

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

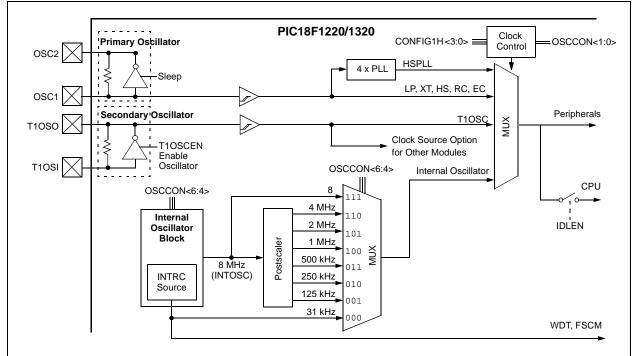
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f1220-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7.1 OSCILLATOR CONTROL REGISTER

The OSCCON register (Register 2-2) controls several aspects of the system clock's operation, both in full-power operation and in power managed modes.

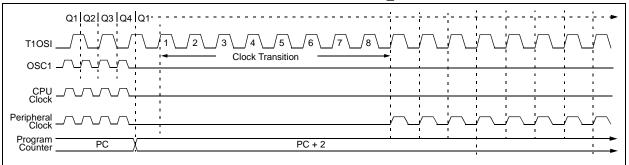

The System Clock Select bits, SCS1:SCS0, select the clock source that is used when the device is operating in power managed modes. The available clock sources are the primary clock (defined in Configuration Register 1H), the secondary clock (Timer1 oscillator) and the internal oscillator block. The clock selection has no effect until a SLEEP instruction is executed and the device enters a power managed mode of operation. The SCS bits are cleared on all forms of Reset.

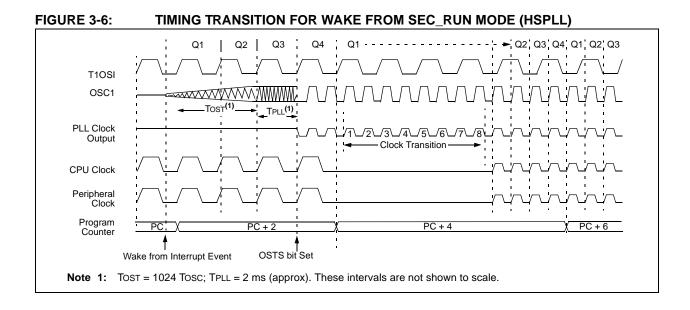
The Internal Oscillator Select bits, IRCF2:IRCF0, select the frequency output of the internal oscillator block that is used to drive the system clock. The choices are the INTRC source, the INTOSC source (8 MHz), or one of the six frequencies derived from the INTOSC postscaler (125 kHz to 4 MHz). If the internal oscillator block is supplying the system clock, changing the states of these bits will have an immediate change on the internal oscillator's output.

The OSTS, IOFS and T1RUN bits indicate which clock source is currently providing the system clock. The OSTS indicates that the Oscillator Start-up Timer has timed out and the primary clock is providing the system clock in Primary Clock modes. The IOFS bit indicates when the internal oscillator block has stabilized and is providing the system clock in RC Clock modes or during Two-Speed Start-ups. The T1RUN bit (T1CON<6>) indicates when the Timer1 oscillator is providing the system clock in Secondary Clock modes. In power managed modes, only one of these three bits will be set at any time. If none of these bits are set, the INTRC is providing the system clock, or the internal oscillator block has just started and is not yet stable.

The IDLEN bit controls the selective shutdown of the controller's CPU in power managed modes. The uses of these bits are discussed in more detail in **Section 3.0 "Power Managed Modes"**.

- Note 1: The Timer1 oscillator must be enabled to select the secondary clock source. The Timer1 oscillator is enabled by setting the T1OSCEN bit in the Timer1 Control register (T1CON<3>). If the Timer1 oscillator is not enabled, then any attempt to select a secondary clock source when executing a SLEEP instruction will be ignored.
 - 2: It is recommended that the Timer1 oscillator be operating and stable before executing the SLEEP instruction or a very long delay may occur while the Timer1 oscillator starts.


