

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f1220-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Details on Individual Family Members

Devices in the PIC18F1220/1320 family are available in 18-pin, 20-pin and 28-pin packages. A block diagram for this device family is shown in Figure 1-1.

The devices are differentiated from each other only in the amount of on-chip Flash program memory (4 Kbytes for the PIC18F1220 device, 8 Kbytes for the PIC18F1320 device). These and other features are summarized in Table 1-1. A block diagram of the PIC18F1220/1320 device architecture is provided in Figure 1-1. The pinouts for this device family are listed in Table 1-2.

TABLE 1-1:DEVICE FEATURES

Features	PIC18F1220	PIC18F1320
Operating Frequency	DC – 40 MHz	DC – 40 MHz
Program Memory (Bytes)	4096	8192
Program Memory (Instructions)	2048	4096
Data Memory (Bytes)	256	256
Data EEPROM Memory (Bytes)	256	256
Interrupt Sources	15	15
I/O Ports	Ports A, B	Ports A, B
Timers	4	4
Enhanced Capture/Compare/PWM Modules	1	1
Serial Communications	Enhanced USART	Enhanced USART
10-bit Analog-to-Digital Module	7 input channels	7 input channels
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT
Programmable Low-Voltage Detect	Yes	Yes
Programmable Brown-out Reset	Yes	Yes
Instruction Set	75 Instructions	75 Instructions
Packages	18-pin SDIP 18-pin SOIC 20-pin SSOP 28-pin QFN	18-pin SDIP 18-pin SOIC 20-pin SSOP 28-pin QFN

3.0 POWER MANAGED MODES

The PIC18F1220/1320 devices offer a total of six operating modes for more efficient power management (see Table 3-1). These provide a variety of options for selective power conservation in applications where resources may be limited (i.e., battery powered devices).

There are three categories of power managed modes:

- Sleep mode
- Idle modes
- Run modes

These categories define which portions of the device are clocked and sometimes, what speed. The Run and Idle modes may use any of the three available clock sources (primary, secondary or INTOSC multiplexer); the Sleep mode does not use a clock source.

The clock switching feature offered in other PIC18 devices (i.e., using the Timer1 oscillator in place of the primary oscillator) and the Sleep mode offered by all PIC[®] devices (where all system clocks are stopped) are both offered in the PIC18F1220/1320 devices (SEC_RUN and Sleep modes, respectively). However, additional power managed modes are available that allow the user greater flexibility in determining what portions of the device are operating. The power managed modes are event driven; that is, some specific event must occur for the device to enter or (more particularly) exit these operating modes.

For PIC18F1220/1320 devices, the power managed modes are invoked by using the existing SLEEP instruction. All modes exit to PRI_RUN mode when triggered by an interrupt, a Reset or a WDT time-out (PRI_RUN mode is the normal full-power execution mode; the CPU and peripherals are clocked by the primary oscillator source). In addition, power managed Run modes may also exit to Sleep mode, or their corresponding Idle mode.

3.1 Selecting Power Managed Modes

Selecting a power managed mode requires deciding if the CPU is to be clocked or not and selecting a clock source. The IDLEN bit controls CPU clocking, while the SCS1:SCS0 bits select a clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 3-1.

3.1.1 CLOCK SOURCES

The clock source is selected by setting the SCS bits of the OSCCON register (Register 2-2). Three clock sources are available for use in power managed Idle modes: the primary clock (as configured in Configuration Register 1H), the secondary clock (Timer1 oscillator) and the internal oscillator block. The secondary and internal oscillator block sources are available for the power managed modes (PRI_RUN mode is the normal full-power execution mode; the CPU and peripherals are clocked by the primary oscillator source).

