

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, PWM, WDT
Number of I/O	51
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l476ret6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1. STM32L476xx block diagram

3.7 Boot modes

At startup, BOOT0 pin and BOOT1 option bit are used to select one of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI, CAN and USB OTG FS in Device mode through DFU (device firmware upgrade).

3.8 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.9 Power supply management

3.9.1 **Power supply schemes**

- V_{DD} = 1.71 to 3.6 V: external power supply for I/Os (V_{DDIO1}), the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through V_{DD} pins.
- V_{DDA} = 1.62 V (ADCs/COMPs) / 1.8 (DACs/OPAMPs) to 3.6 V: external analog power supply for ADCs, DACs, OPAMPs, Comparators and Voltage reference buffer. The V_{DDA} voltage level is independent from the V_{DD} voltage.
- V_{DDUSB} = 3.0 to 3.6 V: external independent power supply for USB transceivers. The V_{DDUSB} voltage level is independent from the V_{DD} voltage.
- V_{DDIO2} = 1.08 to 3.6 V: external power supply for 14 I/Os (PG[15:2]). The V_{DDIO2} voltage level is independent from the V_{DD} voltage.
- V_{LCD} = 2.5 to 3.6 V: the LCD controller can be powered either externally through VLCD pin, or internally from an internal voltage generated by the embedded step-up converter.
- V_{BAT} = 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.
- Note: When the functions supplied by V_{DDA} , V_{DDUSB} or V_{DDIO2} are not used, these supplies should preferably be shorted to V_{DD} .
- Note: If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V tolerant (refer to Table 19: Voltage characteristics).
- Note: V_{DDIOx} is the I/Os general purpose digital functions supply. V_{DDIOx} represents V_{DDIO1} or V_{DDIO2} , with $V_{DDIO1} = V_{DD}$. V_{DDIO2} supply voltage level is independent from V_{DDIO1} .

DocID025976 Rev 4

3.19 Operational amplifier (OPAMP)

The STM32L476xx embeds two operational amplifiers with external or internal follower routing and PGA capability.

The operational amplifier features:

- Low input bias current
- Low offset voltage
- Low-power mode
- Rail-to-rail input

3.20 Touch sensing controller (TSC)

The touch sensing controller provides a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

The main features of the touch sensing controller are the following:

- Proven and robust surface charge transfer acquisition principle
- Supports up to 24 capacitive sensing channels
- Up to 3 capacitive sensing channels can be acquired in parallel offering a very good response time
- Spread spectrum feature to improve system robustness in noisy environments
- Full hardware management of the charge transfer acquisition sequence
- Programmable charge transfer frequency
- Programmable sampling capacitor I/O pin
- Programmable channel I/O pin
- Programmable max count value to avoid long acquisition when a channel is faulty
- Dedicated end of acquisition and max count error flags with interrupt capability
- One sampling capacitor for up to 3 capacitive sensing channels to reduce the system components
- Compatible with proximity, touchkey, linear and rotary touch sensor implementation
- Designed to operate with STMTouch touch sensing firmware library

Note: The number of capacitive sensing channels is dependent on the size of the packages and subject to I/O availability.

Pinouts
and
pin
description

STM32L476xx

	Table 17. Alternate function AF8 to AF15 (for AF0 to AF7 see Table 16)										
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15		
P	ort	UART4, UART5, LPUART1	CAN1, TSC	OTG_FS, QUADSPI	LCD	SDMMC1, COMP1, COMP2, FMC, SWPMI1	SAI1, SAI2	TIM2, TIM15, TIM16, TIM17, LPTIM2	EVENTOUT		
	PA0	UART4_TX	-	-	-	-	SAI1_EXTCLK	TIM2_ETR	EVENTOUT		
	PA1	UART4_RX	-	-	LCD_SEG0	-	-	TIM15_CH1N	EVENTOUT		
	PA2	-	-	-	LCD_SEG1	-	SAI2_EXTCLK	TIM15_CH1	EVENTOUT		
	PA3	-	-	-	LCD_SEG2	-	-	TIM15_CH2	EVENTOUT		
	PA4	-	-	-	-	-	SAI1_FS_B	LPTIM2_OUT	EVENTOUT		
	PA5	-	-	-	-	-	-	LPTIM2_ETR	EVENTOUT		
	PA6	-	-	QUADSPI_BK1_IO3	LCD_SEG3	TIM1_BKIN_ COMP2	TIM8_BKIN_ COMP2	TIM16_CH1	EVENTOUT		
	PA7	-	-	QUADSPI_BK1_IO2	LCD_SEG4	-	-	TIM17_CH1	EVENTOUT		
Port A	PA8	-	-	OTG_FS_SOF	LCD_COM0	-	-	LPTIM2_OUT	EVENTOUT		
	PA9	-	-	-	LCD_COM1	-	-	TIM15_BKIN	EVENTOUT		
	PA10	-	-	OTG_FS_ID	LCD_COM2	-	-	TIM17_BKIN	EVENTOUT		
	PA11	-	CAN1_RX	OTG_FS_DM	-	TIM1_BKIN2_ COMP1	-	-	EVENTOUT		
	PA12	-	CAN1_TX	OTG_FS_DP	-	-	-	-	EVENTOUT		
	PA13	-	-	OTG_FS_NOE	-	-	-	-	EVENTOUT		
	PA14	-	-	-	-	-	-	-	EVENTOUT		
	PA15	UART4_RTS _DE	TSC_G3_IO1	-	LCD_SEG17	-	SAI2_FS_B	-	EVENTOUT		