FIGURE 2-8: PIC18F1220/1320 CLOCK DIAGRAM


3.3.2 SEC_IDLE MODE

In SEC_IDLE mode, the CPU is disabled, but the peripherals continue to be clocked from the Timer1 oscillator. This mode is entered by setting the Idle bit, modifying bits, SCS1:SCS0 = 01 and executing a SLEEP instruction. When the clock source is switched (see Figure 3-5) to the Timer1 oscillator, the primary oscillator is shut down, the OSTS bit is cleared and the T1RUN bit is set.

Note: The Timer1 oscillator should already be running prior to entering SEC_IDLE mode. If the T1OSCEN bit is not set when the SLEEP instruction is executed, the SLEEP instruction will be ignored and entry to SEC_IDLE mode will not occur. If the Timer1 oscillator is enabled, but not yet running, peripheral clocks will be delayed until the oscillator has started; in such situations, initial oscillator operation is far from stable and unpredictable operation may result. When a wake event occurs, the peripherals continue to be clocked from the Timer1 oscillator. After a 10 μ s delay following the wake event, the CPU begins executing code, being clocked by the Timer1 oscillator. The microcontroller operates in SEC_RUN mode until the primary clock becomes ready. When the primary clock becomes ready, a clock switchback to the primary clock occurs (see Figure 3-6). When the clock switch is complete, the T1RUN bit is cleared, the OSTS bit is set and the primary clock is providing the system clock. The IDLEN and SCS bits are not affected by the wake-up. The Timer1 oscillator continues to run.

FIGURE 3-5: TIMING TRANSITION FOR ENTRY TO SEC IDLE MODE

7.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). The data is available for the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation, or until it is written to by the user (during a write operation).

7.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. The sequence in Example 7-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

EXAMPLE 7-1: DATA EEPROM READ

After a write sequence has been initiated, EECON1, EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

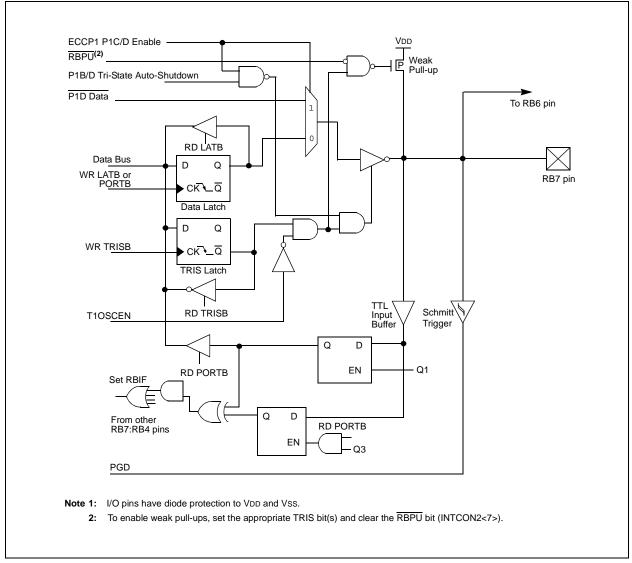
At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Interrupt Flag bit (EEIF) is set. The user may either enable this interrupt or poll this bit. EEIF must be cleared by software.

7.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

7.6 Protection Against Spurious Write

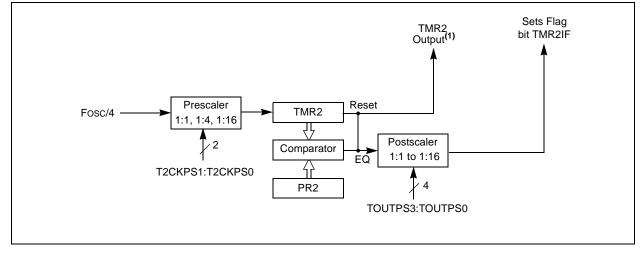
There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, the WREN bit is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.