	OSCCON Bits		Module	Clocking	
Mode	IDLEN <7>	SCS1:SCS0 <1:0>	CPU Perinherals		Available Clock and Oscillator Source
Sleep	0	00	Off	Off	None – All clocks are disabled
PRI_RUN	0	00	Clocked	Clocked	Primary – LP, XT, HS, HSPLL, RC, EC, INTRC ⁽¹⁾ This is the normal full-power execution mode.
SEC_RUN	0	01	Clocked	Clocked	Secondary – Timer1 Oscillator
RC_RUN	0	1x	Clocked	Clocked	Internal Oscillator Block ⁽¹⁾
PRI_IDLE	1	00	Off	Clocked	Primary – LP, XT, HS, HSPLL, RC, EC
SEC_IDLE	1	01	Off	Clocked	Secondary – Timer1 Oscillator
RC_IDLE	1	1x	Off	Clocked	Internal Oscillator Block ⁽¹⁾

TABLE 3-1: POWER MANAGED MODES

Note 1: Includes INTOSC and INTOSC postscaler, as well as the INTRC source.

3.4.4 EXIT TO IDLE MODE

An exit from a power managed Run mode to its corresponding Idle mode is executed by setting the IDLEN bit and executing a SLEEP instruction. The CPU is halted at the beginning of the instruction following the SLEEP instruction. There are no changes to any of the clock source status bits (OSTS, IOFS or T1RUN). While the CPU is halted, the peripherals continue to be clocked from the previously selected clock source.

3.4.5 EXIT TO SLEEP MODE

An exit from a power managed Run mode to Sleep mode is executed by clearing the IDLEN and SCS1:SCS0 bits and executing a SLEEP instruction. The code is no different than the method used to invoke Sleep mode from the normal operating (full-power) mode.

The primary clock and internal oscillator block are disabled. The INTRC will continue to operate if the WDT is enabled. The Timer1 oscillator will continue to run, if enabled in the T1CON register (Register 12-1). All clock source Status bits are cleared (OSTS, IOFS and T1RUN).

3.5 Wake from Power Managed Modes

An exit from any of the power managed modes is triggered by an interrupt, a Reset or a WDT time-out. This section discusses the triggers that cause exits from power managed modes. The clocking subsystem actions are discussed in each of the power managed modes (see Sections 3.2 through 3.4).

Note:	If application code is timing sensitive, it
	should wait for the OSTS bit to become
	set before continuing. Use the interval
	during the low-power exit sequence
	(before OSTS is set) to perform timing
	insensitive "housekeeping" tasks.

Device behavior during Low-Power mode exits is summarized in Table 3-3.

3.5.1 EXIT BY INTERRUPT

Any of the available interrupt sources can cause the device to exit a power managed mode and resume fullpower operation. To enable this functionality, an interrupt source must be enabled by setting its enable bit in one of the INTCON or PIE registers. The exit sequence is initiated when the corresponding interrupt flag bit is set. On all exits from Low-Power mode by interrupt, code execution branches to the interrupt vector if the GIE/GIEH bit (INTCON<7>) is set. Otherwise, code execution continues or resumes without branching (see Section 9.0 "Interrupts").

