3.77	14.7	34.7	77	2.7	9	37	87	193	
		LCD disabled	2.4 V	1.15	3.86	15	35.5	79.1	2.7	10	38	89	198	
			3 V	1.18	3.97	15.4	36.4	81.3	2.8	10	39	91	203	
(Stop 2)	Supply current in		3.6 V	1.26	4.11	16	38	85.1	3.0	10	40	95 ⁽²⁾	213	
I _{DD} (Stop 2)	Stop 2 mode, RTC disabled	LCD enabled ⁽³⁾ clocked by LSI	1.8 V	1.43	3.98	15	35	77.3	3.2	10	38	88	193	μA
			2.4 V	1.49	4.07	15.3	35.8	79.4	3.2	10	38	90	199	
			3 V	1.54	4.24	15.7	36.7	81.6	3.3	11	39	92	204	
			3.6 V	1.75	4.47	16.1	38.3	85.4	3.5	11	40	96	214	1

Table 34. Current consumption in Stop 2 mode

110/232

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 58: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously (see *Table 40: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDIOx} \times f_{SW} \times C$$

where

 ${\rm I}_{\rm SW}$ is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DDIOx} is the I/O supply voltage

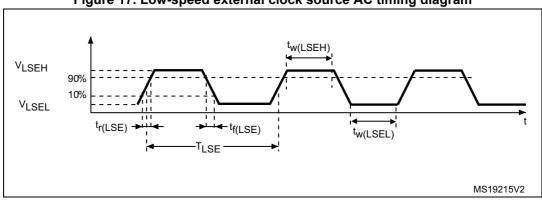
 f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Low-speed external user clock generated from an external source


In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 17.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{LSE_ext}	User external clock source frequency	-	-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage	-	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3 V _{DDIOx}	
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time	-	250	-	-	ns

Table 44. Low-speed external user clock characteristics ⁽¹⁾
--

1. Guaranteed by design.

- 1. Guaranteed by design.
- 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".
- 3. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

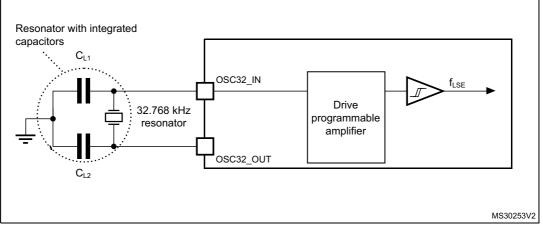


Figure 19. Typical application with a 32.768 kHz crystal

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

Table 48. MSI oscillator characteristics ⁽¹⁾ (continued)										
Symbol	Parameter		Conditions		Min	Тур	Мах	Unit		
			Range 0 to 3	V _{DD} =1.62 V to 3.6 V	-1.2	-	0.5			
(100)(2)		Molanada	V _{DD} =2.4 V to 3.6 V	V _{DD} =2.4 V to 3.6 V	-0.5	-	0.5			
	MSI oscillator frequency drift		Pango 4 to 7	V _{DD} =1.62 V to 3.6 V	-2.5	-	0.7	%		
$\Delta_{VDD}(MSI)^{(2)}$	over V _{DD} (reference is 3 V)	MSI mode	Ŭ V _E	V _{DD} =2.4 V to 3.6 V	-0.8	-	0.7	70		
			Range 8 to 11	V _{DD} =1.62 V to 3.6 V	-5	-	1			
			Range 6 to 11	V _{DD} =2.4 V to 3.6 V	-1.6	-				
$\Delta F_{SAMPLING}$	Frequency		T_{A} = -40 to 85 °	°C	-	1	2			
∆F _{SAMPLING} (MSI) ⁽²⁾⁽⁶⁾	variation in sampling mode ⁽³⁾	MSI mode	T _A = -40 to 125	°C	-	2	4	%		
P_USB	Period jitter for USB clock ⁽⁴⁾		PLL mode	for next transition	-	-	-	3.458	20	
Jitter(MSI) ⁽⁶⁾			USB clock ⁽⁴⁾	Range 11	for paired transition	-	-	-	3.916	ns
MT_USB	Medium term jitter for USB clock ⁽⁵⁾			PLL mode	for next transition	-	-	-	2	ns
Jitter(MSI) ⁽⁶⁾			for paired transition	-	-	-	1	115		
CC jitter(MSI) ⁽⁶⁾	RMS cycle-to- cycle jitter	PLL mode R	PLL mode Range 11		-	60	-	ps		
P jitter(MSI) ⁽⁶⁾	RMS Period jitter	PLL mode R	ange 11	-	-	50	-	ps		
		Range 0		-	-	10	20			
		Range 1		-	-	5	10			
t(MSI)(6)	MSI oscillator	Range 2		-	-	4	8	us		
t _{SU} (MSI) ⁽⁶⁾	start-up time	Range 3		-	-	3	7	us		
		Range 4 to 7		-	-	3	6			
		Range 8 to 11		-	-	2.5	6			
			10 % of final frequency	-	-	0.25	0.5			
t _{STAB} (MSI) ⁽⁶⁾	MSI oscillator stabilization time	PLL mode Range 11	5 % of final frequency	-	-	0.5	1.25	ms		
			1 % of final frequency	-	-	-	2.5			

