

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	4
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=s9s08sg4e2msc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SEC01:SEC00	Description
0:0	secure
0:1	secure
1:0	unsecured
1:1	secure

Table 4-9. Security States¹

¹ SEC01:SEC00 changes to 1:0 after successful backdoor key entry or a successful blank check of FLASH.

4.7.3 FLASH Configuration Register (FCNFG)

Figure 4-7. FLASH Configuration Register (FCNFG)

Table 4-10. FCNFG Register Field Descriptions

Field	Description
5 KEYACC	 Enable Writing of Access Key — This bit enables writing of the backdoor comparison key. For more detailed information about the backdoor key mechanism, refer to Section 4.6, "Security." 0 Writes to 0xFFB0–0xFFB7 are interpreted as the start of a FLASH programming or erase command. 1 Writes to NVBACKKEY (0xFFB0–0xFFB7) are interpreted as comparison key writes.

4.7.4 FLASH Protection Register (FPROT and NVPROT)

During reset, the contents of the nonvolatile location NVPROT is copied from FLASH into FPROT. This register can be read at any time, but user program writes have no meaning or effect.

¹ Background commands can be used to change the contents of these bits in FPROT.

Figure 4-8. FLASH Protection Register (FPROT)

The COP counter is initialized by the first writes to the SOPT1 and SOPT2 registers after any system reset. Subsequent writes to SOPT1 and SOPT2 have no effect on COP operation. Even if the application will use the reset default settings of COPT, COPCLKS, and COPW bits, the user should write to the write-once SOPT1 and SOPT2 registers during reset initialization to lock in the settings. This will prevent accidental changes if the application program gets lost.

The write to SRS that services (clears) the COP counter should not be placed in an interrupt service routine (ISR) because the ISR could continue to be executed periodically even if the main application program fails.

If the bus clock source is selected, the COP counter does not increment while the MCU is in background debug mode or while the system is in stop mode. The COP counter resumes when the MCU exits background debug mode or stop mode.

If the 1-kHz clock source is selected, the COP counter is re-initialized to zero upon entry to either background debug mode or stop mode and begins from zero upon exit from background debug mode or stop mode.

5.5 Interrupts

Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine (ISR), and then restore the CPU status so processing resumes where it left off before the interrupt. Other than the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events such as an edge on a pin interrupt or a timer-overflow event. The debug module can also generate an SWI under certain circumstances.

If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The CPU will not respond unless the local interrupt enable is a 1 to enable the interrupt and the I bit in the CCR is 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set after reset which prevents all maskable interrupt sources. The user program initializes the stack pointer and performs other system setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the current instruction before responding to the interrupt. The interrupt sequence obeys the same cycle-by-cycle sequence as the SWI instruction and consists of:

- Saving the CPU registers on the stack
- Setting the I bit in the CCR to mask further interrupts
- Fetching the interrupt vector for the highest-priority interrupt that is currently pending
- Filling the instruction queue with the first three bytes of program information starting from the address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of another interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is restored to 0 when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit can be cleared inside an ISR (after clearing the status flag that generated the interrupt) so that other interrupts can be serviced without waiting for the first service routine to finish. This practice is not

Chapter 5 Resets, Interrupts, and General System Control

recommended for anyone other than the most experienced programmers because it can lead to subtle program errors that are difficult to debug.

The interrupt service routine ends with a return-from-interrupt (RTI) instruction which restores the CCR, A, X, and PC registers to their pre-interrupt values by reading the previously saved information from the stack.

NOTE

For compatibility with M68HC08 devices, the H register is not automatically saved and restored. It is good programming practice to push H onto the stack at the start of the interrupt service routine (ISR) and restore it immediately before the RTI that is used to return from the ISR.

If more than one interrupt is pending when the I bit is cleared, the highest priority source is serviced first (see Table 5-2).

5.5.1 Interrupt Stack Frame

Figure 5-1 shows the contents and organization of a stack frame. Before the interrupt, the stack pointer (SP) points at the next available byte location on the stack. The current values of CPU registers are stored on the stack starting with the low-order byte of the program counter (PCL) and ending with the CCR. After stacking, the SP points at the next available location on the stack which is the address that is one less than the address where the CCR was saved. The PC value that is stacked is the address of the instruction in the main program that would have executed next if the interrupt had not occurred.