The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

MOVLW	DATA_EE_ADDR;	
MOVWF	EEADR ; Data Memory Address to read	
BCF	EECON1, EEPGD; Point to DATA memory	
BSF	EECON1, RD ; EEPROM Read	
MOVF	EEDATA, W ; W = EEDATA	

EXAMPLE 7-2: DATA EEPROM WRITE

	MOVLW	DATA_EE_ADDR;
	MOVWF	EEADR ; Data Memory Address to write
	MOVLW	DATA_EE_DATA;
	MOVWF	EEDATA ; Data Memory Value to write
	BCF	EECON1, EEPGD; Point to DATA memory
	BSF	EECON1, WREN; Enable writes
	BCF	INTCON, GIE; Disable Interrupts
	MOVLW	55h ;
Required	MOVWF	EECON2 ; Write 55h
Sequence	MOVLW	AAh ;
	MOVWF	EECON2 ; Write AAh
	BSF	EECON1, WR ; Set WR bit to begin write
	BSF	INTCON, GIE; Enable Interrupts
	SLEEP	; Wait for interrupt to signal write complete
	BCF	EECON1, WREN; Disable writes


13.2 Timer2 Interrupt

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon Reset.

FIGURE 13-1: TIMER2 BLOCK DIAGRAM

13.3 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module, which optionally uses it to generate the shift clock.

TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	_	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	-000 -000	-000 -000
PIE1	_	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	-000 -000	-000 -000
IPR1	_	ADIP	RCIP	TXIP	_	CCP1IP	TMR2IP	TMR1IP	-111 -111	-111 -111
TMR2	Timer2 Mod	dule Registe	r						0000 0000	0000 0000
T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
PR2 Timer2 Period Register								1111 1111	1111 1111	
PR2 Timer2 Period Register										

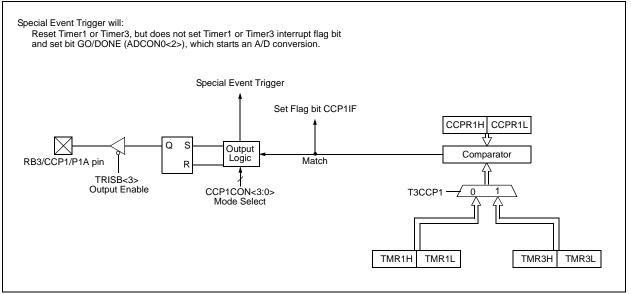
Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

14.0 TIMER3 MODULE

The Timer3 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers; TMR3H and TMR3L)
- Readable and writable (both registers)
- Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h
- Reset from CCP module trigger

Figure 14-1 is a simplified block diagram of the Timer3 module.


Register 14-1 shows the Timer3 Control register. This register controls the operating mode of the Timer3 module and sets the CCP clock source.

Register 12-1 shows the Timer1 Control register. This register controls the operating mode of the Timer1 module, as well as contains the Timer1 Oscillator Enable bit (T1OSCEN), which can be a clock source for Timer3.

