E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, PWM, WDT
Number of I/O	82
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	· · · · · · · · · · · · · · · · · · ·
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l476vgt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DocID025976 Rev 4

3.19 Operational amplifier (OPAMP)

The STM32L476xx embeds two operational amplifiers with external or internal follower routing and PGA capability.

The operational amplifier features:

- Low input bias current
- Low offset voltage
- Low-power mode
- Rail-to-rail input

3.20 Touch sensing controller (TSC)

The touch sensing controller provides a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

The main features of the touch sensing controller are the following:

- Proven and robust surface charge transfer acquisition principle
- Supports up to 24 capacitive sensing channels
- Up to 3 capacitive sensing channels can be acquired in parallel offering a very good response time
- Spread spectrum feature to improve system robustness in noisy environments
- Full hardware management of the charge transfer acquisition sequence
- Programmable charge transfer frequency
- Programmable sampling capacitor I/O pin
- Programmable channel I/O pin
- Programmable max count value to avoid long acquisition when a channel is faulty
- Dedicated end of acquisition and max count error flags with interrupt capability
- One sampling capacitor for up to 3 capacitive sensing channels to reduce the system components
- Compatible with proximity, touchkey, linear and rotary touch sensor implementation
- Designed to operate with STMTouch touch sensing firmware library

Note: The number of capacitive sensing channels is dependent on the size of the packages and subject to I/O availability.

3.26 Inter-integrated circuit interface (I2C)

The device embeds 3 I2C. Refer to *Table 11: I2C implementation* for the features implementation.

The I²C bus interface handles communications between the microcontroller and the serial I²C bus. It controls all I²C bus-specific sequencing, protocol, arbitration and timing.

The I2C peripheral supports:

- I²C-bus specification and user manual rev. 5 compatibility:
 - Slave and master modes, multimaster capability
 - Standard-mode (Sm), with a bitrate up to 100 kbit/s
 - Fast-mode (Fm), with a bitrate up to 400 kbit/s
 - Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
 - 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
 - Programmable setup and hold times
 - Optional clock stretching
- System Management Bus (SMBus) specification rev 2.0 compatibility:
 - Hardware PEC (Packet Error Checking) generation and verification with ACK control
 - Address resolution protocol (ARP) support
 - SMBus alert
- Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
- Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming. Refer to Figure 3: Clock tree.
- Wakeup from Stop mode on address match
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

Table 11. I2C implementation

I2C features ⁽¹⁾	I2C1	I2C2	I2C3
Standard-mode (up to 100 kbit/s)	Х	Х	Х
Fast-mode (up to 400 kbit/s)	Х	Х	Х
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)	Х	Х	Х
Programmable analog and digital noise filters	Х	Х	Х
SMBus/PMBus hardware support	Х	Х	Х
Independent clock	Х	Х	Х
Wakeup from Stop 0 / Stop 1 mode on address match	Х	Х	Х
Wakeup from Stop 2 mode on address match	-	-	Х

1. X: supported

- Transmission
 - Three transmit mailboxes
 - Configurable transmit priority
- Reception
 - Two receive FIFOs with three stages
 - 14 Scalable filter banks
 - Identifier list feature
 - Configurable FIFO overrun
- Time-triggered communication option
 - Disable automatic retransmission mode
 - 16-bit free running timer
 - Time Stamp sent in last two data bytes
- Management
 - Maskable interrupts
 - Software-efficient mailbox mapping at a unique address space

3.33 Secure digital input/output and MultiMediaCards Interface (SDMMC)

The card host interface (SDMMC) provides an interface between the APB peripheral bus and MultiMediaCards (MMCs), SD memory cards and SDIO cards.

The SDMMC features include the following:

- Full compliance with MultiMediaCard System Specification Version 4.2. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit
- Full compatibility with previous versions of MultiMediaCards (forward compatibility)
- Full compliance with SD Memory Card Specifications Version 2.0
- Full compliance with SD I/O Card Specification Version 2.0: card support for two different databus modes: 1-bit (default) and 4-bit
- Data transfer up to 48 MHz for the 8 bit mode
- Data write and read with DMA capability

3.34 Universal serial bus on-the-go full-speed (OTG_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that can be provided by the internal multispeed oscillator (MSI) automatically trimmed by 32.768 kHz external oscillator (LSE). This allows to use the USB device without external high speed crystal (HSE).