Figure 5-1. Interrupt Stack Frame

When an RTI instruction is executed, these values are recovered from the stack in reverse order. As part of the RTI sequence, the CPU fills the instruction pipeline by reading three bytes of program information, starting from the PC address recovered from the stack.

Vector Priority	Vector Number	Address (High/Low)	Vector Name	Module	Source	Enable	Description
	31	0xFFC0/0xFFC1	—		_	—	_
Lowest	30	0xFFC2/0xFFC3	Vacmp	ACMP	ACF	ACIE	Analog comparator
	29	0xFFC4/0xFFC5	—	_	_	—	—
	28	0xFFC6/0xFFC7	—	_	_	—	_
	27	0xFFC8/0xFFC9	—	_	_	—	_
	26	0xFFCA/0xFFCB	Vmtim	MTIM	TOF	TOIE	MTIM overflow
	25	0xFFCC/0xFFCD	Vrtc	RTC	RTIF	RTIE	Real-time interrupt
	24	0xFFCE/0xFFCF	Viic	IIC	lICIF	IICIE	IIC control
	23	0xFFD0/0xFFD1	Vadc	ADC	COCO	AIEN	ADC
	22	0xFFD2/0xFFD3	—	—	_	—	_
	21	0xFFD4/0xFFD5	Vportb	Port B	PTBIF	PTBIE	Port B Pins
	20	0xFFD6/0xFFD7	Vporta	Port A	PTAIF	PTAIE	Port A Pins
	19	0xFFD8/0xFFD9	—	—	_	—	_
	18	0xFFDA/0xFFDB	Vscitx	SCI	TDRE, TC	TIE, TCIE	SCI transmit
	17	0xFFDC/0xFFDD	Vscirx	SCI	idle, RDRF, LBKDIF, RXEDGIF	ILIE, RIE, LBKDIE, RXEDGIE	SCI receive
	16	0xFFDE/0xFFDF	Vscierr	SCI	OR, NF, FE, PF	ORIE, NFIE, FEIE, PFIE	SCI error
	15	0xFFE0/0xFFE1	Vspi	SPI	SPIF, MODF, SPTEF	SPIE, SPIE, SPTIE	SPI
	14	0xFFE2/0xFFE3	Vtpm2ovf	TPM2	TOF	TOIE	TPM2 overflow
	13	0xFFE4/0xFFE5	Vtpm2ch1	TPM2	CH1F	CH1IE	TPM2 channel 1
	12	0xFFE6/0xFFE7	Vtpm2ch0	TPM2	CH0F	CH0IE	TPM2 channel 0
	11	0xFFE8/0xFFE9	Vtpm1ovf	TPM1	TOF	TOIE	TPM1 overflow
	10	0xFFEA/0xFFEB	—		_	—	_
	9	0xFFEC/0xFFED	—		_	—	_
	8	0xFFEE/0xFFEF	—		_	—	_
	7	0xFFF0/0xFFF1	—		_	—	_
	6	0xFFF2/0xFFF3	Vtpm1ch1	TPM1	CH1F	CH1IE	TPM1 channel 1
	5	0xFFF4/0xFFF5	Vtpm1ch0	TPM1	CH0F	CH0IE	TPM1 channel 0
	4	0xFFF6/0xFFF7	—		_	—	_
	3	0xFFF8/0xFFF9	Vlvd	System control	LVWF	LVWIE	Low-voltage warning
	2	0xFFFA/0xFFFB	—			_	_
	1	0xFFFC/0xFFFD	Vswi	Core	SWI Instruction	—	Software interrupt
	0	0xFFFE/0xFFFF	Vreset	System	COP,	COPT	Watchdog timer
V				control	LVD,	LVDRE	Low-voltage detect
Highest					KESEI pin,		External pin
J I					Illegal address		Illegal address

Table 5-2. Vector Summary

Table 5-3. SRS Register Field Descriptions

Field	Description
3 ILAD	 Illegal Address — Reset was caused by an attempt to access either data or an instruction at an unimplemented memory address. 0 Reset not caused by an illegal address 1 Reset caused by an illegal address
1 LVD	 Low Voltage Detect — If the LVDRE bit is set and the supply drops below the LVD trip voltage, an LVD reset will occur. This bit is also set by POR. 0 Reset not caused by LVD trip or POR. 1 Reset caused by LVD trip or POR.