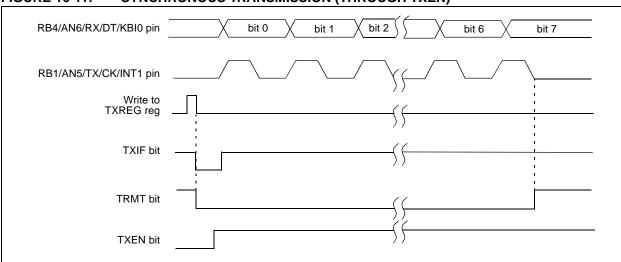
REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
RD16	<u> </u>	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7				100011	1001110		bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set	1	'0' = Bit is clea	ared				
bit 7		Read/Write Mo		401.1			
		register read/w register read/w					
bit 6		nted: Read as '					
bit 5-4	T3CKPS<1:0	0>: Timer3 Inpu	t Clock Presca	le Select bits			
	11 = 1:8 Pre:	•					
	10 = 1:4 Pre						
	01 = 1:2 Pres 00 = 1:1 Pres						
bit 3		ner3 and Timer	1 to CCP1 Eng	hla hits			
bit 5		the clock source			module		
		s the clock source					
bit 2		mer3 External C					
	•	f the system clo	ck comes from	n Timer1/Time	r3.)		
	<u>When TMR3</u> 1 = Do not sy	<u>CS = 1</u> : ynchronize exte	rnal clock innu	+			
	•	nize external clo	•	it.			
	When TMR3		·				
	This bit is igr	ored. Timer3 u	ses the interna	l clock when T	MR3CS = 0.		
bit 1		mer3 Clock Sou					
		clock input from			[]		
		ising edge after clock (Fosc/4)	the mst talling	j edge)			
bit 0	TMR3ON: Ti						
	1 = Enables	Timer3					
	0 = Stops Ti						

FIGURE 15-2: COMPARE MODE OPERATION BLOCK DIAGRAM

TABLE 15-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on BOR	all o	ie on other sets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000	000x	0000	000u
PIR1	_	ADIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	-000	-000	-000	-000
PIE1	—	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	-000	-000	-000	-000
IPR1	—	ADIP	RCIP	TXIP	_	CCP1IP	TMR2IP	TMR1IP	-111	-111	-111	-111
TRISB	PORTB Da	ata Direction	Register						1111	1111	1111	1111
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register									xxxx	uuuu	uuuu
TMR1H	Holding Re	egister for the	e Most Sign	ificant Byte	of the 16-bit	TMR1 Reg	ister		xxxx	xxxx	uuuu	uuuu
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000	0000	uuuu	uuuu
CCPR1L	Capture/C	ompare/PWI	M Register 1	(LSB)			•		xxxx	xxxx	uuuu	uuuu
CCPR1H	Capture/C	ompare/PWI	M Register 1	(MSB)					xxxx	xxxx	uuuu	uuuu
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000	0000	0000	0000
TMR3L	Holding Register for the Least Significant Byte of the 16-bit TMR3 Register									xxxx	uuuu	uuuu
TMR3H	Holding Register for the Most Significant Byte of the 16-bit TMR3 Register									xxxx	uuuu	uuuu
T3CON	RD16	_	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0-00	0000	u-uu	uuuu
ADCON0	VCFG1	VCFG0	_	CHS2	CHS1	CHS0	GO/DONE	ADON	00-0	0000	00-0	0000


Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

REGISTER 15-3: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM/AUTO-SHUTDOWN CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7		CCP Auto-Shu		Status bit			
		tputs are opera	0			_	
				outputs are in	n shutdown stat	e	
bit 6		CCP Auto-Shu	tdown bit 2				
	0 = INT0 pin 1 = INT0 pin	nas no effect Iow causes shu	Itdown				
bit 5	•	CCP Auto-Shu					
bit 5	0 = INT2 pin						
	•	low causes shu	ıtdown				
bit 4	ECCPAS0: E	CCP Auto-Shu	tdown bit 0				
	0 = INT1 pin	has no effect					
	1 = INT1 pin	low causes shu	Itdown				
bit 3-2	PSSACn: Pir	ns A and C Shu	tdown State C	ontrol bits			
		ns A and C to '					
		ns A and C to ' and C tri-state	1'				
h #4.0				a stral bita			
bit 1-0		ns B and D Shu		ontrol dits			
		ns B and D to ' ns B and D to '	-				
	1x = Pins B a		±				