DocID025976 Rev 4

5

80/232

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	UART4, UART5, LPUART1	CAN1, TSC	OTG_FS, QUADSPI	LCD	SDMMC1, COMP1, COMP2, FMC, SWPMI1	SAI1, SAI2	TIM2, TIM15, TIM16, TIM17, LPTIM2	EVENTOUT
	PG0	-	TSC_G8_IO3	-	-	FMC_A10	-	-	EVENTOUT
	PG1	-	TSC_G8_IO4	-	-	FMC_A11	-	-	EVENTOUT
	PG2	-	-	-	-	FMC_A12	SAI2_SCK_B	-	EVENTOUT
	PG3	-	-	-	-	FMC_A13	SAI2_FS_B	-	EVENTOUT
	PG4	-	-	-	-	FMC_A14	SAI2_MCLK_ B	-	EVENTOUT
	PG5	LPUART1_ CTS	-	-	-	FMC_A15	SAI2_SD_B	-	EVENTOUT
	PG6	LPUART1_ RTS_DE	-	-	-	-	-	-	EVENTOUT
	PG7	LPUART1_TX	-	-	-	FMC_INT3	-	-	EVENTOUT
Port G	PG8	LPUART1_ RX	-	-	-	-	-	-	EVENTOUT
	PG9	-	-	-	-	FMC_NCE3/ FMC_NE2	SAI2_SCK_A	TIM15_CH1N	EVENTOUT
	PG10	-	-	-	-	FMC_NE3	SAI2_FS_A	TIM15_CH1	EVENTOUT
	PG11	-	-	-	-	-	SAI2_MCLK_ A	TIM15_CH2	EVENTOUT
	PG12	-	-	-	-	FMC_NE4	SAI2_SD_A	-	EVENTOUT
	PG13	-	-	-	-	FMC_A24	-	-	EVENTOUT
	PG14	-	-	-	-	FMC_A25	-	-	EVENTOUT
	PG15	-	-	-	-	-	-	-	EVENTOUT

Pinouts and pin description

86/232

STM32L476xx

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 11.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 12*.

6.1.6 Power supply scheme

Figure 13. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

Ш	
e	
<u>o</u>	
Ξ	
0	
<u>a</u>	
0	
÷	
ല	
a	
Q	
ē	
З.	
ŝ	
Ħ	
ö	

	Та	able 33. Cur	rent cons	sumption	in Low	v-powe	er sleep	modes	, Flash	in powe	er-dowr	1			
		Conditions		ТҮР				MAX ⁽¹⁾							
Symbol Para	Parameter	-	Voltage scaling	f _{HCLK}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
I _{DD} (LPSleep) Supply current in low-power sleep mode				2 MHz	81	110	217	395	754	115	182	375	750	1500	
	Supply current	f _{HCLK} = f _{MSI}		1 MHz	50	78	185	362	720	80	149	342	717	1456	пΔ
	sleep mode	all peripherals dis	s disable	400 kHz	28	57	163	340	698	60	122	314	689	1429	μΛ
	·			100 kHz	18	47	155	332	686	50	114	313	688	1438	