	1	2	3	4	5	6	7	8	9	10	11	12
A	PE3	PE1	PB8	BOOT0	PD7	PD5	PB4	PB3	PA15	PA14	PA13	PA12
в	PE4	PE2	PB9	PB7	PB6	PD6	PD4	PD3	PD1	PC12	PC10	PA11
с	PC13	PE5	PE0	VDD	PB5	PG14	PG13	PD2	PD0	PC11	VDDUSB	PA10
D	PC14- OSC32_IN	PE6	vss	PF2	PF1	PF0	PG12	PG10	PG9	PA9	PA8	PC9
E	PC15- OSC32_OUT	VBAT	vss	PF3					PG5	PC8	PC7	PC6
F	PH0-OSC_IN	VSS	PF4	PF5		vss	vss		PG3	PG4	vss	vss
G	PH1- OSC_OUT	VDD	PG11	PG6		VDD	VDDIO2		PG1	PG2	VDD	VDD
н	PC0	NRST	VDD	PG7					PG0	PD15	PD14	PD13
J	VSSA/VREF-	PC1	PC2	PA4	PA7	PG8	PF12	PF14	PF15	PD12	PD11	PD10
к	PG15	PC3	PA2	PA5	PC4	PF11	PF13	PD9	PD8	PB15	PB14	PB13
L	VREF+	PA0	PA3	PA6	PC5	PB2	PE8	PE10	PE12	PB10	PB11	PB12
м	VDDA	PA1	OPAMP1_ VINM	OPAMP2_ VINM	PB0	PB1	PE7	PE9	PE11	PE13	PE14	PE15
						•						MSv3

Figure 5. STM32L476Qx UFBGA132 ballout⁽¹⁾

1. The above figure shows the package top view.

1. The above figure shows the package top view.

		Pin I	Numb	er				C)		Pin functions	
LQFP64	WLCSP72	WLCSP81	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	M4	-	OPAMP2_VINM	Ι	TT	-	-	-
23	H4	H4	32	J5	43	PA7	I/O	FT_la	-	TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI, QUADSPI_BK1_IO2, LCD_SEG4, TIM17_CH1, EVENTOUT	OPAMP2_ VINM, ADC12_ IN12
24	J7	J7	33	K5	44	PC4	I/O	FT_la	-	USART3_TX, LCD_SEG22, EVENTOUT	COMP1_ INM, ADC12_ IN13
25	J6	J6	34	L5	45	PC5	I/O	FT_la	-	USART3_RX, LCD_SEG23, EVENTOUT	Comp1_ INP, ADC12_ IN14, WKUP5
26	J5	J5	35	M5	46	PB0	I/O	TT_la	-	TIM1_CH2N, TIM3_CH3, TIM8_CH2N, USART3_CK, QUADSPI_BK1_IO1, LCD_SEG5, COMP1_OUT, EVENTOUT	OPAMP2_ VOUT, ADC12_ IN15
27	J4	J4	36	M6	47	PB1	I/O	FT_la	_	TIM1_CH3N, TIM3_CH4, TIM8_CH3N, DFSDM_DATIN0, USART3_RTS_DE, QUADSPI_BK1_IO0, LCD_SEG6, LPTIM2_IN1, EVENTOUT	COMP1_ INM, ADC12_ IN16
28	J3	J3	37	L6	48	PB2	I/O	FT_a	-	RTC_OUT, LPTIM1_OUT, I2C3_SMBA, DFSDM_CKIN0, EVENTOUT	COMP1_ INP
-	-	-	-	K6	49	PF11	I/O	FT	-	EVENTOUT	-
-	-	-	-	J7	50	PF12	I/O	FT	-	FMC_A6, EVENTOUT	-
-	-	-	-	-	51	VSS	S	-	-	-	-
-	-		-	-	52	VDD	S	-	-	-	-
-	-	-	-	K7	53	PF13	I/O	FT	-	DFSDM_DATIN6, FMC_A7, EVENTOUT	-
-	-	-	-	J8	54	PF14	I/O	FT	-	DFSDM_CKIN6, TSC_G8_IO1, FMC_A8, EVENTOUT	-