U-0	R-1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
_	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN
bit 7							bit 0
Legend:							
R = Readab		W = Writable		•	mented bit, read		
u = Bit is und	-	x = Bit is unkt		-n/n = value	at POR and BC	R/Value at all o	ther Resets
'1' = Bit is se	et	'0' = Bit is cle	ared				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6	-	ive Operation					
	1 = Receiver 0 = Receiver						
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	SCKP: Synch	ronous Clock	Polarity Selec	t bit			
	Asynchronous Unused in this						
		mode: for clock (CK) for clock (CK)	•	I			
bit 3	BRG16: 16-b	it Baud Rate R	egister Enabl	e bit			
				H and SPBRC		RGH value igno	ored
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	WUE: Wake-	up Enable bit					
	hardware	will continue t on following r ot monitored o <u>mode:</u>	ising edge		rupt generated	on falling edge;	bit cleared in
bit 0		-Baud Detect	Enable bit				
	Asynchronous 1 = Enable b cleared in	<u>s mode:</u> aud rate meas n hardware up e measuremen <u>mode:</u>	urement on th		er – requires re	eception of a Sy	nc byte (55h);

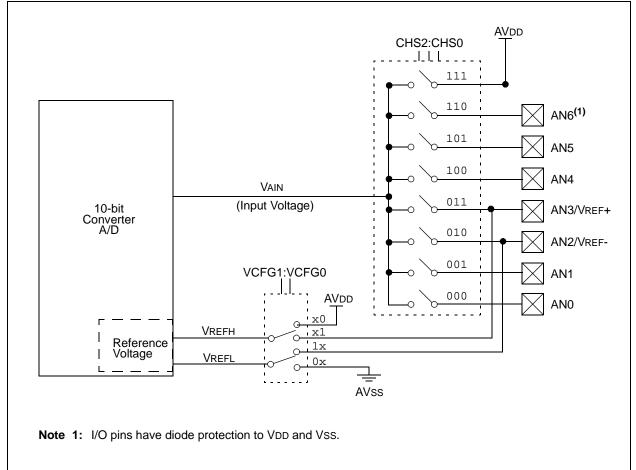
REGISTER 16-3: BAUDCTL: BAUD RATE CONTROL REGISTER

FIGURE 16-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 16-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1		ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	-000 -000	-000 -000
PIE1	-	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	-000 -000	-000 -000
IPR1	_	ADIP	RCIP	TXIP	—	CCP1IP	TMR2IP	TMR1IP	-111 -111	-111 -111
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
TXREG	EUSART T	ransmit Regi	ster						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
BAUDCTL	_	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	-1-1 0-00	-1-1 0-00
SPBRGH	SPBRGH Baud Rate Generator Register High Byte								0000 0000	0000 0000
SPBRG	Baud Rate	Generator R	egister Lov	v Byte					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.


The analog reference voltage is software selectable to either the device's positive and negative supply voltage (AVDD and AVSS), or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF- pins.

The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D converter can be configured as an analog input, or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is <u>loaded</u> into the ADRESH/ADRESL registers, the GO/DONE bit (ADCON0 register) is cleared and A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 17-1.

17.5 Operation in Low-Power Modes

The selection of the automatic acquisition time and the A/D conversion clock is determined, in part, by the low-power mode clock source and frequency while in a low-power mode.

If the A/D is expected to operate while the device is in a low-power mode, the ACQT2:ACQT0 and ADCS2:ADCS0 bits in ADCON2 should be updated in accordance with the low-power mode clock that will be used. After the low-power mode is entered (either of the Run modes), an A/D acquisition or conversion may be started. Once an acquisition or conversion is started, the device should continue to be clocked by the same low-power mode clock source until the conversion has been completed. If desired, the device may be placed into the corresponding low-power (ANY)_IDLE mode during the conversion.

If the low-power mode clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in the Low-Power Sleep mode requires the A/ D RC clock to be selected. If bits, ACQT2:ACQT0, are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Low-Power Sleep mode. The IDLEN and SCS bits in the OSCCON register must have already been cleared prior to starting the conversion.

17.6 Configuring Analog Port Pins

The ADCON1, TRISA and TRISB registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the Port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.

