

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f1220-h-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7.1 OSCILLATOR CONTROL REGISTER

The OSCCON register (Register 2-2) controls several aspects of the system clock's operation, both in full-power operation and in power managed modes.

The System Clock Select bits, SCS1:SCS0, select the clock source that is used when the device is operating in power managed modes. The available clock sources are the primary clock (defined in Configuration Register 1H), the secondary clock (Timer1 oscillator) and the internal oscillator block. The clock selection has no effect until a SLEEP instruction is executed and the device enters a power managed mode of operation. The SCS bits are cleared on all forms of Reset.

The Internal Oscillator Select bits, IRCF2:IRCF0, select the frequency output of the internal oscillator block that is used to drive the system clock. The choices are the INTRC source, the INTOSC source (8 MHz), or one of the six frequencies derived from the INTOSC postscaler (125 kHz to 4 MHz). If the internal oscillator block is supplying the system clock, changing the states of these bits will have an immediate change on the internal oscillator's output.

The OSTS, IOFS and T1RUN bits indicate which clock source is currently providing the system clock. The OSTS indicates that the Oscillator Start-up Timer has timed out and the primary clock is providing the system clock in Primary Clock modes. The IOFS bit indicates when the internal oscillator block has stabilized and is providing the system clock in RC Clock modes or during Two-Speed Start-ups. The T1RUN bit (T1CON<6>) indicates when the Timer1 oscillator is providing the system clock in Secondary Clock modes. In power managed modes, only one of these three bits will be set at any time. If none of these bits are set, the INTRC is providing the system clock, or the internal oscillator block has just started and is not yet stable.

The IDLEN bit controls the selective shutdown of the controller's CPU in power managed modes. The uses of these bits are discussed in more detail in **Section 3.0 "Power Managed Modes"**.

- Note 1: The Timer1 oscillator must be enabled to select the secondary clock source. The Timer1 oscillator is enabled by setting the T1OSCEN bit in the Timer1 Control register (T1CON<3>). If the Timer1 oscillator is not enabled, then any attempt to select a secondary clock source when executing a SLEEP instruction will be ignored.
 - 2: It is recommended that the Timer1 oscillator be operating and stable before executing the SLEEP instruction or a very long delay may occur while the Timer1 oscillator starts.

FIGURE 2-8: PIC18F1220/1320 CLOCK DIAGRAM

				(1)			
R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1	R ⁽¹⁾	R-0/0	R/W-0/0	R/W-0/0
IDLEN		IRCF<2:0>		OSTS	IOFS	SCS	<1:0>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	IDLEN: Idle	Enable bits					
	1 = Idle mod	le enabled; CPI	J core is not cl	ocked in powe	er managed mo	des	
	0 = Run mod	de enabled; CP	U core is clock	ed in Run mo	des, but not Sle	ep mode	
bit 6-4	IRCF<2:0>:	Internal Oscillat	or Frequency	Select bits			
	111 = 8 MHz 110 = 4 MHz		e arives clock c	arectly)			
	101 = 2 MHz	7					
	100 = 1 MHz	2					
	011 = 500 kł	Ηz					
	010 = 250 kł	Hz					
	001 = 125 kł		a drivea alaak	directly			
h # 0	000 = 31 km.	2 (INTRO SOUR					
DIT 3		ator Start-up Time	me-out Status	DII ovoirodu primo	m, aasillatar is r	unning	
	$\perp = Oscillato$	r Start-up Timer	time-out is ru	expired, prima pring: primary	oscillator is not	readv	
hit 2		SC Frequency S		Today			
5112	1 = INTOSC	frequency is st	able				
	0 = INTOSC	frequency is n	ot stable				
bit 1-0	SCS<1:0>: S	System Clock S	elect bits ⁽¹⁾				
	1x = Internal	oscillator block	(RC modes)				
	01 =Timer1 0	oscillator (Seco	ndary modes)				
	00 = Primary	oscillator (Slee	ep and PRI_ID	LE modes)			
Note 1: De	pends on state	of the IESO bit	t in Configurati	on Register 1H	ł.		

REGISTER 2-2: OSCCON: OSCILLATOR CONTROL REGISTER

3.4.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer and the primary clock is shut down. When using the INTRC source, this mode provides the best power conservation of all the Run modes, while still executing code. It works well for user applications which are not highly timing sensitive, or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block (either of the INTIO1 or INTIO2 oscillators), there are no distinguishable differences between PRI_RUN and RC_RUN modes during execution. However, a clock switch delay will occur during entry to and exit from RC_RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC_RUN mode is not recommended.

This mode is entered by clearing the IDLEN bit, setting SCS1 (SCS0 is ignored) and executing a SLEEP instruction. The IRCF bits may select the clock frequency before the SLEEP instruction is executed. When the clock source is switched to the INTOSC multiplexer (see Figure 3-10), the primary oscillator is shut down and the OSTS bit is cleared.

The IRCF bits may be modified at any time to immediately change the system clock speed. Executing a SLEEP instruction is not required to select a new clock frequency from the INTOSC multiplexer. Note: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/Fosc specifications are violated.

If the IRCF bits are all clear, the INTOSC output is not enabled and the IOFS bit will remain clear; there will be no indication of the current clock source. The INTRC source is providing the system clocks.

If the IRCF bits are changed from all clear (thus, enabling the INTOSC output), the IOFS bit becomes set after the INTOSC output becomes stable. Clocks to the system continue while the INTOSC source stabilizes, in approximately 1 ms.