Table 15. STM32L476xxSTM32L476xx pin definitions (continued)

		Pin I	Numb	er				0		Pin functions	
LQFP64	WLCSP72	WLCSP81	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	J9	55	PF15	I/O	FT	-	TSC_G8_IO2, FMC_A9, EVENTOUT	-
-	-	-	-	H9	56	PG0	I/O	FT	-	TSC_G8_IO3, FMC_A10, EVENTOUT	-
-	-	-	-	G9	57	PG1	I/O	FT	-	TSC_G8_IO4, FMC_A11, EVENTOUT	-
-	-	E6	38	М7	58	PE7	I/O	FT	-	TIM1_ETR, DFSDM_DATIN2, FMC_D4, SAI1_SD_B, EVENTOUT	-
-	-	F6	39	L7	59	PE8	I/O	FT	-	TIM1_CH1N, DFSDM_CKIN2, FMC_D5, SAI1_SCK_B, EVENTOUT	-
-	-	-	40	M8	60	PE9	I/O	FT	-	TIM1_CH1, DFSDM_CKOUT, FMC_D6, SAI1_FS_B, EVENTOUT	-
-	-	-	-	F6	61	VSS	S	-	-	-	-
-	-	-	-	G6	62	VDD	S	-	-	-	-
-	-	-	41	L8	63	PE10	I/O	FT	-	TIM1_CH2N, DFSDM_DATIN4, TSC_G5_IO1, QUADSPI_CLK, FMC_D7, SAI1_MCLK_B, EVENTOUT	-
-	-	-	42	M9	64	PE11	I/O	FT	-	TIM1_CH2, DFSDM_CKIN4, TSC_G5_IO2, QUADSPI_NCS, FMC_D8, EVENTOUT	-
-	-	-	43	L9	65	PE12	I/O	FT	-	TIM1_CH3N, SPI1_NSS, DFSDM_DATIN5, TSC_G5_IO3, QUADSPI_BK1_IO0, FMC_D9, EVENTOUT	-
-	-	-	44	M10	66	PE13	I/O	FT	-	TIM1_CH3, SPI1_SCK, DFSDM_CKIN5, TSC_G5_IO4, QUADSPI_BK1_IO1, FMC_D10, EVENTOUT	-

Table 15. STWSZL4/0XXSTWSZL4/0XX pin ueniniuons (conunueu)
--

		Pin I	Numb	ber						Pin functions	
LQFP64	WLCSP72	WLCSP81	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	45	M11	67	PE14	I/O	FT	-	TIM1_CH4, TIM1_BKIN2, TIM1_BKIN2_COMP2, SPI1_MISO, QUADSPI_BK1_IO2, FMC_D11, EVENTOUT	-
-	-	-	46	M12	68	PE15	I/O	FT	-	TIM1_BKIN, TIM1_BKIN_COMP1, SPI1_MOSI, QUADSPI_BK1_IO3, FMC_D12, EVENTOUT	-
29	H3	H3	47	L10	69	PB10	I/O	FT_fl	-	TIM2_CH3, I2C2_SCL, SPI2_SCK, DFSDM_DATIN7, USART3_TX, LPUART1_RX, QUADSPI_CLK, LCD_SEG10, COMP1_OUT, SAI1_SCK_A, EVENTOUT	-
30	G3	G3	48	L11	70	PB11	I/O	FT_fl	-	TIM2_CH4, I2C2_SDA, DFSDM_CKIN7, USART3_RX, LPUART1_TX, QUADSPI_NCS, LCD_SEG11, COMP2_OUT, EVENTOUT	-
31	J2	J2	49	F12	71	VSS	S	-	-	-	-
32	J1	J1	50	G12	72	VDD	S	-	-	-	-
33	H1	H1	51	L12	73	PB12	I/O	FT_I	-	TIM1_BKIN, TIM1_BKIN_COMP2, I2C2_SMBA, SPI2_NSS, DFSDM_DATIN1, USART3_CK, LPUART1_RTS_DE, TSC_G1_IO1, LCD_SEG12, SWPMI1_IO, SAI2_FS_A, TIM15_BKIN, EVENTOUT	-