BTFSC		Bit Test File, Skip if Clear							
Syntax:		[<i>label</i>] B1	FSC f,t	o[,a]					
Operand	ds:	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$							
Operatio	on:	skip if (f <b< td=""><td>>) = 0</td><td></td><td></td></b<>	>) = 0						
Status A	ffected:	None							
Encodin	a:	1011	bbba	ffff	ffff				
Words: Cycles:	ion:	If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default). 1 1(2)							
	e Activity:		ycles if s a 2-word						
Q Cycle	Q1	Q2	Q3		Q4				
	Decode	Read	Proces	SS	No				
		register 'f'	Data	o	peration				
If skip:									
	Q1	Q2	Q3		Q4				
	No peration	No operation	No operati		No peration				
	•	ed by 2-word			Scration				
n onip c	Q1	Q2	Q3	011.	Q4				
	No	No	No		No				
0	peration	operation	operati	on o	peration				
0	No peration	No operation	No operati	on o	No peration				
Example: HERE BTFSC FLAG, 1 FALSE : TRUE :									
Before Instruction PC = address (HERE)									
		= add	ress (HEF	RE)					

BTFSS Bit Test File, Skip if Set								
Syntax:	Syntax: [label] BTFSS f,b[,a]							
Operands:	$0 \le f \le 255$ $0 \le b < 7$ $a \in [0,1]$	0 ≤ b < 7						
Operation:	skip if (f <b< td=""><td>>) = 1</td><td></td></b<>	>) = 1						
Status Affected:	None							
Encoding:	1010	bbba ff	ff ffff					
Description:	If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).							
Words:	1		oldull).					
Cycles: Q Cycle Activity:		cycles if skip a a 2-word ins						
Q1	Q2	Q3	Q4					
Decode	Read register 'f'	Process Data	No operation					
If skip:	<u> </u>	1	<u> </u>					
Q1	Q2	Q3	Q4					
No	No	No	No					
operation If skip and follow	operation	operation	operation					
Q1	Q2	Q3	Q4					
No	No	No	No					
operation	operation	operation	operation					
No	No	No	No					
operation	operation	operation	operation					
Example:	HERE B FALSE : TRUE :	FFSS FLAG	, 1					
Before Instru PC		ress (HERE)						
After Instruct								
If FLAG< PC If FLAG< PC	= add 1> = 1;	> = 0; = address (FALSE) > = 1;						

BTG	Bit Toggle	e f				
Syntax:	[<i>label</i>] B	[<i>label</i>] BTG f,b[,a]				
Operands:	0 ≤ f ≤ 255 0 ≤ b < 7 a ∈ [0,1]	v = v · · ·				
Operation:	$(\overline{f}\!<\!b\!\!>)\tof$					
Status Affected:	None					
Encoding:	0111	bbba	ffff	ffff		
Description:	Bit 'b' in data memory location 'f' is inverted. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).					
Words:	1					
Cycles:	1					
Q Cycle Activity	:					
Q1	Q2	Q3	(Q4		
Decode	Read register 'f'	Process Data	-	/rite ster 'f'		
Example: BTG PORTB, 4						
Before Instruction: PORTB = 0111 0101 [0x75]						
After Instruction: PORTB = 0110 0101 [0x65]						

Synt	av.	[<i>label</i>] B	[<i>label</i>] BOV n				
-		-128 < n <					
•	rands:						
Opei	ration:		if Overflow bit is '1' (PC) + 2 + 2n \rightarrow PC				
Statu	is Affected:	None					
Enco	oding:	1110	0100 nn	nn nnnn			
Description: If the Overflow bit is '1', the program will branch. The 2's complement number added to the PC. Since the have incremented to fetche instruction, the new addre PC + 2 + 2n. This instruction a 2-cycle instruction.				umber '2n' i e the PC wil etch the nex ldress will be			
Word	ds:	1					
Cycl	es:	1(2)					
	ycle Activity Imp:	:					
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	Write to PC			
	No operation	No operation	No operation	No operation			
If No	o Jump:						
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	No operation			
Example: HERE BOV JUMP							
	Before Instru	uction					
	PC	= ade	dress (HERE)			