Table 48. MSI oscillator characteristics ⁽¹⁾ (continued)

6.3.10 Flash memory characteristics

Table 51. Flash memory characteristics."					
Symbol	Parameter	Conditions	Тур	Max	Unit
t _{prog}	64-bit programming time	-	81.69	90.76	μs
+	one row (32 double	normal programming	2.61	2.90	
^t prog_row	word) programming time	fast programming	1.91	2.12	
+	one page (2 Kbyte)	normal programming	20.91	23.24	ms
^l prog_page	programming time	fast programming	15.29	16.98	
t _{ERASE}	Page (2 KB) erase time	-	22.02	24.47	
t _{prog_bank}	one bank (512 Kbyte) programming time	normal programming	5.35	5.95	s
		fast programming	3.91	4.35	
t _{ME}	Mass erase time (one or two banks)	-	22.13	24.59	ms
	Average consumption	Write mode	3.4	-	
	from V _{DD}	Erase mode	3.4	-	mA
I _{DD}	Maximum aurrant (naak)	Write mode	7 (for 2 µs)	-	mA
	Maximum current (peak)	Erase mode	7 (for 41 µs)	-	

Table 51. Flash memory characteristics⁽¹⁾

1. Guaranteed by design.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycles
t _{RET} Data retention		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
	Data rotantian	1 kcycle ⁽²⁾ at T _A = 105 °C	15	
		1 kcycle ⁽²⁾ at T _A = 125 °C	7	Years
	Data retention	10 kcycles ⁽²⁾ at T _A = 55 °C	30	Tears
		10 kcycles ⁽²⁾ at T _A = 85 °C	15	
		10 kcycles ⁽²⁾ at T _A = 105 °C	10	

Table 52. Flash memory endurance and data retention

1. Guaranteed by characterization results.

2. Cycling performed over the whole temperature range.

	Table 00. ADC accuracy - miniced test conditions + * * * / (continued)							
Sym- bol	Parameter	C	Conditions ⁽⁴)	Min	Тур	Max	Unit
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-71	-69	
THD	Total 26 MHz, harmonic 1.65 V \leq V _{DDA} = VREF+ \leq -	26 MHz,	ended	Slow channel (max speed)	-	-71	-69	dB
	distortion 3.6 V,	Differential	Fast channel (max speed)	-	-73	-72	uр	
Voltage scaling Range 2	Differential	Slow channel (max speed)	-	-73	-72			

Table 68. ADC accuracy - limited test conditions 4 ⁽¹⁾⁽²⁾⁽³⁾ (cont	ntinued)
---	----------

1. Guaranteed by design.

2. ADC DC accuracy values are measured after internal calibration.

- 3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when V_{DDA} \geq 2.4 V. No oversampling.

SAI characteristics

Unless otherwise specified, the parameters given in *Table 86* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in*Table 22: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: $0.5 \times V_{DD}$

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CK,SD,FS).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{MCLK}	SAI Main clock output	-	-	50	MHz
f _{CK} SAI clock frequency ⁽²⁾		Master transmitter 2.7 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	18.5	
		Master transmitter 1.71 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	12.5	
		Master receiver Voltage Range 1	-	25	
	Slave transmitter 2.7 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	22.5	MHz	
		Slave transmitter 1.71 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	14.5	
		Slave receiver Voltage Range 1	-	25	
		Voltage Range 2	-	12.5	
+	ES valid time	Master mode 2.7 \leq V _{DD} \leq 3.6	-	22	20
t _{v(FS)}	FS valid time	Master mode $1.71 \le V_{DD} \le 3.6$	-	40	ns
t _{h(FS)}	FS hold time	Master mode	10	-	ns
t _{su(FS)}	FS setup time	Slave mode	1	-	ns
t _{h(FS)}	FS hold time	Slave mode	2	-	ns
t _{su(SD_A_MR)}	Data input sotup time	Master receiver	2.5	-	
t _{su(SD_B_SR)}	Data input setup time	Slave receiver	3	-	ns
t _{h(SD_A_MR)}	Data input hold time	Master receiver	8	-	ns
t _{h(SD_B_SR)}		Slave receiver	4	-	115