Table 15. STM32L476xxSTM32L476xx pin definitions (continued)

		Pin I	Numb	er				Ô		Pin functions	
LQFP64	WLCSP72	WLCSP81	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
34	H2	H2	52	K12	74	PB13	I/O	FT_fl	_	TIM1_CH1N, I2C2_SCL, SPI2_SCK, DFSDM_CKIN1, USART3_CTS, LPUART1_CTS, TSC_G1_IO2, LCD_SEG13, SWPMI1_TX, SAI2_SCK_A, TIM15_CH1N, EVENTOUT	_
35	G2	G2	53	K11	75	PB14	I/O	FT_fl	-	TIM1_CH2N, TIM8_CH2N, I2C2_SDA, SPI2_MISO, DFSDM_DATIN2, USART3_RTS_DE, TSC_G1_IO3, LCD_SEG14, SWPMI1_RX, SAI2_MCLK_A, TIM15_CH1, EVENTOUT	-
36	G1	G1	54	К10	76	PB15	I/O	FT_I	-	RTC_REFIN, TIM1_CH3N, TIM8_CH3N, SPI2_MOSI, DFSDM_CKIN2, TSC_G1_IO4, LCD_SEG15, SWPMI1_SUSPEND, SAI2_SD_A, TIM15_CH2, EVENTOUT	-
-	-	F5	55	K9	77	PD8	I/O	FT_I	-	USART3_TX, LCD_SEG28, FMC_D13, EVENTOUT	-
-	-	F4	56	K8	78	PD9	I/O	FT_I	-	USART3_RX, LCD_SEG29, FMC_D14, SAI2_MCLK_A, EVENTOUT	-
-	-	-	57	J12	79	PD10	I/O	FT_I	-	USART3_CK, TSC_G6_IO1, LCD_SEG30, FMC_D15, SAI2_SCK_A, EVENTOUT	-
-	-	-	58	J11	80	PD11	I/O	FT_I	-	USART3_CTS, TSC_G6_IO2, LCD_SEG31, FMC_A16, SAI2_SD_A, LPTIM2_ETR, EVENTOUT	-

Table 15. STM32L476xxSTM32L476xx pin definitions (continued)

Bus	Boundary address	Size (bytes)	Peripheral
	0x4000 4000 - 0x4000 43FF	1 KB	Reserved
	0x4000 3C00 - 0x4000 3FFF	1 KB	SPI3
	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG
APB1	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
	0x4000 2400 - 0x4000 27FF	1 KB	LCD
	0x4000 1800 - 0x4000 23FF	3 KB	Reserved
	0x4000 1400 - 0x4000 17FF	1 KB	TIM7
	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
	0x4000 0C00- 0x4000 0FFF	1 KB	TIM5
	0x4000 0800 - 0x4000 0BFF	1 KB	TIM4
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

Table 18. STM32L476xx memory map and peripheral register boundaryaddresses (continued)⁽¹⁾

1. The gray color is used for reserved boundary addresses.

- 1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).
- 2. The GPIOx (x= A...H) dynamic current consumption is approximately divided by a factor two versus this table values when the GPIO port is locked thanks to LCKK and LCKy bits in the GPIOx_LCKR register. In order to save the full GPIOx current consumption, the GPIOx clock should be disabled in the RCC when all port I/Os are used in alternate function or analog mode (clock is only required to read or write into GPIO registers, and is not used in AF or analog modes).
- 3. The AHB to APB1 Bridge is automatically active when at least one peripheral is ON on the APB1.
- 4. The AHB to APB2 Bridge is automatically active when at least one peripheral is ON on the APB2.

6.3.6 Wakeup time from low-power modes and voltage scaling transition times

The wakeup times given in *Table 41* are the latency between the event and the execution of the first user instruction.

The device goes in low-power mode after the WFE (Wait For Event) instruction.