=	address	(HERE)
=	1;	
=	address	(JUMP)
=	0;	
=	address	(HERE + 2)
	=	= 1; = address = 0;

TBLWT	Table Wr	ite				
Syntax:	[<i>label</i>] TBLWT (*; *+; *-; +*)					
Operands:	None					
Operation:	if TBLWT*, (TABLAT) \rightarrow Holding Register; TBLPTR – No Change; if TBLWT*+, (TABLAT) \rightarrow Holding Register; (TBLPTR) + 1 \rightarrow TBLPTR; if TBLWT*-, (TABLAT) \rightarrow Holding Register; (TBLPTR) – 1 \rightarrow TBLPTR; if TBLWT+*, (TBLPTR) + 1 \rightarrow TBLPTR; (TABLAT) \rightarrow Holding Register;					
Status Affected:	None					
Encoding:	0000	0000	0000	llnn nn = 0* = 1*+ = 2*- = 3+*		
Description:			n of the TABLAT is there are ts of efer gram ails on y.) er) points memory. dress PTR ogram Significant Program y Word ignificant Program y Word modify the			

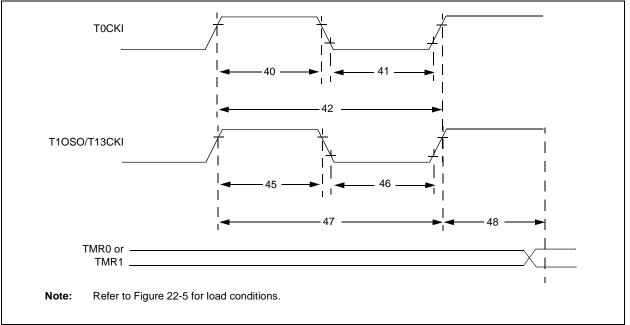
- post-decrement
- pre-increment

TBLWT

Table Write (Continued)

```
Words: 1
```

Cycles: 2


Q Cycle Activity:

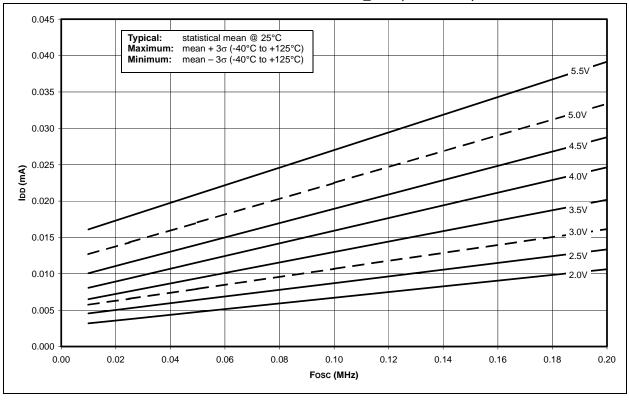
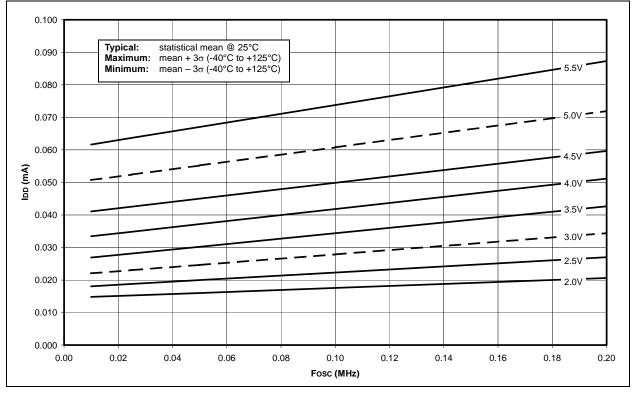
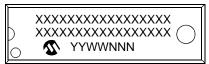