If the IRCF bits were previously at a non-zero value before the SLEEP instruction was executed and the INTOSC source was already stable, the IOFS bit will remain set.

When a wake event occurs, the system continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 3-8). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the system clock. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

FIGURE 3-10: TIMING TRANSITION TO RC_RUN MODE

15.0 ENHANCED CAPTURE/ COMPARE/PWM (ECCP) MODULE

The Enhanced CCP module is implemented as a standard CCP module with Enhanced PWM capabilities. These capabilities allow for two or four output channels, user-selectable polarity, dead-band control and automatic shutdown and restart and are discussed in detail in **Section 15.5 "Enhanced PWM Mode"**.

The control register for CCP1 is shown in Register 15-1.

In addition to the expanded functions of the CCP1CON register, the ECCP module has two additional registers associated with Enhanced PWM operation and auto-shutdown features:

- PWM1CON
- ECCPAS

REGISTER 15-1: CCP1CON REGISTER FOR ENHANCED CCP OPERATION

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	P1M<1:0>: PWM Output Configuration bits							
	I <u>f CCP1M<3:2> = 00, 01, 10:</u>							
	xx = P1A assigned as Capture/Compare input; P1B, P1C, P1D assigned as port pins							
	<u>If CCP1M<3:2> = 11:</u>							
	00 = Single output; P1A modulated; P1B, P1C, P1D assigned as port pins							
	01 = Full-bridge output forward; P1D modulated; P1A active; P1B, P1C inactive							
	10 = Half-bridge output; P1A, P1B modulated with dead-band control; P1C, P1D assigned as							
	port pins							
	11 = Full-bridge output reverse; P1B modulated; P1C active; P1A, P1D inactive							
bit 5-4	DC1B<1:0>: PWM Duty Cycle Least Significant bits							
	Capture mode:							
	Unused.							
	Compare mode:							
	Unused.							
	PWM mode:							
	These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.							
bit 3-0	CCP1M<3:0>: ECCP1 Mode Select bits							
	0000 = Capture/Compare/PWM off (resets ECCP module)							
	0001 = Unused (reserved)							
	0010 = Compare mode, toggle output on match (ECCP1IF bit is set)							
	0011 = Unused (reserved)							
	0100 = Capture mode, every falling edge							
	0101 = Capture mode, every rising edge							
	0110 = Capture mode, every 4th rising edge							
	0111 = Capture mode, every 16th rising edge							
	1000 = Compare mode, set output on match (ECCP1IF bit is set)							
	1001 = Compare mode, clear output on match (ECCP1IF bit is set)							
	1010 = Compare mode, generate software interrupt on match (ECCP1IF bit is set,							
	ECCP1 pin returns to port pin operation)							
	1011 = Compare mode, trigger special event (ECCP1IF bit is set; ECCP resets TMR1 or							
	I MR3 and starts an A/D conversion if the A/D module is enabled)							
	1100 = PWW mode; PTA, PTC active high; PTB, PTD active high							
	1110 = PWW mode, PTA, PTC active low: PTB, PTD active low							
	1111 - DW/M mode, F1A, F1C active-low, F1D, F1D active-lingit							
	TTTT - F VIVI HIDDE, F IA, F IC ACTIVE-IOW, F ID, F ID ACTIVE-IOW							

FIGURE 15-9: EXAMPLE OF FULL-BRIDGE APPLICATION

15.5.5.1 Direction Change in Full-Bridge Mode

In the Full-Bridge Output mode, the P1M1 bit in the CCP1CON register allows the user to control the Forward/Reverse direction. When the application firmware changes this direction control bit, the module will assume the new direction on the next PWM cycle.

Just before the end of the current PWM period, the modulated outputs (P1B and P1D) are placed in their inactive state, while the unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction. This occurs in a time interval of (4 Tosc * (Timer2 Prescale Value) before the next PWM period begins. The Timer2 prescaler will be either 1,4 or 16, depending on the value of the T2CKPS bit (T2CON<1:0>). During the interval from the switch of the unmodulated outputs to the beginning of the next period, the modulated outputs (P1B and P1D) remain inactive. This relationship is shown in Figure 15-10.

Note that in the Full-Bridge Output mode, the ECCP module does not provide any dead-band delay. In general, since only one output is modulated at all times, dead-band delay is not required. However, there is a situation where a dead-band delay might be required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.

Figure 15-11 shows an example where the PWM direction changes from forward to reverse, at a near 100% duty cycle. At time t1, the output P1A and P1D become inactive, while output P1C becomes active. In this example, since the turn-off time of the power devices is longer than the turn-on time, a shoot-through current may flow through power devices QC and QD (see Figure 15-9) for the duration of 't'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, one of the following requirements must be met:

- 1. Reduce PWM for a PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

SPEN Rx9 SREN CREN ADDEN FERR OERR Rx9D bit 7 bit 0 bit 0 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is u	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-x
bit 7 Database Database Database Database bit 7 Database Database Database Database Database a Bit is unchanged x = Bit is unchanged	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared bit 7 SPEN: Serial Port Enable bit 1 = Serial port disabled (configures RX/DT and TX/CK pins as serial port pins) 0 = Serial port disabled (held in Reset) bit 6 RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Serial port disabled it 0 = Serial port disable dist Asynchronous mode: Don't care. Synchronous mode: Don't care. Synchronous mode: 0 = Disables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode: 1 = Enables receiver 0 = Disables receiver 0 = Disables receiver 0 = Disables receiver 1 = Enables receiver 0 = Disables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive 1 = Enables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mo	bit 7	10.00	ONLIN	ONLEN	, IBBEIN	. 2.00	oLint	bit 0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared bit 7 SPEN: Serial Port Enable bit 1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins) 0 = Serial port disabled (held in Reset) bit 6 RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception 0 = Disables single receive Don't care. Synchronous mode: Don't care. Synchronous mode - Slave: Don't care. bit 4 CREN: Continuous receive tenable bit Asynchronous mode: 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables addrese detection, all bytes								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared bit 7 SPEN: Serial Port Enable bit 1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins) 0 = Serial port disabled (held in Reset) bit 6 RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception 0 = Selects 8-bit reception 0 = Selects 8-bit reception 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode: Don't care. Synchronous mode: Don't care. Synchronous mode: 1 = Enables single receive 0 = Disables receiver 0 = Disables receiver 0 = Disables receiver 0 = Disables receiver 1 = Enables receiver 0 = Disables receiver 0 = Disables receiver 0 = Disables receiver 1 = Enables sontinuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, generates RCIF interrupt and loads RC	Legend:							
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared bit 7 SPEN: Serial Port Enable bit 1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins) 0 = Serial port disabled (held in Reset) bit 6 RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception 0 = Selects 8-bit reception bit 5 SREN: Single Receive Enable bit Asynchronous mode: Don't care. Synchronous mode - Master: 1 = Enables single receive 0 = Disables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode: 1 = Enables receiver 0 = Disables receiver Don't care. Don't care. bit 4 CREN: Continuous Receive Enable bit Asynchronous mode: 1 = Enables continuous receive 1 = Enables continuous receive Single scottinuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and nininth bit	R = Readable b	oit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
11 = Bit is set '0' = Bit is cleared bit 7 SPEN: Serial Port Enable bit 1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins) 0 0 = Serial port disabled (held in Reset) bit 6 bit 6 RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 0 = Selects 9-bit reception 0 0 = Selects 9-bit reception 0 bit 5 SREN: Single Receive Enable bit Asynchronous mode - Master: 1 1 = Enables single receive 0 0 = Disables single receive 0 1 = Enables single receive 0 1 = Diables single receive 0 1 = Enables single receive 0 2 = Disables receiver 0 3 (ADEN: Address Detect Enable bit Asynchronous mode: 1 = Enables continuous receive 0 bit 3 ADDEN: Address Detect Enable bit Async	u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
bit 7 SPEN: Serial Port Enable bit 1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins) 0 = Serial port disabled (held in Reset) bit 6 RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception 1 = Enables single Receive Enable bit Asynchronous mode – Master: 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode – Slave: Don't care. bit 4 CREN: Continuous Receive Enable bit Asynchronous mode: 1 = Enables receiver 0 = Disables receiver Synchronous mode: 1 = Enables receiver Synchronous mode: 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 8-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 1): 1 = Enables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun Error bit 1 = Overrun Error bit 1 = Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN)	'1' = Bit is set		'0' = Bit is clea	ared				
bit 7 SPEN: Serial Port Enable bit 1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins) 0 = Serial port disabled (held in Reset) bit 6 RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception 0 = Selects 8-bit reception 0 = Selects 8-bit reception bit 5 SREN: Single Receive Enable bit Asynchronous mode: Don't care. Synchronous mode - Master: 1 = Enables single receive 0 = Disables single receive 0 = Disables single receive Don't care. Synchronous mode: Synchronous mode: 1 = Enables receiver Don't care. Synchronous mode: Don't care. Synchronous mode: Don't care. Synchronous mode: 1 = Enables receiver 0 = Disables single receive 0 = Disables single receive Synchronous mode: 1 = Enables receiver 0 = Disables receiver 0 = Disables receiver Synchronous mode: 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive until enable bit, CREN, is cleared when RX9D is set								
1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins) 0 = Serial port disabled (held in Reset) bit 6 RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception bit 5 SREN: Single Receive Enable bit Asynchronous mode: Don't care. Synchronous mode – Master: 1 = Enables single receive This bit is cleared after reception is complete. Synchronous mode: 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode: 1 = Enables continuous Receive Enable bit Asynchronous mode: 1 = Enables continuous receive Don't care. Synchronous mode: 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care.	bit 7	SPEN: Serial	Port Enable bi	t				
 bit 6 RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception bit 5 SREN: Single Receive Enable bit Asynchronous mode: Don't care. Synchronous mode – Master: 1 = Enables single receive 0 = Disables single receive 0 = Disables single receive Distoles continuous mode: Don't care. Synchronous mode – Master: 1 = Enables single receive 0 = Disables single receive T = Enables single receive Disables single receive Don't care. bit 4 CREN: Continuous Receive Enable bit Asynchronous mode: 1 = Enables receiver 0 = Disables receiver 0 = Disables receiver 0 = Disables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error 1 = Framing error 1 = Framing error 0 = No framing error 0 = No framing error 0 =		1 = Serial por	rt enabled (con	figures RX/D	T and TX/CK p	ins as serial por	t pins)	