Symbol	Parameter		Conditions	Тур	Max	Unit
t _{WUSLEEP}	Wakeup time from Sleep mode to Run mode		-	6	6	Nb of
twulpsleep	Wakeup time from Low- power sleep mode to Low- power run mode	Wakeup in Flash low-power sleep FLASH_ACR) an	with Flash in power-down during mode (SLEEP_PD=1 in d with clock MSI = 2 MHz	6	9.3	CPU cycles
		Pange 1	Wakeup clock MSI = 48 MHz	5.6	10.9	
		Range	Wakeup clock HSI16 = 16 MHz	4.7	10.4	
	Wake up time from Stop 0 mode to Run mode in Flash	Range 2	Wakeup clock MSI = 24 MHz	5.7	11.1	
			Wakeup clock HSI16 = 16 MHz	4.5	10.5	
t			Wakeup clock MSI = 4 MHz	6.6	14.2	
WUSTOP0		Pange 1	Wakeup clock MSI = 48 MHz	0.7	2.05	μο
	Wake up time from Stop 0	Range	Wakeup clock HSI16 = 16 MHz	1.7	2.8	
	mode to Low-power run		Wakeup clock MSI = 24 MHz	0.8	2.72	
	mode in SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	1.7	2.8	
			Wakeup clock MSI = 4 MHz	2.4	11.32	

Table 41. Low-power mode wakeup timings⁽¹⁾

Symbol	Parameter		Conditions	Тур	Max	Unit	
		Dense 1	Wakeup clock MSI = 48 MHz	6.2	10.2		
		Range	Wakeup clock HSI16 = 16 MHz	6.3	8.99		
	Wake up time from Stop 1 mode to Run mode in Flash		Wakeup clock MSI = 24 MHz	6.3	10.46		
		Range 2	Wakeup clock HSI16 = 16 MHz	6.3	8.87		
			Wakeup clock MSI = 4 MHz	8.0	13.23		
		Dance 1	Wakeup clock MSI = 48 MHz	4.5	5.78		
	Wake up time from Stop 1	Range	Wakeup clock HSI16 = 16 MHz	5.5	7.1		
t _{WUSTOP1}	mode to Low-power run		Wakeup clock MSI = 24 MHz	5.0	6.5	μs	
	mode in SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	5.5	7.1		
			Wakeup clock MSI = 4 MHz	8.2	13.5		
	Wake up time from Stop 1 mode to Low-power run mode in Flash	Regulator in low-power	Wekeup deek MSL = 2 MLIz	12.7	20		
	Wake up time from Stop 1 mode to Low-power run mode in SRAM1	mode (LPR=1 in PWR_CR1)		10.7	21.5		
		Banga 1	Wakeup clock MSI = 48 MHz	8.0	9.4		
		Range	Wakeup clock HSI16 = 16 MHz	7.3	9.3		
	Wake up time from Stop 2 mode to Run mode in Flash		Wakeup clock MSI = 24 MHz	8.2	9.9		
		Range 2	Wakeup clock HSI16 = 16 MHz	7.3	9.3		
t			Wakeup clock MSI = 4 MHz	10.6	15.8		
WUSTOP2		Pange 1	Wakeup clock MSI = 48 MHz	5.1	6.7	μο	
	Wake up time from Stop 2	Trange T	Wakeup clock HSI16 = 16 MHz	5.7	8		
	mode to Run mode in		Wakeup clock MSI = 24 MHz	5.5	6.65		
	SRAMT	Range 2	Wakeup clock HSI16 = 16 MHz	5.7	7.53		
			Wakeup clock MSI = 4 MHz	8.2	16.6		
turi iotov	Wakeup time from Standby	Range 1	Wakeup clock MSI = 8 MHz	14.3	20.8	119	
WUSIBY	mode to Run mode		Wakeup clock MSI = 4 MHz	20.1	35.5	μυ	
t _{WUSTBY}	Wakeup time from Standby	Range 1	Wakeup clock MSI = 8 MHz	14.3	24.3	115	
SRAM2	with SRAM2 to Run mode		Wakeup clock MSI = 4 MHz	20.1	38.5 µs		
t _{WUSHDN}	Wakeup time from Shutdown mode to Run mode	Range 1	Wakeup clock MSI = 4 MHz	256	330.6	μs	

 Table 41. Low-power mode wakeup timings⁽¹⁾ (continued)

1. Guaranteed by characterization results.

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{WULPRUN}	Wakeup time from Low-power run mode to Run mode ⁽²⁾	Code run with MSI 2 MHz	5	7	
t _{vost}	Regulator transition time from Range 2 to Range 1 or Range 1 to Range $2^{(3)}$	Code run with MSI 24 MHz	20	40	μs