5.7.2 System Background Debug Force Reset Register (SBDFR)

This high page register contains a single write-only control bit. A serial background command such as WRITE_BYTE must be used to write to SBDFR. Attempts to write this register from a user program are ignored. Reads always return 0x00.

¹ BDFR is writable only through serial background debug commands, not from user programs.

Figure 5-3. System Background Debug Force Reset Register (SBDFR)

Table 5-4. SBDFR Register Field Descriptions

Field	Description
0 BDFR	Background Debug Force Reset — A serial background command such as WRITE_BYTE can be used to allow an external debug host to force a target system reset. Writing 1 to this bit forces an MCU reset. This bit cannot be written from a user program.

Chapter 6 Parallel Input/Output Control

6.6.3 Port C Registers

Port C is controlled by the registers listed below.

6.6.3.1 Port C Data Register (PTCD)

Figure 6-19. Port C Data Register (PTCD)

Table 6-18. PTCD Register Field Descriptions

Field	Description
3:0 PTCD[3:0]	Port C Data Register Bits — For port C pins that are inputs, reads return the logic level on the pin. For port C pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port C pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTCD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pull-ups disabled.

6.6.3.2 Port C Data Direction Register (PTCDD)

_	7	6	5	4	3	2	1	0
R	0	0	0	0		DTODO		PTCDD0
W					PTCDD3	PICDD2	FICUUI	FICDDO
Reset:	0	0	0	0	0	0	0	0

Figure 6-20. Port C Data Direction Register (PTCDD)

Table 6-19. PTCDD Register Field Descriptions

Field	Description
3:0 PTCDD[3:0]	Data Direction for Port C Bits — These read/write bits control the direction of port C pins and what is read for PTCD reads.
	 0 Input (output driver disabled) and reads return the pin value. 1 Output driver enabled for port C bit n and PTCD reads return the contents of PTCDn.

Chapter 7 Central Processor Unit (S08CPUV2)