Table 86. SAI characteristics⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} -1	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} +0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	2.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	1	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	3.5	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	2	
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{HCLK} +1	-	ns
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	4	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{d(CLKL-DATA)}	FMC_A/D[15:0] valid data after FMC_CLK low	-	5.5	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	-	2.5	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} +1	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	0	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	4	-	

		(1)(2)
Table 99. Synchronous multi	plexed PSRAM w	rite timings ⁽¹⁾⁽²⁾

1. CL = 30 pF.

2. Guaranteed by characterization results.

Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} -0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} +0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	2	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	2.5	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	5	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK} -1	-	ns
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	2	115
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{HCLK} -1	-	
t _{d(CLKL-Data)}	FMC_D[15:0] valid data after FMC_CLK low	-	4.5	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	1.5	-	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} +1	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	0	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	4	-	

Table 101. Synchronous non-multiplexed PSRAM write timings⁽¹⁾⁽²⁾

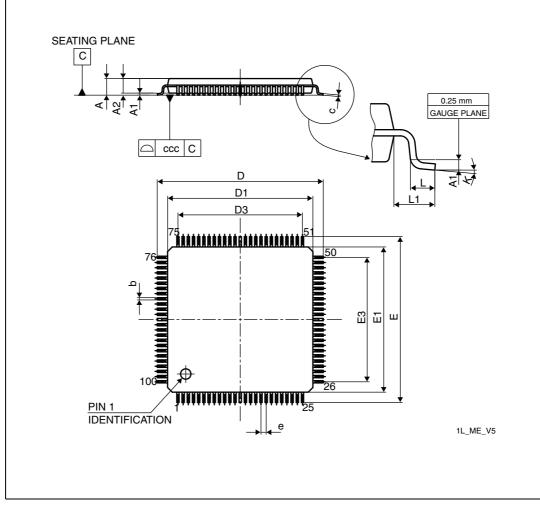
1. CL = 30 pF.

2. Guaranteed by characterization results.

NAND controller waveforms and timings

Figure 45 through *Figure 48* represent synchronous waveforms, and *Table 102* and *Table 103* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- COM.FMC_SetupTime = 0x02
- COM.FMC_WaitSetupTime = 0x03
- COM.FMC_HoldSetupTime = 0x02
- COM.FMC_HiZSetupTime = 0x03
- ATT.FMC_SetupTime = 0x01
- ATT.FMC_WaitSetupTime = 0x03
- ATT.FMC_HoldSetupTime = 0x02
- ATT.FMC_HiZSetupTime = 0x03
- Bank = FMC_Bank_NAND
- MemoryDataWidth = FMC_MemoryDataWidth_16b
- ECC = FMC_ECC_Enable
- ECCPageSize = FMC_ECCPageSize_512Bytes
- TCLRSetupTime = 0
- TARSetupTime = 0


In all timing tables, the $T_{\mbox{HCLK}}$ is the HCLK clock period.

DocID025976 Rev 4

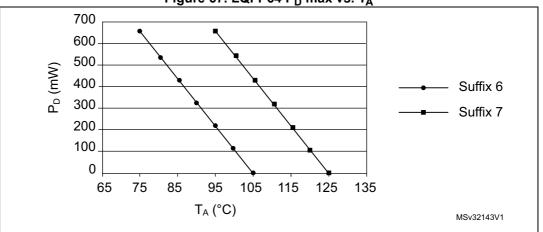
7.3 LQFP100 package information

Figure 55. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 107. LQPF100 - 100-pin, 14 x 14 mm mechanical dat	
	(1)

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591


Using the values obtained in *Table 113* T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W
- T_{Jmax} = 100 °C + (45 °C/W × 134 mW) = 100 °C + 6.03 °C = 106.03 °C

This is above the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Section 8: Part numbering*) unless we reduce the power dissipation in order to be able to use suffix 6 parts.

Refer to *Figure 67* to select the required temperature range (suffix 6 or 7) according to your ambient temperature or power requirements.