- -

1. Guaranteed by characterization results, unless otherwise specified.

- -

			7. Oui		mount			nouc						
Symbol	Deremeter	Conditions	Conditions			ТҮР			MAX ⁽¹⁾				Linit	
Зупрог	Parameter	-	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
			1.8 V	1.14	3.77	14.7	34.7	77	2.7	9	37	87	193	
		LCD disabled	2.4 V	1.15	3.86	15	35.5	79.1	2.7	10	38	89	198	
			3 V	1.18	3.97	15.4	36.4	81.3	2.8	10	39	91	203	
L (Stop 2)	Supply current in		3.6 V	1.26	4.11	16	38	85.1	3.0	10	40	95 ⁽²⁾	213	
IDD(Stop 2)	RTC disabled		1.8 V	1.43	3.98	15	35	77.3	3.2	10	38	88	193	μΑ
		LCD enabled ⁽³⁾	2.4 V	1.49	4.07	15.3	35.8	79.4	3.2	10	38	90	199	
		clocked by LSI	3 V	1.54	4.24	15.7	36.7	81.6	3.3	11	39	92	204	
			3.6 V	1.75	4.47	16.1	38.3	85.4	3.5	11	40	96	214	1

Table 34. Current consumption in Stop 2 mode

110/232

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{WULPRUN}	Wakeup time from Low-power run mode to Run mode ⁽²⁾	Code run with MSI 2 MHz	5	7	
t _{VOST}	Regulator transition time from Range 2 to Range 1 or Range 1 to Range $2^{(3)}$	Code run with MSI 24 MHz	20	40	μs

Table 42. Regulator modes transition times⁽¹⁾

1. Guaranteed by characterization results.

2. Time until REGLPF flag is cleared in PWR_SR2.

3. Time until VOSF flag is cleared in PWR_SR2.

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 16: High-speed external clock source AC timing diagram*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f		Voltage scaling Range 1	-	8	48		
^T HSE_ext	User external clock source frequency	Voltage scaling Range 2	-	8	26		
V _{HSEH}	OSC_IN input pin high level voltage	-	$0.7 V_{\text{DDIOx}}$	-	V _{DDIOx}	V	
V _{HSEL}	OSC_IN input pin low level voltage	-	V _{SS}	-	0.3 V _{DDIOx}	v	
t _{w(HSEH)}	OSC IN high or low time	Voltage scaling Range 1	7	-	-		
t _{w(HSEL)}		Voltage scaling Range 2	18	-	-	ns	

Table 43. High-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.

DocID025976 Rev 4

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 22* for standard I/Os, and in *Figure 22* for 5 V tolerant I/Os.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2:

- The sum of the currents sourced by all the I/Os on V_{DDIOx}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 19: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 19: Voltage characteristics*).

- 1. Guaranteed by design, unless otherwise specified.
- 2. Refer to *Table 25: Embedded internal voltage reference*.
- 3. Guaranteed by characterization results.

6.3.21 Operational amplifiers characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage ⁽²⁾		-	1.8	-	3.6	V
CMIR	Common mode input range		-	0	-	V _{DDA}	V
V/10	Input offset	25 °C, No Load on	output.	-	-	±1.5	m\/
VIOFFSET	voltage	All voltage/Temp.		-	-	±3	IIIV
	Input offset	Normal mode		-	±5	-	uV/°C
OFFSET	voltage drift	Low-power mode		-	±10	-	μν/Ο
TRIMOFFSETP TRIMLPOFFSETP	Offset trim step at low common input voltage (0.1 _x V _{DDA})		-	-	0.8	1.1	m\/
TRIMOFFSETN TRIMLPOFFSETN	Offset trim step at high common input voltage (0.9 x V _{DDA})		-	-	1	1.35	
h e ve	Drive current	Normal mode $V_{2} = 2 V_{2}$	V > 2 V	-	-	500	
LOAD	Drive current	Low-power mode	VDDA = 2 V	-	-	100	ıιΔ
	Drive current in	Normal mode	$V_{DDA} > 2 V$	-	-	450	μ
'LOAD_PGA	PGA mode	Low-power mode	VDDA = 2 V	-	-	50	
B	Resistive load (connected to	Normal mode	V <2V	4	-	-	
' LOAD	VSSA or to VDDA)	Low-power mode	VDDA < 2 V	20	-	-	kO
P	Resistive load in PGA mode	Normal mode	V < 2 V	4.5	-	-	K12
יע LOAD_PGA	(connected to VSSA or to V _{DDA})	Low-power mode	VDDA > 2 V	40	-	-	
C _{LOAD}	Capacitive load		-	-	-	50	pF
CMRR	Common mode	Normal mode		-	-85	-	dB
OWNER	rejection ratio	Low-power mode	-	-90	-	dВ	