bit 6 RX9: 9-bit Receive Enable bit 1 = Selects 8-bit reception bit 5 SREN: Single Receive Enable bit Asynchronous mode: Don't care. Synchronous mode — Master: 1 1 = Enables single receive 0 0 = Disables single receive 0 0 = Disables single receive 0 0 = Disables single receive 0 Don't care. Synchronous mode - Slave: Don't care. Synchronous mode: 1 = Enables receiver 1 Don't care. Synchronous mode: 1 = Enables receiver 1 0 = Disables receiver 1 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables receiver Synchronous mode: 1 = Enables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR:		0 = Serial por	rt disabled (hel	d in Reset)				
 1 = Selects 9-bit reception 0 = Selects 8-bit reception bit 5 SREN: Single Receive Enable bit Asynchronous mode - Master; 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - Slave; Don't care. Synchronous mode - Slave; Don't care. bit 4 CREN: Continuous Receive Enable bit Asynchronous mode: 1 = Enables receiver Synchronous mode: 1 = Enables receiver Synchronous mode: 1 = Enables receiver Synchronous mode: 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OFRR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN) 	bit 6	RX9: 9-bit Re	ceive Enable b	it				
bit 5 SREN: Single Receive Enable bit Asynchronous mode – Master: 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode – Slave: Don't care. Synchronous mode – Slave: Don't care. Synchronous mode – Slave: Don't care. bit 4 CREN: Continuous Receive Enable bit Asynchronous mode: 1 = Enables receiver 0 = Disables receiver 0 = Disables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error 0 = No framing error bit 1 OVerrun Error bit 1 = Overrun Error bit 1 = Overrun		1 = Selects 9 0 = Selects 8	-bit reception					
 bit 0 bit 1 bit 1 bit 1 bit 1 bit 1 bit 0 bit 1 bit 1 bit 1 bit 1 bit 1 bit 2 complete composition complete complete complete complete complete complete complete complete complete <licomplete< li=""> complete<td>bit 5</td><td>SREN: Single</td><td>Receive Enab</td><td>le hit</td><td></td><td></td><td></td><td></td></licomplete<>	bit 5	SREN: Single	Receive Enab	le hit				
Don't care. Synchronous mode – Master: 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode – Slave: Don't care. bit 4 CREN: Continuous Receive Enable bit Asynchronous mode: 1 = Enables receiver 0 = Disables receiver Synchronous mode: 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables receiver Synchronous mode: 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive until enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN)		Asynchronous	s mode:					
Synchronous mode – Master: 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode – Slave: Don't care. bit 4 CREN: Continuous Receive Enable bit Asynchronous mode: 1 = Enables receiver 0 = Disables receiver 0 = Disables receiver 0 = Disables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN)		Don't care.						
 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - Slave: Don't care. bit 4 CREN: Continuous Receive Enable bit Asynchronous mode: 1 = Enables receiver 0 = Disables receiver 2 = Enables receiver 3 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0):		Synchronous	mode – Maste	<u>r:</u>				
bit is cleared after reception is complete. Synchronous mode – Slave: Don't care. bit 4 CREN: Continuous Receive Enable bit Asynchronous mode: 1 = Enables receiver 0 = Disables receiver Synchronous mode: 1 = Enables receiver Synchronous mode: 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN)		1 = Enables	single receive					
Synchronous mode – Slave: Don't care. bit 4 CREN: Continuous Receive Enable bit Asynchronous mode: 1 = Enables receiver 0 = Disables receiver bit 3 Abdex bit 4 CREN: Continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN)		This bit is clea	ared after receive	otion is compl	ete.			
bit 4 CREN: Continuous Receive Enable bit Asynchronous mode: 1 = Enables receiver 0 = Disables receiver Synchronous mode: 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN)		Synchronous	mode – Slave:					
bit 4 CREN: Continuous Receive Enable bit Asynchronous mode: 1 = Enables receiver 0 = Disables receiver Synchronous mode: 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN)		Don't care.						
Asynchronous mode: 1 = Enables receiver 0 = Disables receiver Synchronous mode: 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN)	bit 4	CREN: Contin	nuous Receive	Enable bit				
 bit 3 bit 3 bit 3 bit 3 bit 3 bit 4 bit 5 bit 5 bit 6 bit 6 bit 7 bit 8 bit 9 continuous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 bit 2 cont care. bit 1 cont care. bit 2 cont care. bit 1 cont care. bit 2 cont care. bit 2 cont care. bit 1 cont care. bit 1 cont care. cont care. bit 2 cont care. bit 3 cont care. bit 4 cont care. <licon< td=""><td></td><td>Asynchronous</td><td><u>s mode:</u></td><td></td><td></td><td></td><td></td><td></td></licon<>		Asynchronous	<u>s mode:</u>					
Synchronous mode: 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN)		1 = Disables	receiver					
 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN) 		Synchronous	mode:					
 bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN) 		1 = Enables of	continuous rec	eive until enal	ble bit, CREN,	is cleared (CRE	N overrides SF	REN)
bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN)		0 = Disables	continuous rec	eive				
 Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN) 	bit 3	ADDEN: Add	ress Detect En	able bit				
 bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN) 		1 = Enables a	address detect	$\overline{X9} = 1$:	s RCIF interrur	ot and loads RCI	REG when RX	9D is set
Asynchronous mode 8-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN)		0 = Disables	address detect	tion, all bytes	are received a	nd ninth bit can	be used as par	rity bit
bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN)		Asynchronous	<u>s mode 8-bit (R</u>	X9 = 0):				
bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN)		Don't care.						
 bit 1 DERR: Overrun Error bit 1 = Overrun error (can be updated by reading RCREG register and receiving next valid byte) 	bit 2	FERR: Framir	ng Error bit					
bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN)		1 = Framing 0 0 = No fram	error (can be u ning error	pdated by rea	iding RCREG i	register and rece	eiving next vali	d byte)
1 = Overrun error (can be cleared by clearing bit CREN)	bit 1	OERR: Overr	un Error bit					
0 = No overrup error		1 = Overrun e 0 = No overru	error (can be c un error	eared by clea	aring bit CREN)		
bit 0 RX9D: 9th bit of Received Data	bit 0	RX9D: 9th bit	of Received D	ata				
This can be address/data bit or a parity bit and must be calculated by user firmware.		This can be a	ddress/data bit	or a parity bit	t and must be o	calculated by us	er firmware.	