Source	Operation	ldress lode	Object Code	/cles	Cyc-by-Cyc	Affect on CCR		
1 onn		βq M		ර	Details	VH	INZC	
MOV opr8a,opr8a MOV opr8a,X+ MOV #opr8i,opr8a MOV ,X+,opr8a	$\begin{array}{l} \text{Move} \\ (\text{M})_{\text{destination}} \leftarrow (\text{M})_{\text{source}} \\ \text{In IX+/DIR and DIR/IX+ Modes,} \\ \text{H:X} \leftarrow (\text{H:X}) + 0\text{x0001} \end{array}$	DIR/DIR DIR/IX+ IMM/DIR IX+/DIR	4E dd dd 5E dd 6E ii dd 7E dd	5 5 4 5	rpwpp rfwpp pwpp rfwpp	0 –	-þþ-	
MUL	Unsigned multiply X:A \leftarrow (X) \times (A)	INH	42	5	ffffp	- 0	0	
NEG opr8a NEGA NEGX NEG oprx8,X NEG ,X NEG oprx8,SP	$\begin{array}{lll} \mbox{Negate} & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x00} - (\mbox{M}) \\ (\mbox{Two's Complement}) & \mbox{A} \leftarrow - (\mbox{A}) = 0 \mbox{x00} - (\mbox{A}) \\ & \mbox{X} \leftarrow - (\mbox{X}) = 0 \mbox{x00} - (\mbox{X}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x00} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x00} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x00} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x00} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x00} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x00} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x00} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x00} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x00} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x00} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x00} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x00} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x00} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x00} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x00} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x0} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x0} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x0} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x0} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x0} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x0} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x0} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{x0} - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{X} \leftarrow - (\mbox{M}) = 0 \mbox{X} \leftarrow - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{X} \leftarrow - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = 0 \mbox{M} \leftarrow - (\$	DIR INH INH IX1 IX SP1	30 dd 40 50 60 ff 70 9E 60 ff	5 1 5 4 6	rfwpp p rfwpp rfwp prfwpp	Þ –	-ÞÞÞ	
NOP	No Operation — Uses 1 Bus Cycle	INH	9D	1	p			
NSA	Nibble Swap Accumulator A \leftarrow (A[3:0]:A[7:4])	INH	62	1	q			
ORA #opr8i ORA opr8a ORA opr16a ORA oprx16,X ORA oprx8,X ORA ,X ORA oprx16,SP ORA oprx8,SP	Inclusive OR Accumulator and Memory $A \leftarrow (A) \mid (M)$	IMM DIR EXT IX2 IX1 IX SP2 SP1	AA ii BA dd CA hh 11 DA ee ff EA ff FA 9E DA ee ff 9E EA ff	2 3 4 3 3 5 4	pp rpp prpp rpp rpp rfp prpp prpp	0 —	-þþ-	
PSHA	Push Accumulator onto Stack Push (A); SP ← (SP) – 0x0001	INH	87	2	ap			
PSHH	Push H (Index Register High) onto Stack Push (H); SP \leftarrow (SP) – 0x0001	INH	8B	2	sp			
PSHX	Push X (Index Register Low) onto Stack Push (X); SP \leftarrow (SP) – 0x0001	INH	89	2	ap			
PULA	Pull Accumulator from Stack SP \leftarrow (SP + 0x0001); Pull (A)	INH	86	3	ufp			
PULH	Pull H (Index Register High) from Stack SP \leftarrow (SP + 0x0001); Pull (H)	INH	8A	3	ufp			
PULX	Pull X (Index Register Low) from Stack SP \leftarrow (SP + 0x0001); Pull (X)	INH	88	3	ufp			
ROL opr8a ROLA ROLX ROL oprx8,X ROL ,X ROL oprx8,SP	Rotate Left through Carry		39 dd 49 59 69 ff 79 9E 69 ff	5 1 1 5 4 6	rfwpp p rfwpp rfwp prfwp	Þ –	-þþþ	
ROR opr8a RORA RORX ROR oprx8,X ROR ,X ROR oprx8,SP	Rotate Right through Carry	DIR INH INH IX1 IX SP1	36 dd 46 56 66 ff 76 9E 66 ff	5 1 1 5 4 6	rfwpp p rfwpp rfwp prfwpp	Þ –	- þ þ þ	

Table 7-2. Instruction	Set S	Summary	(Sheet 6	6 of 9)
------------------------	-------	---------	----------	---------

9.2.1 Analog Power (V_{DDAD})

The ADC analog portion uses V_{DDAD} as its power connection. In some packages, V_{DDAD} is connected internally to V_{DD} . If externally available, connect the V_{DDAD} pin to the same voltage potential as V_{DD} . External filtering may be necessary to ensure clean V_{DDAD} for good results.

9.2.2 Analog Ground (V_{SSAD})

The ADC analog portion uses V_{SSAD} as its ground connection. In some packages, V_{SSAD} is connected internally to V_{SS} . If externally available, connect the V_{SSAD} pin to the same voltage potential as V_{SS} .

9.2.3 Voltage Reference High (V_{REFH})

 V_{REFH} is the high reference voltage for the converter. In some packages, V_{REFH} is connected internally to V_{DDAD} . If externally available, V_{REFH} may be connected to the same potential as V_{DDAD} , or may be driven by an external source that is between the minimum V_{DDAD} spec and the V_{DDAD} potential (V_{REFH} must never exceed V_{DDAD}).

9.2.4 Voltage Reference Low (V_{REFL})

 V_{REFL} is the low reference voltage for the converter. In some packages, V_{REFL} is connected internally to V_{SSAD} . If externally available, connect the V_{REFL} pin to the same voltage potential as V_{SSAD} .

9.2.5 Analog Channel Inputs (ADx)

The ADC module supports up to 28 separate analog inputs. An input is selected for conversion through the ADCH channel select bits.