Table 73. OPAMP characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Мах	Unit	
t	Timer resolution time	-	1	-	t _{TIMxCLK}	
^r res(TIM)		f _{TIMxCLK} = 80 MHz	12.5	-	ns	
f	Timer external clock	-	0	f _{TIMxCLK} /2	MHz	
'EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 80 MHz	0	40	MHz	
Res _{TIM}	Timer resolution	TIMx (except TIM2 and TIM5)	-	16	bit	
		TIM2 and TIM5	-	32		
t	16-bit counter clock	-	1	65536	t _{TIMxCLK}	
COUNTER	period	f _{TIMxCLK} = 80 MHz	0.0125	819.2	μs	
t	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}	
'MAX_COUNT	with 32-bit counter	f _{TIMxCLK} = 80 MHz	-	53.68	s	

Table 79. TIMx⁽¹⁾ characteristics

1. TIMx, is used as a general term in which x stands for 1,2,3,4,5,6,7,8,15,16 or 17.

Table 80. IWDG min/max timeout	period at 32 kHz	(LSI) ⁽¹⁾
--------------------------------	------------------	----------------------

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit
/4	0	0.125	512	
/8	1	0.250	1024	
/16	2	0.500	2048	
/32	3	1.0	4096	ms
/64	4	2.0	8192	
/128	5	4.0	16384	
/256	6 or 7	8.0	32768	

1. The exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0.0512	3.2768	
2	1	0.1024	6.5536	me
4	2	0.2048	13.1072	1115
8	3	0.4096	26.2144	

|--|

Quad SPI characteristics

Unless otherwise specified, the parameters given in *Table 84* and *Table 85* for Quad SPI are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in *Table 22: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 15 or 20 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
F _{CK} 1/t _(CK)		$1.71 < V_{DD} < 3.6 V, C_{LOAD} = 20 pF$ Voltage Range 1	-	-	40	
		1.71 < V _{DD} < 3.6 V, C _{LOAD} = 15 pF Voltage Range 1	-	-	48	МЦ-7
		2.7 < V _{DD} < 3.6 V, C _{LOAD} = 15 pF Voltage Range 1	-	-	60	
		$1.71 < V_{DD} < 3.6 V C_{LOAD} = 20 pF$ Voltage Range 2	-	-	26	
t _{w(CKH)}	Quad SPI clock high and	f = 48 MHz proce=0	t _(CK) /2-2	-	t _(CK) /2	
t _{w(CKL)}	low time	AHBCLK- 40 Militz, presc-0	t _(СК) /2	-	t _(CK) /2+2	
t	s(IN) Data input setup time	Voltage Range 1	4	-	-	
^נ s(IN)		Voltage Range 2	3.5	-	-	
+	Data input hold time	Voltage Range 1	5.5	-	-	ne
ካ(IN)	Data input noid time	Voltage Range 2	6.5	-	-	115
t _{v(OUT)}	Data output valid time	Voltage Range 1	-	2.5	5	
		Voltage Range 2	-	3	5	
+	Data output hold time	Voltage Range 1	1.5	-	-	
t _{h(OUT)}		Voltage Range 2	2	-	-	

Table 84. Quad	SPI characteristics	; in SDR mode ⁽¹⁾
----------------	---------------------	------------------------------

Figure 38. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

Fable 92. Asynchronous	s non-multiplexed SRAM/PSRAM/NOR wri	te timings ⁽¹⁾⁽²⁾
------------------------	--------------------------------------	------------------------------

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	3T _{HCLK} -1	3T _{HCLK} +2	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} -0.5	T _{HCLK} +1.5	
t _{w(NWE)}	FMC_NWE low time	T _{HCLK} -1	T _{HCLK} +1	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK} -0.5	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK} -1	-	ne
$t_{v(BL_NE)}$	FMC_NEx low to FMC_BL valid	-	1.5	115
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} -0.5	-	
t _{v(Data_NE)}	Data to FMC_NEx low to Data valid	-	T _{HCLK} +4	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} +1	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	1	
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} +0.5	

1. CL = 30 pF.

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} -1	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} +0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	2.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	1	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	3.5	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	2	
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{HCLK} +1	-	115
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	4	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{d(CLKL-DATA)}	FMC_A/D[15:0] valid data after FMC_CLK low	-	5.5	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	-	2.5	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} +1	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	0	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	4	-	