REGISTER 16-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	—	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	-000 -000	-000 -000
PIE1	—	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	-000 -000	-000 -000
IPR1	—	ADIP	RCIP	TXIP	_	CCP1IP	TMR2IP	TMR1IP	-111 -111	-111 -111
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	x000 000x
RCREG	EUSART R	eceive Regis	ter						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
BAUDCTL	—	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	-1-1 0-00	-1-1 0-00
SPBRGH	Baud Rate Generator Register High Byte								0000 0000	0000 0000
SPBRG	Baud Rate Generator Register Low Byte								0000 0000	0000 0000

TABLE 16-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

U-0	U-0	U-0	U-0	U-0	U-0	R/C-1	R/C-1
	—	—	—	—	—	CP1	CP0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	C = Clearable	e bit		
bit 7-2	Unimplemen	ted: Read as '	0'				
bit 1	CP1: Code P	rotection bit (P	C18F1320)				
	1 = Block 1 (0)	01000-001FFF	h) not code-p	protected			
	0 = Block 1(0)	01000-001FFF	h) code-prote	ected			
bit 0	CP0: Code P	rotection bit (P	C18F1320)				
1 = Block 0 (00200-000FFFh) not code-protected							
	0 = Block 0 (00200-000 FFh) code-protected						
bit 1 CP1: Code Protection bit (PIC18F1220)							
1 = Block 1 (000800-000FFFh) not code-protected							
0 = Block 1 (UUU8UU-UUUFFFn) code-protected							
bit 0	CP0: Code P	rotection bit (P	C18F1220)				
	1 = Block 0 (0))00200-0007FF	h) not code-p	orotected			

REGISTER 19-6: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)

_		(F F	
0 =	Block 0	(000200-0007FFh) code-protected	

REGISTER 19-7: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
CPD	CPB	—	—	—	—	—	_
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit

bit 7	CPD: Data EEPROM Code Protection bit
	 1 = Data EEPROM not code-protected 0 = Data EEPROM code-protected
bit 6	CPB: Boot Block Code Protection bit
	 1 = Boot Block (000000-0001FFh) not code-protected 0 = Boot Block (000000-0001FFh) code-protected
bit 5-0	Unimplemented: Read as '0'

TABLE 20-1: OPCODE FIELD DESCRIPTIONS

Field	Description
a	RAM access bit
	a = 0: RAM location in Access RAM (BSR register is ignored)
	a = 1: RAM bank is specified by BSR register
bbb	Bit address within an 8-bit file register (0 to 7).
BSR	Bank Select Register. Used to select the current RAM bank.
d	Destination select bit
	d = 0: store result in WREG
	d = 1: store result in the register f
dest	Destination either the WREG register or the specified register file location.
Í	8-bit register file address (0x00 to 0xFF).
fs	12-bit register file address (0x000 to 0xFFF). This is the source address.
fd	12-bit register file address (0x000 to 0xFFF). This is the destination address.
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).
label	Label name.
mm	The mode of the TBLPTR register for the table read and table write instructions.
	Only used with table read and table write instructions.
*	No change to register (such as TBLPTR with table reads and writes)
*+	Post-Increment register (such as TBLPTR with table reads and writes)
* -	Prost-Decrement register (such as TBLPTR with table reads and writes)
+*	The relative address (2's semiclament number) for relative branch instructions, or the direct address for
n	call/branch and return instructions.
PRODH	Product of Multiply High Byte.
PRODI	Product of Multiply Low Byte
s	Fast Call/Return mode select bit
2	s = 0: do not update into/from shadow registers
	s = 1: certain registers loaded into/from shadow registers (Fast mode)
u	Unused or unchanged.
WREG	Working register (accumulator).
x	Don't care ('0' or '1').
	The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all
	Microchip software tools.
TBLPTR	21-bit Table Pointer (points to a program memory location).
TABLAT	8-bit Table Latch.
TOS	Top-of-Stack.
PC	Program Counter.
PCL	Program Counter Low Byte.
PCH	Program Counter High Byte.
PCLATH	Program Counter High Byte Latch.
PCLATU	Program Counter Upper Byte Latch.
GIE	Global Interrupt Enable bit.
WDT	Watchdog Timer.
ТО	Time-out bit.
PD	Power-down bit.
C, DC, Z, OV, N	ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.
[]	Optional.
()	Contents.
\rightarrow	Assigned to.
< >	Register bit field.
E	In the set of.
italics	User defined term (font is Courier).