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:
TOSU	—	—	—	Top-of-Stack	Upper Byte (FOS<20:16>)			0 0000	34, 40
TOSH	Top-of-Stack	High Byte (TO	DS<15:8>)						0000 0000	34, 40
TOSL	Top-of-Stack	Low Byte (TC)S<7:0>)						0000 0000	34, 40
STKPTR	STKFUL	STKUNF	_	Return Stack	Pointer				00-0 0000	34, 41
PCLATU	_	bit 21 ⁽³⁾ Holding Register for PC<20:16>								34, 42
PCLATH	Holding Regi	ster for PC<1	5:8>						0000 0000	34, 42
PCL	PC Low Byte	e (PC<7:0>)							0000 0000	34, 42
TBLPTRU	_	— bit 21 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)								34, 58
TBLPTRH	Program Mer	gram Memory Table Pointer High Byte (TBLPTR<15:8>)								34, 58
TBLPTRL	Program Mer	mory Table Po	ointer Low Byt	e (TBLPTR<7	':0>)				0000 0000	34, 58
TABLAT	Program Mer	mory Table La	tch						0000 0000	34, 58
PRODH	Product Regi	ister High Byte	Э						xxxx xxxx	34, 68
PRODL	Product Regi	ister Low Byte)						xxxx xxxx	34, 68
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	34, 72
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1	34, 73
INTCON3	INT2IP	INT1IP	-	INT2IE	INT1IE		INT2IF	INT1IF	11-0 0-00	34, 74
INDF0	Uses content	ts of FSR0 to	address data	memory – val	ue of FSR0 n	ot changed (n	ot a physical r	register)	N/A	34, 51
POSTINC0	Uses content	ts of FSR0 to	address data	memory – val	ue of FSR0 p	ost-increment	ed (not a phys	sical register)	N/A	34, 51
POSTDEC0	Uses content	ts of FSR0 to	address data	memory- valu	ue of FSR0 pc	st-decrement	ed (not a phys	sical register)	N/A	34, 51
PREINC0	Uses content	ts of FSR0 to	address data	memory – val	ue of FSR0 p	re-incremente	d (not a physi	cal register)	N/A	34, 51
PLUSW0	Uses content	ts of FSR0 to	address data	memory – val	ue of FSR0 of	fset by W (no	t a physical re	egister)	N/A	34, 51
FSR0H	_	_	_	_	Indirect Data	Memory Add	ress Pointer 0	High	0000	34, 51
FSR0L	Indirect Data	Memory Add	ress Pointer 0	Low Byte	•				xxxx xxxx	34, 51
WREG	Working Reg	ister							xxxx xxxx	34
INDF1	Uses content	ts of FSR1 to	address data	memory – val	ue of FSR1 n	ot changed (n	ot a physical r	register)	N/A	34, 51
POSTINC1	Uses content	ts of FSR1 to	address data	memory – val	ue of FSR1 p	ost-increment	ed (not a phys	sical register)	N/A	34, 51
POSTDEC1	Uses content	ts of FSR1 to a	address data	memory – val	ue of FSR1 po	st-decrement	ed (not a phy	sical register)	N/A	34, 51
PREINC1	Uses content	ts of FSR1 to	address data	memory – val	ue of FSR1 p	re-incremente	d (not a physi	cal register)	N/A	34, 51
PLUSW1	Uses content	ts of FSR1 to	address data	memory – val	ue of FSR1 of	fset by W (no	t a physical re	egister)	N/A	34, 51
FSR1H	_	_	_	_	Indirect Data	Memory Add	ress Pointer 1	High	0000	34, 51
FSR1L	Indirect Data	Memory Add	ress Pointer 1	Low Byte					xxxx xxxx	34, 51
BSR	_	_	_	_	Bank Select	Register			0000	35, 50
INDF2	Uses content	ts of FSR2 to	address data	memory – val	ue of FSR2 n	ot changed (n	ot a physical r	register)	N/A	35, 51
POSTINC2	Uses content	ts of FSR2 to	address data	memory – val	ue of FSR2 p	ost-increment	ed (not a phys	sical register)	N/A	35, 51
POSTDEC2	Uses content	ts of FSR2 to a	address data	memory – val	ue of FSR2 po	st-decrement	ed (not a phy	sical register)	N/A	35, 51
PREINC2	Uses content	ts of FSR2 to	address data	memory – val	ue of FSR2 p	re-incremente	d (not a physi	cal register)	N/A	35, 51
PLUSW2	Uses content	ts of FSR2 to	address data	memory – val	ue of FSR2 of	ifset by W (no	t a physical re	egister)	N/A	35, 51
FSR2H	—	_	—	—	Indirect Data	Memory Add	ress Pointer 2	High	0000	35, 51
FSR2L	Indirect Data	Memory Add	ress Pointer 2	Low Byte					xxxx xxxx	35, 51
STATUS	_	_	_	N	OV	Z	DC	С	x xxxx	35, 53
TMR0H	Timer0 Regis	ster High Byte							0000 0000	35, 97
TMR0L	Timer0 Regis	ster Low Byte							xxxx xxxx	35, 97
T0CON	TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	35, 95
OSCCON	IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0	0000 q000	35, 16
LVDCON	_	—	IVRST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0	00 0101	35, 162
	1								0	25 174
WDTCON	—	_		_			_	SWDTEN	0	35, 174

TABLE 5-2 **REGISTER FILE SUMMARY (PIC18E1220/1320)**

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition**Note**1:RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator mode only and read '0' in11: RAb and associated bits are configured as port pins in RCIO, ECO and in RCIO,