Table 42. Regulator modes transition times⁽¹⁾

1. Guaranteed by characterization results.

2. Time until REGLPF flag is cleared in PWR_SR2.

3. Time until VOSF flag is cleared in PWR_SR2.

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 16: High-speed external clock source AC timing diagram*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{HSE_ext}		Voltage scaling Range 1	-	8	48	MU-7	
		Voltage scaling Range 2	-	8	26		
V _{HSEH}	OSC_IN input pin high level voltage	-	$0.7 V_{\text{DDIOx}}$	-	V _{DDIOx}	V	
V _{HSEL}	OSC_IN input pin low level voltage	-	V _{SS}	-	0.3 V _{DDIOx}	v	
t _{w(HSEH)} t _{w(HSEL)}	OSC IN high or low time	Voltage scaling Range 1	7	-	-	20	
	IOSC_IN high or low time	Voltage scaling Range 2	18	-	-	ns	

Table 43. High-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.

DocID025976 Rev 4

6.3.8 Internal clock source characteristics

The parameters given in *Table 47* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 22: General operating conditions*. The provided curves are characterization results, not tested in production.

High-speed internal (HSI16) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI16}	HSI16 Frequency	V _{DD} =3.0 V, T _A =30 °C	15.88	-	16.08	MHz
TRIM	HSI16 user trimming step	Trimming code is not a multiple of 64	0.2	0.3	0.4	0/2
IRIM	Horro user timming step	Trimming code is a multiple of 64	-4	-6	-8	70
DuCy(HSI16) ⁽²⁾	Duty Cycle	-	45	-	55	%
∆ _{Temp} (HSI16)	HSI16 oscillator frequency drift over temperature	T _A = 0 to 85 °C	-1	-	1	%
		T _A = -40 to 125 °C	-2	-	1.5	%
Δ_{VDD} (HSI16)	HSI16 oscillator frequency drift over V _{DD}	V _{DD} =1.62 V to 3.6 V	-0.1	-	0.05	%
t _{su} (HSI16) ⁽²⁾	HSI16 oscillator start-up time	-	-	0.8	1.2	μs
t _{stab} (HSI16) ⁽²⁾	HSI16 oscillator stabilization time	-	-	3	5	μs
I _{DD} (HSI16) ⁽²⁾	HSI16 oscillator power consumption	-	-	155	190	μA

$a_{1} = 4$	lable 47.	HSI16	oscillator	characteristics ⁽¹⁾
-------------	-----------	-------	------------	--------------------------------

1. Guaranteed by characterization results.

2. Guaranteed by design.

Symbol	Parameter		Conditions	Min	Тур	Max	Unit
			Range 0	99	100	101	- kHz
			Range 1	198	200	202	
			Range 2	396	400	404	
			Range 3	792	800	808	
			Range 4	0.99	1	1.01	
		MCI mode	Range 5	1.98	2	2.02	
		wisi mode	Range 6	3.96	4	4.04	
			Range 7	7.92	8	8.08	
	MSI frequency after factory		Range 8	15.8	16	16.16	
			Range 9	23.8	24	24.4	-
£			Range 10	31.7	32	32.32	
			Range 11	47.5	48	48.48	
'MSI	at V_{DD} =3 V and T_A =30 °C	PLL mode XTAL= 32.768 kHz	Range 0	-	98.304	-	- kHz - MHz
			Range 1	-	196.608	-	
			Range 2	-	393.216	-	
			Range 3	-	786.432	-	
			Range 4	-	1.016	-	
			Range 5	-	1.999	-	
			Range 6	-	3.998	-	
			Range 7	-	7.995	-	
			Range 8	-	15.991	-	
			Range 9	-	23.986	-	
			Range 10	-	32.014	-	
			Range 11	-	48.005	-	
(2)	MSI oscillator		T _A = -0 to 85 °C	-3.5	-	3	
∆ _{TEMP} (MSI) ⁽²⁾	frequency drift over temperature	MSI mode	T _A = -40 to 125 °C	-8	-	6	%