ΒZ		Branch if	Zero		CAL	L	Subroutin	ne Call			
Synt	ax:	[label] B	Zn		Synt	ax:	[label] (CALL k [,s]			
Opei	rands:	-128 ≤ n ≤	127		Ope	rands:	$0 \le k \le 10$	48575			
Ope	ration:	if Zero bit (PC) + 2 +	is '1' · 2n → PC		Ope	ration:	s ∈ [0,1] (PC) + 4 -	→ TOS,			
Status Affected: Encoding: Description:		None 1110 0000 nnnn nnnn If the Zero bit is '1', then the program will branch.					$k \rightarrow PC < 2$ if s = 1 (W) \rightarrow WS (Status) $-$ (BSR) \rightarrow	20:1>, S, > STATUSS, BSRS			
		added to the added	he PC. Since mented to fe , the new ad n. This instru-	the PC will etch the next dress will be action is then	Statu Enco 1st v 2nd	us Affected: oding: vord (k<7:0> word(k<19:8 printion:	None	110s k_7k $k_{19}kkk$ kkl	kk kkkk ₀ kk kkkk ₈		
Word	ds:	1			Dest		memory ra	eturn			
Cvcl	es:	1(2)					address (I	PC + 4) is pu	shed onto		
Q C If Ju	ycle Activity:							Status and BSR registers are also pushed into their respective			
	, Q1	Q2	Q3	Q4			shadow re	gisters, WS,	STATUSS		
	Decode	Read literal 'n'	Process Data	Write to PC			and BSRS occurs (de	6. If 's' = 0, n efault). Then,	o update the 20-bit		
	No	No	No	No			CALL is a	2-cvcle instr	PC<20:1>. uction.		
If No	operation	operation	operation	operation	Word	ds:	2	,			
	Q1	Q2	Q3	Q4	Cvcl	es:	2				
	Decode	Read literal 'n'	Process Data	No operation	QC	ycle Activity:	- 02	03	04		
<u>Exar</u>	<u>nple</u> : Before Instru	HERE	BZ Jump			Decode	Read literal 'k'<7:0>,	Push PC to stack	Read literal 'k'<19:8>, Write to PC		
	PC	= ad	dress (HERE)		No	No	No	No		
	After Instruc	tion				operation	operation	operation	operation		
	If Zero PC If Zero PC	= 1; = add = 0; = add	dress (Jump) dress (HERE	+ 2)	<u>Exar</u>	n <u>ple</u> : Before Instru	HERE	CALL THE	RE, FAST		
						PC After Instruct	= address	6 (HERE)			
						After Instruct	tion				

on			
=	address	(THERE)	
=	address	(HERE +	4)
=	W		
=	BSR		
=	Status		
	on = = = =	on = address = address = W = BSR = Status	on = address (THERE) = address (HERE + = W = BSR = Status

GOT	GOTO Unconditional Branch					
Synt	ax:	[label]	GOTO	k		
Ope	rands:	$0 \le k \le 10$	048575			
Ope	ration:	$k \rightarrow PC < 20:1 >$				
Statu	us Affected:	None				
Enco 1st v 2nd	oding: vord (k<7:0>) word(k<19:8>)	1110 1111	1111 k ₁₉ kkk	k ₇ kl kkk	kk :k	kkkk ₀ kkkk ₈
Description: GOTO allows an unconditional branch anywhere within the entir 2-Mbyte memory range. The 20- value 'k' is loaded into PC<20:1> GOTO is always a 2-cycle instruction.					e entire e 20-bit 20:1>.	
Word	ds:	2				
Cycl	es:	2				
QC	cycle Activity:					
	Q1	Q2	Q	3		Q4
	Decode	Read literal 'k'<7:0>,	Nc opera) tion	Rea 'k' Wri	ad literal <19:8>, te to PC
	No operation	No operation	No opera) tion	ор	No eration

Example: GOTO THERE

After Instruction

PC = Address (THERE)

INCF	Incremen	t f		
Syntax:	[label]	NCF f[,	,d [,a]]	
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5		
Operation:	(f) + 1 \rightarrow c	lest		
Status Affected:	C, DC, N,	OV, Z		
Encoding:	0010	10da	ffff	ffff
	is placed in is placed b (default). I Bank will b the BSR v bank will b BSR value	n W. If 'd' back in reg f 'a' is '0', be selecte alue. If 'a' be selected a (default).	is '1', tl gister 'f the Ac d, over = 1, th d as pe	he result cess riding hen the er the
Words:	1	(,-	-	
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Process Data	s V de	Vrite to stination
Example:	INCF	CNT		
Before Instru	uction			
CNT Z C DC	= 0xFF = 0 = ? = ?			
After Instruc CNT Z C DC	tion = 0x00 = 1 = 1 = 1			