9.1 INTCON Registers

The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0
GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	GIE/GIEH: Global Interrupt Enable bit <u>When IPEN = 0:</u> 1 = Enables all unmasked interrupts 0 = Disables all interrupts <u>When IPEN = 1:</u> 1 = Enables all high priority interrupts 0 = Disables all interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit <u>When IPEN = 0:</u> 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts <u>When IPEN = 1:</u> 1 = Enables all low priority peripheral interrupts 0 = Disables all low priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit 1 = Enables the INTO external interrupt 0 = Disables the INTO external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt
bit 2	TMR0IF: Timer0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed 0 = TMR0 register did not overflow
bit 1	INTOIF: INT0 External Interrupt Flag bit 1 = The INT0 external interrupt occurred (must be cleared in software) 0 = The INT0 external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾ 1 = At least one of the RB<7:4> pins changed state (must be cleared in software) 0 = None of the RB<7:4> pins have changed state
Note 1:	A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared.

11.0 TIMER0 MODULE

The Timer0 module has the following features:

- Software selectable as an 8-bit or 16-bit timer/ counter
- Readable and writable
- Dedicated 8-bit software programmable prescaler
- · Clock source selectable to be external or internal
- Interrupt-on-overflow from FFh to 00h in 8-bit mode and FFFFh to 0000h in 16-bit mode
- Edge select for external clock

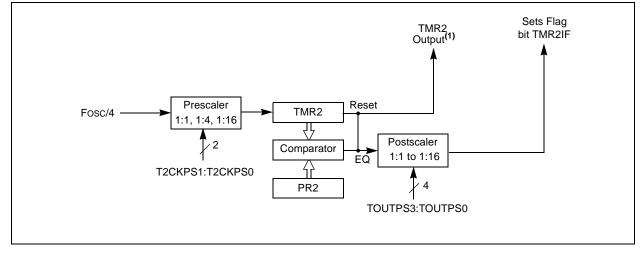
REGISTER 11-1: TOCON: TIMERO CONTROL REGISTER

Figure 11-1 shows a simplified block diagram of the Timer0 module in 8-bit mode and Figure 11-2 shows a simplified block diagram of the Timer0 module in 16-bit mode.

The T0CON register (Register 11-1) is a readable and writable register that controls all the aspects of Timer0, including the prescale selection.

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TMR0ON | T08BIT | TOCS | TOSE | PSA | T0PS2 | T0PS1 | T0PS0 |
| bit 7 | | | | | | | bit 0 |

Legend:							
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'				
u = Bit is ur	nchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is s	set	'0' = Bit is cleared					
bit 7	TMR0ON:	Timer0 On/Off Control bit					
	1 = Enabl 0 = Stops						
bit 6	1 = Timer	mer0 8-bit/16-bit Control bit 0 is configured as an 8-bit tir 0 is configured as a 16-bit tir					
bit 5	1 = Trans	er0 Clock Source Select bit ition on T0CKI pin al instruction cycle clock (CL	KO)				
bit 4	1 = Increr	T0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin					
bit 3	1 = TImer	 PSA: Timer0 Prescaler Assignment bit 1 = TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler. 0 = Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output. 					
bit 2-0	111 = 1:25 $110 = 1:12$ $101 = 1:64$ $100 = 1:32$ $011 = 1:16$ $010 = 1:8$ $001 = 1:4$	 >: Timer0 Prescaler Select b 56 Prescale value 28 Prescale value 4 Prescale value 2 Prescale value 5 Prescale value Prescale value Prescale value Prescale value Prescale value Prescale value 	its				


13.2 Timer2 Interrupt

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon Reset.

FIGURE 13-1: TIMER2 BLOCK DIAGRAM

13.3 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module, which optionally uses it to generate the shift clock.

TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	_	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	-000 -000	-000 -000
PIE1	_	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	-000 -000	-000 -000
IPR1	_	ADIP	RCIP	TXIP	_	CCP1IP	TMR2IP	TMR1IP	-111 -111	-111 -111
TMR2	Timer2 Mod	dule Registe	r						0000 0000	0000 0000
T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
PR2	Timer2 Per	iod Register							1111 1111	1111 1111
PR2		lod Register							1111 1111 4 - T	

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

15.1 ECCP Outputs

The Enhanced CCP module may have up to four outputs, depending on the selected operating mode. These outputs, designated P1A through P1D, are multiplexed with I/O pins on PORTB. The pin assignments are summarized in Table 15-1.