Table 99. Syr	nchronous multi	plexed PSRAM	write timings ⁽¹⁾⁽²⁾

1. CL = 30 pF.

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} -0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} +0.5	I	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	2	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	2.5	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	5	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK} -1	-	ne
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	2	115
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{HCLK} -1	-	
t _{d(CLKL-Data)}	FMC_D[15:0] valid data after FMC_CLK low	-	4.5	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	1.5	-	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} +1	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	0	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	4	-	

Table 101. Synchronous non-multiplexed PSRAM write timings⁽¹⁾⁽²⁾

1. CL = 30 pF.

2. Guaranteed by characterization results.

NAND controller waveforms and timings

Figure 45 through *Figure 48* represent synchronous waveforms, and *Table 102* and *Table 103* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- COM.FMC_SetupTime = 0x02
- COM.FMC_WaitSetupTime = 0x03
- COM.FMC_HoldSetupTime = 0x02
- COM.FMC_HiZSetupTime = 0x03
- ATT.FMC_SetupTime = 0x01
- ATT.FMC_WaitSetupTime = 0x03
- ATT.FMC_HoldSetupTime = 0x02
- ATT.FMC_HiZSetupTime = 0x03
- Bank = FMC_Bank_NAND
- MemoryDataWidth = FMC_MemoryDataWidth_16b
- ECC = FMC_ECC_Enable
- ECCPageSize = FMC_ECCPageSize_512Bytes
- TCLRSetupTime = 0
- TARSetupTime = 0

In all timing tables, the $T_{\mbox{HCLK}}$ is the HCLK clock period.

DocID025976 Rev 4

Figure 45. NAND controller waveforms for read access

Figure 46. NAND controller waveforms for write access

Figure 47. NAND controller waveforms for common memory read access

DocID025976 Rev 4

Figure 48. NAND controller waveforms for common memory write access

Table 102. Switching characteristics for NAND Flash read cycles⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
T _{w(NOE)}	FMC_NOE low width	4T _{HCLK} -1	4T _{HCLK} +1	
T _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	16	-	
T _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	6	-	ns
T _{d(NCE-NOE)}	FMC_NCE valid before FMC_NOE low	-	3T _{HCLK} +1	
T _{h(NOE-ALE)}	FMC_NOE high to FMC_ALE invalid	2T _{HCLK} -2	-	

1. CL = 30 pF.

2. Guaranteed by characterization results.

Table 103.	Switching	characteristics	for NAND I	Flash write o	cvcles ⁽¹⁾⁽²⁾
	• · · · · · · · · · · · · · · · · · · ·				

Symbol	Parameter	Min	Мах	Unit
T _{w(NWE)}	FMC_NWE low width	4T _{HCLK} -1	4T _{HCLK} +1	
T _{v(NWE-D)}	FMC_NWE low to FMC_D[15-0] valid	-	2.5	
T _{h(NWE-D)}	FMC_NWE high to FMC_D[15-0] invalid	3T _{HCLK} -4	-	ne
T _{d(D-NWE)}	FMC_D[15-0] valid before FMC_NWE high	5T _{HCLK} -3	-	115
T _{d(NCE_NWE)}	FMC_NCE valid before FMC_NWE low	-	3T _{HCLK} +1	
T _{h(NWE-ALE)}	FMC_NWE high to FMC_ALE invalid	2T _{HCLK} -2	-	

1. CL = 30 pF.

Dimension	Recommended values	
Pitch	0.4 mm	
Dpad	0.225 mm	
Dsm	0.290 mm typ. (depends on the solder mask registration tolerance)	
Stencil opening	0.250 mm	
Stencil thickness	0.100 mm	

 Table 111. WLCSP72 recommended PCB design rules (0.4 mm pitch BGA)

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Figure 63. WLCSP72 marking (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

As applications do not commonly use the STM32L476xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

P_{INTmax} = 50 mA × 3.5 V= 175 mW

P_{IOmax} = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax} = 175 + 272 = 447 mW

Using the values obtained in Table 113 T_{Jmax} is calculated as follows:

– For LQFP64, 45 °C/W

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$) see Section 8: Part numbering.

In this case, parts must be ordered at least with the temperature range suffix 6 (see Part numbering).

Note: With this given P_{Dmax} we can find the T_{Amax} allowed for a given device temperature range (order code suffix 6 or 7).

Suffix 6: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 105-20.115 = 84.885 ^{\circ}C$ Suffix 7: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 125-20.115 = 104.885 ^{\circ}C$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 100 \text{ °C}$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}, V_{DD} = 3.5 \text{ V}$, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8 \text{ mA}, V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