Table 48. MSI oscillator characteristics⁽¹⁾

Sym- bol	Parameter	Conditions ⁽⁴⁾					Max	Unit	
		ADC clock frequency <	Single	Fast channel (max speed)	-	-74	-65		
THD	Total harmonic distortion	otal 80 MHz, armonic istortion $2 \vee V_{DDA}$	ended	Slow channel (max speed)	-	-74	-67	dB	
			Differential	Fast channel (max speed)	-	-79	-70	uВ	
			Dinerential	Slow channel (max speed)	-	-79	-71		

Table 66. ADC accuracy - limited test conditions $2^{(1)(2)(3)}$ (continued)

1. Guaranteed by design.

2. ADC DC accuracy values are measured after internal calibration.

- 3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when V_{DDA} \geq 2.4 V. No oversampling.

- 1. Guaranteed by design, unless otherwise specified.
- 2. Refer to Table 25: Embedded internal voltage reference.
- 3. Guaranteed by characterization results.

6.3.21 Operational amplifiers characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage ⁽²⁾		-	1.8	-	3.6	V
CMIR	Common mode input range		-	0	-	V _{DDA}	V
V/10	Input offset 25 °C, No Load on output.		output.	-	-	±1.5	m\/
VIOFFSET	voltage	All voltage/Temp.	II voltage/Temp.		-	±3	IIIV
	Input offset	Normal mode		-	±5	-	uV/°C
OFFSET	voltage drift	Low-power mode		-	±10	-	μν/Ο
TRIMOFFSETP TRIMLPOFFSETP	Offset trim step at low common input voltage (0.1 _x V _{DDA})		-	-	0.8	1.1	m\/
TRIMOFFSETN TRIMLPOFFSETN	Offset trim step at high common input voltage (0.9 x V _{DDA})	-		-	1	1.35	ĨĨĨ
	Drive current	Normal mode	V > 2 V	-	-	500	
LOAD	Drive current	Low-power mode	ow-power mode		-	100	uА
	Drive current in	Normal mode	$V_{DDA} > 2 V$	-	-	450	μ
'LOAD_PGA	PGA mode	Low-power mode	-	-	50		
B	Resistive load (connected to	Normal mode	V <2V	4	-	-	
' LOAD	VSSA or to VDDA)	Low-power mode	VDDA < 2 V	20	-	-	kO
P	Resistive load in PGA mode	Normal mode	V < 2 V	4.5	-	-	K12
יע LOAD_PGA	(connected to VSSA or to V _{DDA})	Low-power mode	_ v _{DDA} < ∠ v	40	-	-	
C _{LOAD}	Capacitive load		-	-	-	50	pF
CMRR	Common mode	Normal mode		-	-85	-	dB
OWNER	rejection ratio	Low-power mode		-	-90	-	uв

Table 73. OPAMP characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Data output valid time	Slave mode 2.7 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	19	
t _{v(SO)}		Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	30	
		Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 2	-	12.5	33	ns
-		Slave mode 1.08 < V_{DDIO2} < 1.32 $V^{(3)}$	-	25	62.5	
t _{v(MO)}		Master mode	-	2.5	12.5	
t _{h(SO)}		Slave mode	9	-	-	
-	Data output hold time	Slave mode 1.08 < V_{DDIO2} < 1.32 $V^{(3)}$	24	-	-	ns
t _{h(MO)}		Master mode	0	-	-	

Table 83. SPI characteristics ⁽¹⁾	(continued)
--	-------------

1. Guaranteed by characterization results.

2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50 %.

3. SPI mapped on Port G.

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

Figure 30. SPI timing diagram - master mode

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

DocID025976 Rev 4

7.7 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 22: General operating conditions*.

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $\mathsf{P}_{I\!/\!O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma \; ((\mathsf{V}_{\mathsf{DDIOx}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	45	
	Thermal resistance junction-ambient LQFP100 - 14 × 14mm	42	
Θ	Thermal resistance junction-ambient LQFP144 - 20 × 20 mm	32	°CAM
OJA	Thermal resistance junction-ambient UFBGA132 - 7 × 7 mm	55	C/VV
	Thermal resistance junction-ambient WLCSP72	46	
	Thermal resistance junction-ambient WLCSP81	41	

Table 113. Package thermal characteristics

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.7.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Part numbering*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