To configure I/O pins as PWM outputs, the proper PWM mode must be selected by setting the P1Mn and CCP1Mn bits (CCP1CON<7:6> and <3:0>, respectively). The appropriate TRISB direction bits for the port pins must also be set as outputs.

ECCP Mode	CCP1CON Configuration	RB3	RB2	RB6	RB7
Compatible CCP	00xx 11xx	CCP1	RB2/INT2	RB6/PGC/T1OSO/T13CKI/KBI2	RB7/PGD/T1OSI/KBI3
Dual PWM	10xx 11xx	P1A	P1B	RB6/PGC/T1OSO/T13CKI/KBI2	RB7/PGD/T1OSI/KBI3
Quad PWM	x1xx 11xx	P1A	P1B	P1C	P1D

Legend: x = Don't care. Shaded cells indicate pin assignments not used by ECCP in a given mode.

Note 1: TRIS register values must be configured appropriately.

15.2 CCP Module

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

TABLE 15-2:CCP MODE – TIMER
RESOURCE

CCP Mode	Timer Resource
Capture Compare	Timer1 or Timer3 Timer1 or Timer3
PWM	Timer2

15.3 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 or TMR3 registers when an event occurs on pin RB3/CCP1/P1A. An event is defined as one of the following:

- every falling edge
- every rising edge
- every 4th rising edge
- · every 16th rising edge

The event is selected by control bits, CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit, CCP1IF (PIR1<2>), is set; it must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new captured value.

15.3.1 CCP PIN CONFIGURATION

In Capture mode, the RB3/CCP1/P1A pin should be configured as an input by setting the TRISB<3> bit.

Note:	If the RB3/CCP1/P1A is configured as an				
	output, a write to the port can cause a				
	capture condition.				

15.3.2 TIMER1/TIMER3 MODE SELECTION

The timers that are to be used with the capture feature (either Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work. The timer to be used with the CCP module is selected in the T3CON register.

15.3.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit, CCP1IE (PIE1<2>), clear while changing capture modes to avoid false interrupts and should clear the flag bit, CCP1IF, following any such change in operating mode.

16.2.3 AUTO-BAUD RATE DETECT

The Enhanced USART module supports the automatic detection and calibration of baud rate. This feature is active only in Asynchronous mode and while the WUE bit is clear.

The automatic baud rate measurement sequence (Figure 16-1) begins whenever a Start bit is received and the ABDEN bit is set. The calculation is self-averaging.

In the Auto-Baud Rate Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. In ABD mode, the internal Baud Rate Generator is used as a counter to time the bit period of the incoming serial byte stream.

Once the ABDEN bit is set, the state machine will clear the BRG and look for a Start bit. The Auto-Baud Detect must receive a byte with the value 55h (ASCII "U", which is also the LIN bus Sync character), in order to calculate the proper bit rate. The measurement is taken over both a low and a high bit time in order to minimize any effects caused by asymmetry of the incoming signal. After a Start bit, the SPBRG begins counting up using the preselected clock source on the first rising edge of RX. After eight bits on the RX pin, or the fifth rising edge, an accumulated value totaling the proper BRG period is left in the SPBRGH:SPBRG registers. Once the fifth edge is seen (should correspond to the Stop bit), the ABDEN bit is automatically cleared.

While calibrating the baud rate period, the BRG registers are clocked at 1/8th the preconfigured clock rate. Note that the BRG clock will be configured by the BRG16 and BRGH bits. Independent of the BRG16 bit setting, both the SPBRG and SPBRGH will be used as a 16-bit counter. This allows the user to verify that no carry occurred for 8-bit modes, by checking for 00h in the SPBRGH register. Refer to Table 16-4 for counter clock rates to the BRG.

While the ABD sequence takes place, the EUSART state machine is held in Idle. The RCIF interrupt is set once the fifth rising edge on RX is detected. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded.