9.3 **Register Definition**

These memory mapped registers control and monitor operation of the ADC:

- Status and control register, ADCSC1
- Status and control register, ADCSC2
- Data result registers, ADCRH and ADCRL
- Compare value registers, ADCCVH and ADCCVL
- Configuration register, ADCCFG
- Pin enable registers, APCTL1, APCTL2, APCTL3

9.3.1 Status and Control Register 1 (ADCSC1)

This section describes the function of the ADC status and control register (ADCSC1). Writing ADCSC1 aborts the current conversion and initiates a new conversion (if the ADCH bits are equal to a value other than all 1s).

Figure 9-7. Data Result Low Register (ADCRL)

9.3.5 Compare Value High Register (ADCCVH)

This register holds the upper two bits of the 10-bit compare value. These bits are compared to the upper two bits of the result following a conversion in 10-bit mode when the compare function is enabled. In 8-bit operation, ADCCVH is not used during compare.

Figure 9-8. Compare Value High Register (ADCCVH)

9.3.6 Compare Value Low Register (ADCCVL)

This register holds the lower 8 bits of the 10-bit compare value, or all 8 bits of the 8-bit compare value. Bits ADCV7:ADCV0 are compared to the lower 8 bits of the result following a conversion in either 10-bit or 8-bit mode.

Figure 9-9. Compare Value Low Register(ADCCVL)

9.3.7 Configuration Register (ADCCFG)

ADCCFG is used to select the mode of operation, clock source, clock divide, and configure for low power or long sample time.

NP

Analog-to-Digital Converter (S08ADCV1)

Figure 9-14. Initialization Flowchart for Example

9.6 Application Information

This section contains information for using the ADC module in applications. The ADC has been designed to be integrated into a microcontroller for use in embedded control applications requiring an A/D converter.

9.6.1 External Pins and Routing

The following sections discuss the external pins associated with the ADC module and how they should be used for best results.

9.6.1.1 Analog Supply Pins

The ADC module has analog power and ground supplies (V_{DDAD} and V_{SSAD}) which are available as separate pins on some devices. On other devices, V_{SSAD} is shared on the same pin as the MCU digital V_{SS} , and on others, both V_{SSAD} and V_{DDAD} are shared with the MCU digital supply pins. In these cases, there are separate pads for the analog supplies which are bonded to the same pin as the corresponding digital supply so that some degree of isolation between the supplies is maintained.

When available on a separate pin, both V_{DDAD} and V_{SSAD} must be connected to the same voltage potential as their corresponding MCU digital supply (V_{DD} and V_{SS}) and must be routed carefully for maximum noise immunity and bypass capacitors placed as near as possible to the package.

converter yields the lower code (and vice-versa). However, even very small amounts of system noise can cause the converter to be indeterminate (between two codes) for a range of input voltages around the transition voltage. This range is normally around $\pm 1/2$ LSB and will increase with noise. This error may be reduced by repeatedly sampling the input and averaging the result. Additionally the techniques discussed in Section 9.6.2.3 will reduce this error.

Non-monotonicity is defined as when, except for code jitter, the converter converts to a lower code for a higher input voltage. Missing codes are those values which are never converted for any input value.

In 8-bit or 10-bit mode, the ADC is guaranteed to be monotonic and to have no missing codes.

10.1.4.4 FLL Bypassed Internal Low Power (FBILP)

In FLL bypassed internal low power mode, the FLL is disabled and bypassed, and the ICS supplies a clock derived from the internal reference clock. The BDC clock is not available.

10.1.4.5 FLL Bypassed External (FBE)

In FLL bypassed external mode, the FLL is enabled and controlled by an external reference clock, but is bypassed. The ICS supplies a clock derived from the external reference clock. The external reference clock can be an external crystal/resonator supplied by an OSC controlled by the ICS, or it can be another external clock source. The BDC clock is supplied from the FLL.

10.1.4.6 FLL Bypassed External Low Power (FBELP)

In FLL bypassed external low power mode, the FLL is disabled and bypassed, and the ICS supplies a clock derived from the external reference clock. The external reference clock can be an external crystal/resonator supplied by an OSC controlled by the ICS, or it can be another external clock source. The BDC clock is not available.

10.1.4.7 Stop (STOP)

In stop mode the FLL is disabled and the internal or external reference clocks can be selected to be enabled or disabled. The BDC clock is not available and the ICS does not provide an MCU clock source.