Q Cycle	Activity.			
	Q1	Q2	Q3	Q4
	Decode	No	No	No
		operation	operation	operation
	No	No	No	No
	operation	operation	operation	operation
		(Read		(Write to
		TABLAT)		Holding
				Register)
<u>Example</u>	<u>e 1</u> : :	TBLWT *+;		
Befo	ore Instructio	n		
	TABLAT	=	0/10/0	
	TBLPTR HOLDING RE	= GISTER	0x00A356	
	(0x00A356)	=	0xFF	
Afte	r Instructions	s (table write	completion)	1
	TABLAT	=		
	TBLPTR HOLDING RE		0x00A357	
	(0x00A356)	=	0x55	
Example	<u>2</u> :	TBLWT +*;		
Bef	ore Instructio	n		
Bolt	TABLAT	=	0x34	
	TBLPTR	=	0x01389A	
	HOLDING RE (0x01389A)	EGISTER =	0xFF	
	HOLDING RE		UXEE	
	(0x01389B)	=	0xFF	
Afte	r Instruction	(table write	completion)	
	TABLAT	=		
	TBLPTR HOLDING RE	= GISTER	0x01389B	
	(0x01389A)	=	0xFF	
	HOLDING RE (0x01389B)	EGISTER	0x34	
	(0.010000)	-	0704	

TABLE 22-8:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2			μS	
31	Twdt	Watchdog Timer Time-out Period (No postscaler)	3.48	4.00	4.71	ms	
32	Tost	Oscillation Start-up Timer Period	1024 Tosc	_	1024 Tosc	_	Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	—	65.5	132	ms	
34	Tıoz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	2	—	μS	
35	TBOR	Brown-out Reset Pulse Width	200	_	—	μS	$VDD \le BVDD$ (see D005)
36	TIVRST	Time for Internal Reference Voltage to become stable	—	20	50	μS	
37	Tlvd	Low-Voltage Detect Pulse Width	200	_	_	μS	$VDD \leq VLVD$


FIGURE 22-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS



24.0 PACKAGING INFORMATION

24.1 Package Marking Information

18-Lead PDIP

18-Lead SOIC

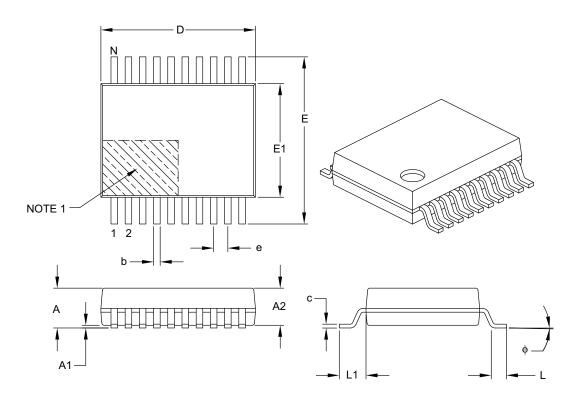
20-Lead SSOP

28-Lead QFN

Example

Example

Example


Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

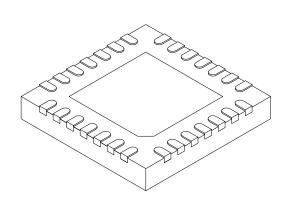
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS			
Dim	ension Limits	MIN	NOM	MAX		
Number of Pins	N		20			
Pitch	е		0.65 BSC			
Overall Height	А	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	6.90	7.20	7.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	С	0.09	-	0.25		
Foot Angle	φ	0°	4°	8°		
Lead Width	b	0.22	_	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	М	ILLIMETERS	
Dimensio	on Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		0.65 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3		0.20 REF	
Overall Width	E		6.00 BSC	
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20
Terminal Width	b	0.23	0.30	0.35
Terminal Length	L	0.50	0.55	0.70
Terminal-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2