Note 1: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible due to bit error rates. Overall system timing and communication baud rates must be taken into consideration when using the Auto-Baud Rate Detection feature.

16.2.4 RECEIVING A SYNC (AUTO-BAUD RATE DETECT)

To receive a Sync (Auto-Baud Rate Detect):

- 1. Configure the EUSART for asynchronous receive. TXEN should remain clear. SPBRGH:SPBRG may be left as is. The controller should operate in either PRI_RUN or PRI_IDLE.
- 2. Enable RXIF interrupts. Set RCIE, PEIE, GIE.
- 3. Enable Auto-Baud Rate Detect. Set ABDEN.
- 4. When the next RCIF interrupt occurs, the received baud rate has been measured. Read RCREG to clear RCIF and discard. Check SPBRGH:SPBRG for a valid value. The EUSART is ready for normal communications. Return from the interrupt. Allow the primary clock to run (PRI_RUN or PRI_IDLE).
- Process subsequent RCIF interrupts normally as in asynchronous reception. Remain in PRI_RUN or PRI_IDLE until communications are complete.

TABLE 16-4:	BRG COUNTER CLOCK
	RATES

BRG16	BRGH	BRG Counter Clock
0	0	Fosc/512
0	1	Fosc/128
1	0	Fosc/128
1	1	Fosc/32

Note: During the ABD sequence, SPBRG and SPBRGH are both used as a 16-bit counter, independent of BRG16 setting.

16.5 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTA<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the RB1/AN5/TX/CK/INT1 pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

16.5.1 EUSART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of the Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREG register.
- c) Flag bit, TXIF, will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit, TXIF, will now be set.
- e) If enable bit, TXIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	_	ADIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	-000 -000	-000 -000
PIE1	_	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	-000 -000	-000 -000
IPR1		ADIP	RCIP	TXIP	_	CCP1IP	TMR2IP	TMR1IP	-111 -111	-111 -111
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	0000 000x
TXREG	EUSART Tra	ansmit Registe	er						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
BAUDCTL	—	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	-1-1 0-00	-1-1 0-00
SPBRGH	Baud Rate Generator Register High Byte								0000 0000	0000 0000
SPBRG	Baud Rate G	aud Rate Generator Register Low Byte 0000 0000 0								0000 0000

TABLE 16-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	•	mented bit, read		
u = Bit is unc	hanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set	t	'0' = Bit is cle	ared				
			o.!				
bit 7	•	nted: Read as '					
bit 6		Port Configura igured as a digi					
				– digital input o	disabled and rea	ads '0'	
bit 5		Port Configura	•	ang tan inip at t			
2.1.0		igured as a digi					
	0 = Pin confi	igured as an ar	nalog channel	 digital input of 	disabled and rea	ads '0'	
bit 4		Port Configura					
		igured as a digi					
		•	•	•	disabled and rea	ads '0'	
bit 3		Port Configura					
		igured as a digi igured as an ar		– digital input o	disabled and rea	ads '0'	
bit 2		Port Configura	•	•			
SR 2		igured as a digi					
	0 = Pin configured as an analog channel – digital input disabled and reads '0'						
bit 1		Port Configura					
	 1 = Pin configured as a digital port 0 = Pin configured as an analog channel – digital input disabled and reads '0' 						
		•	•	•	disabled and rea	ads '0'	
bit 0		Port Configura					
		igured as a digi		digital input	disabled and re-	ade (0'	
		igureu as an af	alog channel	– uigitai iriput (disabled and rea	aus U	