10.2 External Signal Description

There are no ICS signals that connect off chip.

10.3 Register Definition

Figure 10-1 is a summary of ICS registers.

Name		7	6	5	4	3	2	1	0
10001	R	C	ĸs				IREES		
10001	W	01	ULK5		יועח				INEFSIEN
ICSC2	R			BANGE	НСО	IP	EREES		EREESTEN
	W	DL	71 v	HANGE	nao	LF	LITELO	LINGLINEN	
	R					тым			
	W								
10000	R	0	0	0	IREFST	CL	KST	OSCINIT	FTRIM
10000	W								1 1 1 1111

```
Table 10-1. ICS Register Summary
```


12.4 Functional Description

The MTIM is composed of a main 8-bit up-counter with an 8-bit modulo register, a clock source selector, and a prescaler block with nine selectable values. The module also contains software selectable interrupt logic.

The MTIM counter (MTIMCNT) has three modes of operation: stopped, free-running, and modulo. Out of reset, the counter is stopped. If the counter is started without writing a new value to the modulo register, then the counter will be in free-running mode. The counter is in modulo mode when a value other than \$00 is in the modulo register while the counter is running.

After any MCU reset, the counter is stopped and reset to \$00, and the modulus is set to \$00. The bus clock is selected as the default clock source and the prescale value is divide by 1. To start the MTIM in free-running mode, simply write to the MTIM status and control register (MTIMSC) and clear the MTIM stop bit (TSTP).

Four clock sources are software selectable: the internal bus clock, the fixed frequency clock (XCLK), and an external clock on the TCLK pin, selectable as incrementing on either rising or falling edges. The MTIM clock select bits (CLKS1:CLKS0) in MTIMSC are used to select the desired clock source. If the counter is active (TSTP = 0) when a new clock source is selected, the counter will continue counting from the previous value using the new clock source.

Nine prescale values are software selectable: clock source divided by 1, 2, 4, 8, 16, 32, 64, 128, or 256. The prescaler select bits (PS[3:0]) in MTIMSC select the desired prescale value. If the counter is active (TSTP = 0) when a new prescaler value is selected, the counter will continue counting from the previous value using the new prescaler value.

The MTIM modulo register (MTIMMOD) allows the overflow compare value to be set to any value from \$01 to \$FF. Reset clears the modulo value to \$00, which results in a free running counter.

When the counter is active (TSTP = 0), the counter increments at the selected rate until the count matches the modulo value. When these values match, the counter overflows to \$00 and continues counting. The MTIM overflow flag (TOF) is set whenever the counter overflows. The flag sets on the transition from the modulo value to \$00. Writing to MTIMMOD while the counter is active resets the counter to \$00 and clears TOF.

Clearing TOF is a two-step process. The first step is to read the MTIMSC register while TOF is set. The second step is to write a 0 to TOF. If another overflow occurs between the first and second steps, the clearing process is reset and TOF will remain set after the second step is performed. This will prevent the second occurrence from being missed. TOF is also cleared when a 1 is written to TRST or when any value is written to the MTIMMOD register.

The MTIM allows for an optional interrupt to be generated whenever TOF is set. To enable the MTIM overflow interrupt, set the MTIM overflow interrupt enable bit (TOIE) in MTIMSC. TOIE should never be written to a 1 while TOF = 1. Instead, TOF should be cleared first, then the TOIE can be set to 1.

Chapter 13 Real-Time Counter (S08RTCV1)

NOTE 3: V_{DDA}/V_{REFH} and V_{SSA}/V_{REFL}, are double bonded to V_{DD} and V_{SS} respectively.

Figure 13-1. MC9S08SG8 Block Diagram with RTC Module Highlighted

Serial Communications Interface (S08SCIV4)

14.1.3 Block Diagram

Figure 14-2 shows the transmitter portion of the SCI.

Figure 14-2. SCI Transmitter Block Diagram

Writing 0 to TE does not immediately release the pin to be a general-purpose I/O pin. Any transmit activity that is in progress must first be completed. This includes data characters in progress, queued idle characters, and queued break characters.