SUB	LW	Sul	Subtract W from literal				
Synt	ax:	[<i>la</i> .	bel] S	SUBLW	k		
Ope	rands:	0 ≤	k ≤ 25	55			
Ope	ration:	k –	(W) –	→ W			
Statu	us Affected:	N, (DV, C	DC, Z			
Enco	oding:	0	000	1000	kkk	k	kkkk
Desc	cription:	W i liter in V	W is subtracted from the 8-bit literal 'k'. The result is placed in W.				
Word	ds:	1					
Cycl	es:	1					
QC	ycle Activity:						
i	Q1	Q	2	Q3			Q4
	Decode	Re: litera	ad ıl 'k'	Proce Data	SS A	W	rite to W
<u>Exar</u>	<u>mple 1:</u>	SUE	LW ()x02			
	Before Instru	iction					
	W C	= 1 = ?					
	After Instruct W C Z N	tion = 1 = 1 = 0 = 0	; re	esult is po	ositive)	
Exar	<u>nple 2</u> :	SUE	LW C	x02			
	Before Instru W C	iction = 2 = ?					
	After Instruct	tion					
	W C Z N	= 0 = 1 = 1 = 0	; re	esult is ze	ero		
Exar	<u>mple 3</u> :	SUE	LW (x02			
	Before Instru	iction					
	W C	= 3 = ?					
	After Instruct	ion					
	W C Z N	= F = 0 = 0 = 1	F ; (2 ; re	2's compl esult is ne	emen egativ	t) e	

SUBWF	Sub	Subtract W from f				
Syntax:	[lab	e/] S	SUBWF f[,	d [,a]]		
Operands:	0 ≤ f d ∈ [a ∈ [$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				
Operation:	(f) —	(W) -	\rightarrow dest			
Status Affected:	N, O	N, OV, C, DC, Z				
Encoding:	01	01	11da ffi	f ffff		
Description:	Subt comp the r '1', th regis Acce over '1', th as po	Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).				
Words:	1			. ,		
Cycles:	1					
Q Cycle Activity:						
Q1	Q2		Q3	Q4		
Decode	Rea registe	d r'f'	Process Data	Write to destination		
Example 1:	SUBW	FRE	G			
Before Instru REG W C After Instruct REG W C Z	$\begin{array}{rcl} \text{iction} \\ &=& 3 \\ &=& 2 \\ &=& ? \\ \text{ition} \\ &=& 1 \\ &=& 2 \\ &=& 1 \\ &=& 0 \\ &=& 0 \end{array}$; re	esult is positive	•		
Example 2:	SUBW	FRE	G, W			
$\frac{\text{Example 2}:}{\text{Before Instruction}}$ $\begin{array}{rcl} \text{REG} &= & 2 \\ \text{W} &= & 2 \\ \text{C} &= & ? \\ \text{After Instruction} \\ \text{REG} &= & 2 \\ \text{W} &= & 0 \end{array}$						
Z N	= 1 = 0					
Example 3:	SUBW	FRE	G			
Before Instru	iction	~ /				
REG W C After Instruct	= 0x = 0x = ?	01 02				
REG W C Z N	= 0x = 0x = 0x = 0x = 0x	FFh 02 00 00 00 01	;(2's complem ;result is nega	ent) tive		

TBLRD	Table Read
Syntax:	[<i>label</i>] TBLRD (*; *+; *-; +*)
Operands:	None
Operation:	if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT; TBLPTR – No Change; if TBLRD *+, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) + 1 \rightarrow TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) – 1 \rightarrow TBLPTR; if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR; (Prog Mem (TBLPTR)) \rightarrow TABLAT;
Status Affected:	None

Encoding:	0000	0000	0000	10nn nn = 0* = 1*+ = 2*- = 3+*			
Description:	This instruction is used to read the contents of Program Memory (P.M. address the program memory, a po called Table Pointer (TBLPTR) is u The TBLPTR (a 21-bit pointer) po to each byte in the program memor TBLPTR has a 2-Mbyte address range. TBLPTR[0] = 0:Least Significa Byte of Progra Memory Word TBLPTR[0] = 1:Most Significar						
Words:	The TBI value of • no chi • post-ii • post-c • pre-in 1	ARD instru TBLPTF ange ncremen decremen crement	t t	modify the 's:			

Cycles:

Q Cycle Activity:

2

Q1	Q2	Q3	Q4
Decode	No operation	No operation	No operation
No operation	No operation (Read Program Memory)	No operation	No operation (Write TABLAT)

TBLRD Table Read (Continued)

Example 1:	TBLRD '	+ ;	
Before Instruc	tion		
TABLAT TBLPTR MEMORY	(0x00A356)	= = =	0x55 0x00A356 0x34
After Instruction	on		
TABLAT TBLPTR		=	0x34 0x00A357
Example 2:	TBLRD -	+* ;	
Before Instruc	tion		
TABLAT TBLPTR MEMORY MEMORY	(0x01A357) (0x01A358)	= = =	0xAA 0x01A357 0x12 0x34
After Instructio TABLAT TBLPTR	on	=	0x34 0x01A358

22.2 DC Characteristics: Power-Down and Supply Current PIC18F1220/1320 (Industrial) PIC18LF1220/1320 (Industrial) (Continued)

PIC18LF (Indu	1220/1320 strial)	Standa Operati	rd Oper	ating Co erature	onditions (unless -40°C \leq TA	s otherwise states $4 \le +85^{\circ}$ C for indust	l) rial	
PIC18F1: (Indu	Standa Operati	rd Oper	erating Co	onditions (unless -40°C ≤ TA -40°C ≤ TA	s otherwise stated $\leq +85^{\circ}$ C for indust $\leq +125^{\circ}$ C for extended	l) rial nded		
Param No.	Device	Тур.	Max.	Units	Conditions			
	Supply Current (IDD) ^(2,3)							
	PIC18LF1220/1320	415	600	μΑ	-40°C			
		425	600	μA	+25°C	VDD = 2.0V		
		435	600	μA	+85°C			
	PIC18LF1220/1320	0.87	1.0	mA	-40°C			
		0.75	1.0	mA	+25°C	VDD = 3.0V	FOSC = 4 MHz	
		0.75	1.0	mA	+85°C		EC oscillator)	
	All devices	1.6	2.0	mA	-40°C			
		1.6	2.0	mA	+25°C	Vpp = 5.0V		
		1.5	2.0	mA	+85°C	100 - 0.01		
	Extended devices	1.5	2.0	mA	+125°C			
	Extended devices	6.3	9.0	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz	
		9.7	10.0	mA	+125°C	VDD = 5.0V	(PRI_RUN mode, EC oscillator)	
	All devices	9.4	12	mA	-40°C			
		9.5	12	mA	+25°C	VDD = 4.2V		
		9.6	12	mA	+85°C		Fosc = 40 MHz	
	All devices	11.9	15	mA	-40°C		EC oscillator)	
		12.1	15	mA	+25°C	VDD = 5.0V	,	
		12.2	15	mA	+85°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k Ω .

4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

22.2 DC Characteristics: Power-Down and Supply Current PIC18F1220/1320 (Industrial) PIC18LF1220/1320 (Industrial) (Continued)

PIC18LF1220/1320 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F1220/1320 (Industrial, Extended)									
Param No.	Device	Тур.	Max.	Units	Conditions				
D022 (∆IWDT)	Watchdog Timer	1.5	4.0	μΑ	-40°C				
		2.2	4.0	μΑ	+25°C	VDD = 2.0V			
		3.1	5.0	μΑ	+85°C				
		2.5	6.0	μΑ	-40°C				
		3.3	6.0	μΑ	+25°C	VDD = 3.0V			
		4.7	7.0	μΑ	+85°C				
		3.7	10.0	μΑ	-40°C				
		4.5	10.0	μΑ	+25°C	VDD = 5.0V			
		6.1	13.0	μΑ	+85°C				
D022A	Brown-out Reset	19	35.0	μA	-40°C to +85°C	VDD = 3.0V			
$(\Delta IBOR)$		24	45.0	μΑ	-40°C to +85°C	VDD = 5.0V			
D022B	Low-Voltage Detect	8.5	25.0	μΑ	-40°C to +85°C	VDD = 2.0V			
(ΔILVD)		16	35.0	μΑ	-40°C to +85°C	VDD = 3.0V			
		20	45.0	μΑ	-40°C to +85°C	VDD = 5.0V			
D025	Timer1 Oscillator	1.7	3.5	μΑ	-40°C		32 kHz on Timer1 ⁽⁴⁾		
(∆IOSCB)		1.8	3.5	μΑ	+25°C	VDD = 2.0V			
		2.1	4.5	μΑ	+85°C				
		2.2	4.5	μΑ	-40°C				
		2.6	4.5	μΑ	+25°C	VDD = 3.0V	32 kHz on Timer1 ⁽⁴⁾		
		2.8	5.5	μΑ	+85°C				
		3.0	6.0	μΑ	-40°C				
		3.3	6.0	μA	+25°C	VDD = 5.0V	32 kHz on Timer1 ⁽⁴⁾		
		3.6	7.0	μA	+85°C				
D026 (ΔIAD)	A/D Converter	1.0	3.0	μA	-40°C to +85°C	VDD = 2.0V			
		1.0	4.0	μA	-40°C to +85°C	VDD = 3.0V	A/D on not converting		
		2.0	10.0	μΑ	-40°C to +85°C	VDD = 5.0V	A/D on, not converting		
		1.0	8.0	μΑ	-40°C to +125°C	VDD = 5.0V			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

TABLE 22-7:	CLKO AND I/O TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
10	TosH2ckL	OSC1↑ to CLKO↓		75	200	ns	(Note 1)	
11	TosH2ckH	OSC1↑ to CLKO↑	—	75	200	ns	(Note 1)	
12	TckR	CLKO Rise Time	—	35	100	ns	(Note 1)	
13	TckF	CLKO Fall Time	—	35	100	ns	(Note 1)	
14	TckL2ioV	CLKO↓ to Port Out Valid	—	_	0.5 TCY + 20	ns	(Note 1)	
15	TioV2ckH	Port In Valid before CLKO↑	0.25 Tcy + 25	_	—	ns	(Note 1)	
16	TckH2iol	Port In Hold after CLKO [↑]	0	_	—	ns	(Note 1)	
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port Ou	—	50	150	ns		
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	PIC18F1X20	100	_	—	ns	
18A		Input Invalid (I/O in hold time)	PIC18LF1X20	200	_	—	ns	
19	TioV2osH	Port Input Valid to OSC1↑ (I/O in setup time)		0		—	ns	
20	TioR	Port Output Rise Time	PIC18F1X20	—	10	25	ns	
20A			PIC18LF1X20	—	_	60	ns	
21	TioF	Port Output Fall Time	PIC18F1X20	—	10	25	ns	
21A			PIC18LF1X20	_	_	60	ns	

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

FIGURE 23-15: TYPICAL IPD vs. VDD (+25°C), 125 kHz TO 8 MHz RC_RUN MODE, ALL PERIPHERALS DISABLED

FIGURE 23-16: MAXIMUM IPD vs. VDD (-40°C TO +125°C), 125 kHz TO 8 MHz RC_RUN MODE, ALL PERIPHERALS DISABLED

© 2002-2015 Microchip Technology Inc.

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-051C Sheet 1 of 2

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Micro-chip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support