14.3.2.1 Send Break and Queued Idle

The SBK control bit in SCIC2 is used to send break characters which were originally used to gain the attention of old teletype receivers. Break characters are a full character time of logic 0 (10 bit times including the start and stop bits). A longer break of 13 bit times can be enabled by setting BRK13 = 1. Normally, a program would wait for TDRE to become set to indicate the last character of a message has moved to the transmit shifter, then write 1 and then write 0 to the SBK bit. This action queues a break character to be sent as soon as the shifter is available. If SBK is still 1 when the queued break moves into the shifter (synchronized to the baud rate clock), an additional break character is queued. If the receiving device is another Freescale Semiconductor SCI, the break characters will be received as 0s in all eight data bits and a framing error (FE = 1) occurs.

When idle-line wakeup is used, a full character time of idle (logic 1) is needed between messages to wake up any sleeping receivers. Normally, a program would wait for TDRE to become set to indicate the last character of a message has moved to the transmit shifter, then write 0 and then write 1 to the TE bit. This action queues an idle character to be sent as soon as the shifter is available. As long as the character in the shifter does not finish while TE = 0, the SCI transmitter never actually releases control of the TxD pin. If there is a possibility of the shifter finishing while TE = 0, set the general-purpose I/O controls so the pin that is shared with TxD is an output driving a logic 1. This ensures that the TxD line will look like a normal idle line even if the SCI loses control of the port pin between writing 0 and then 1 to TE.

The length of the break character is affected by the BRK13 and M bits as shown below.

BRK13	М	Break Character Length				
0	0	10 bit times				
0	1	11 bit times				
1 0 13 bit time		13 bit times				
1	1	14 bit times				

Table 14-8. Break Character Length

14.3.3 Receiver Functional Description

In this section, the receiver block diagram (Figure 14-3) is used as a guide for the overall receiver functional description. Next, the data sampling technique used to reconstruct receiver data is described in more detail. Finally, two variations of the receiver wakeup function are explained.

The receiver input is inverted by setting RXINV = 1. The receiver is enabled by setting the RE bit in SCIC2. Character frames consist of a start bit of logic 0, eight (or nine) data bits (LSB first), and a stop bit of logic 1. For information about 9-bit data mode, refer to Section 14.3.5.1, "8- and 9-Bit Data Modes." For the remainder of this discussion, we assume the SCI is configured for normal 8-bit data mode.

After receiving the stop bit into the receive shifter, and provided the receive data register is not already full, the data character is transferred to the receive data register and the receive data register full (RDRF)

Timer/PWM Module (S08TPMV3)

When the TPM is configured for center-aligned PWM (and ELSnB:ELSnA not = 0:0), the data direction for all channels in this TPM are overridden, the TPMxCHn pins are forced to be outputs controlled by the TPM, and the ELSnA bits control the polarity of each TPMxCHn output. If ELSnB:ELSnA=1:0, the corresponding TPMxCHn pin is cleared when the timer counter is counting up, and the channel value register matches the timer counter; the TPMxCHn pin is set when the timer counter is counting down, and the channel value register matches the timer counter. If ELSnA=1, the corresponding TPMxCHn pin is set when the timer counter; the TPMxCHn pin is cleared when the channel value register matches the timer counter is counting up and the channel value register matches the timer counter; the TPMxCHn pin is cleared when the timer counter is the timer counter; the timer counter is counting up and the channel value register matches the timer counter is counting the timer counter; the timer counter is counter is counter; the timer counter is counter is counter.

TPMxMODH:TPMxMODL = 0x0008 TPMxMODH:TPMxMODL = 0x0005

TPMxMODH:TPMxMODL = 0x0008 TPMxMODH:TPMxMODL = 0x0005

Figure 16-6. Low-True Pulse of a Center-Aligned PWM

When BDM is active, the timer counter is frozen (this is the value that will be read by user); the coherency mechanism is frozen such that the buffer latches remain in the state they were in when the BDM became active, even if one or both counter halves are read while BDM is active. This assures that if the user was in the middle of reading a 16-bit register when BDM became active, it will read the appropriate value from the other half of the 16-bit value after returning to normal execution.

In BDM mode, writing any value to TPMxSC, TPMxCNTH or TPMxCNTL registers resets the read coherency mechanism of the TPMxCNTH:L registers, regardless of the data involved in the write.

16.3.3 TPM Counter Modulo Registers (TPMxMODH:TPMxMODL)

The read/write TPM modulo registers contain the modulo value for the TPM counter. After the TPM counter reaches the modulo value, the TPM counter resumes counting from 0x0000 at the next clock, and the overflow flag (TOF) becomes set. Writing to TPMxMODH or TPMxMODL inhibits the TOF bit and overflow interrupts until the other byte is written. Reset sets the TPM counter modulo registers to 0x0000 which results in a free running timer counter (modulo disabled).

Writing to either byte (TPMxMODH or TPMxMODL) latches the value into a buffer and the registers are updated with the value of their write buffer according to the value of CLKSB:CLKSA bits, so:

- If (CLKSB:CLKSA = 0:0), then the registers are updated when the second byte is written
- If (CLKSB:CLKSA not = 0:0), then the registers are updated after both bytes were written, and the TPM counter changes from (TPMxMODH:TPMxMODL 1) to (TPMxMODH:TPMxMODL). If the TPM counter is a free-running counter, the update is made when the TPM counter changes from 0xFFFE to 0xFFFF

The latching mechanism may be manually reset by writing to the TPMxSC address (whether BDM is active or not).

When BDM is active, the coherency mechanism is frozen (unless reset by writing to TPMxSC register) such that the buffer latches remain in the state they were in when the BDM became active, even if one or both halves of the modulo register are written while BDM is active. Any write to the modulo registers bypasses the buffer latches and directly writes to the modulo register while BDM is active.

MC9S08SG8 MCU Series Data Sheet, Rev. 8

Appendix A Electrical Characteristics

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

				Temp Rated ¹		
Rating	Symbol	Value	Unit	Standard	AEC Grade 0	
Supply voltage	V _{DD}	-0.3 to +5.8	V	х	х	
Maximum current into V _{DD}	I _{DD}	120	mA	х	х	
Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V	х	х	
Instantaneous maximum current Single pin limit (applies to all port pins) ^{2, 3, 4}	Ι _D	± 25	mA	х	х	
Storage temperature range	T _{stg}	-55 to 150	°C	х	х	

Table A-2. Absolute Maximum Ratings

¹ Electrical characteristics only apply to the temperature rated devices marked with x.

² Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^3\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

⁴ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

A.12 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

A.12.1 Control Timing

			Symbol	Min	Typ ¹	Max	Unit	Temp Rated ²	
Num	С	Rating						Sta ndar d	AE C Gra de 0
1 D	Bus frequency (t _{cyc} = 1/f _{Bus}) -40 °C to 125 °C	f _{Bus}	dc	_	20	MHz	x		
		>125 °C				18			х
2 D	Internal low power oscillator period -40 °C to 125 °C	t _{LPO}	700		1500	μs	x		
		>125 °C		600		1500	-		х
3	D	External reset pulse width ³	t _{extrst}	100			ns	х	х
4	D	Reset low drive ⁴	t _{rstdrv}	66 x t _{cyc}			ns	х	х
8	D	Pin interrupt pulse width Asynchronous path ² Synchronous path ⁵	t _{ILIH} , t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns	x	x
9 (0	Port rise and fall time — Low output drive (PTxDS = 0) (load = 50 pF) ⁵ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		40 75		ns	x	x
	U.	Port rise and fall time — High output drive (PTxDS = 1) (load = 50 pF) ⁶ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		11 35		ns	x	x

¹ Typical values are based on characterization data at V_{DD} = 5.0V, 25°C unless otherwise stated.

² Electrical characteristics only apply to the temperature rated devices marked with x.

³ This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

⁴ When any reset is initiated, internal circuitry drives the reset pin low for about 66 cycles of t_{cyc} . After POR reset the bus clock frequency changes to the untrimmed DCO frequency ($f_{reset} = (f_{dco_ut})/4$) because TRIM is reset to 0x80 and FTRIM is reset to 0, and there is an extra divide-by-two because BDIV is reset to 0:1. After other resets trim stays at the pre-reset value.

 5 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40°C to 125°C.