REGISTER 17-2: ADCON1: A/D CONTROL REGISTER 1

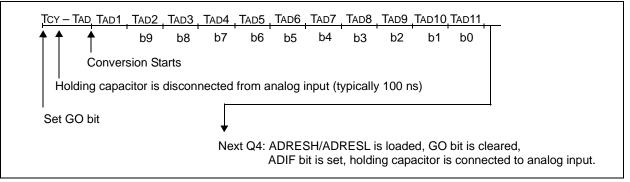
R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7							bit
Legend:							
-	.:.		L :4				
R = Readable b		W = Writable			nented bit, read		
u = Bit is uncha	inged	x = Bit is unki		-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
1' = Bit is set		'0' = Bit is cle	ared				
bit 7	ADFM: A/D	Result Format S	Select bit				
	1 = Right jus 0 = Left justi						
bit 6	Unimpleme	nted: Read as '	0'				
bit 5-3	ACQT<2:0> 000 = 0 TAD 001 = 2 TAD 010 = 4 TAD 011 = 6 TAD 100 = 8 TAD 101 = 12 TA 110 = 16 TA 111 = 20 TA	D	n Time Select	bits			
bit 2-0		: A/D Conversion	on Clock Selec	t bits			
	000 = FOSC/ 001 = FOSC/ 010 = FOSC/ 011 = FRC (100 = FOSC/ 101 = FOSC/ 110 = FOSC/ 111 = FRC (/8 /32 clock derived fro /4 /16					

REGISTER 17-3: ADCON2: A/D CONTROL REGISTER 2

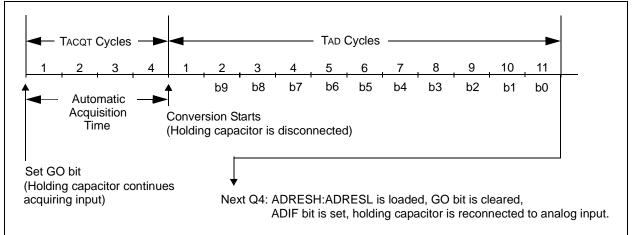
clock starts. This allows the ${\tt SLEEP}$ instruction to be executed before starting a conversion.

17.7 A/D Conversions

Figure 17-3 shows the operation of the A/D converter after the GO bit has been set and the ACQT2:ACQT0 bits are cleared. A conversion is started after the following instruction to allow entry into Low-Power Sleep mode before the conversion begins.


Figure 17-4 shows the operation of the A/D converter after the GO bit has been set and the ACQT2:ACQT0 bits are set to '010' and selecting a 4 TAD acquisition time before the conversion starts.

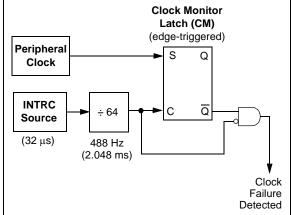
Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/ D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers).


After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D.

FIGURE 17-3: A/D CONVERSION TAD CYCLES (Acqt<2:0> = 000, Tacq = 0)

FIGURE 17-4: A/D CONVERSION TAD CYCLES (Acqt<2:0> = 010, Tacq = 4 Tad)



19.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the microcontroller to continue operation, in the event of an external oscillator failure, by automatically switching the system clock to the internal oscillator block. The FSCM function is enabled by setting the Fail-Safe Clock Monitor Enable bit, FSCM (CONFIG1H<6>).

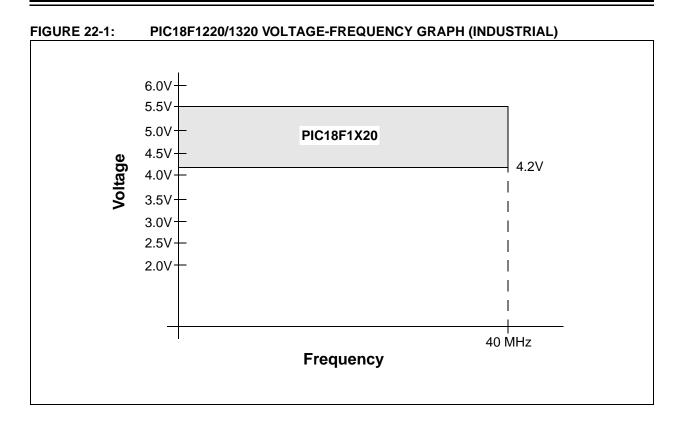
When FSCM is enabled, the INTRC oscillator runs at all times to monitor clocks to peripherals and provide an instant backup clock in the event of a clock failure. Clock monitoring (shown in Figure 19-3) is accomplished by creating a sample clock signal, which is the INTRC output divided by 64. This allows ample time between FSCM sample clocks for a peripheral clock edge to occur. The peripheral system clock and the sample clock are presented as inputs to the Clock Monitor latch (CM). The CM is set on the falling edge of the system clock source, but cleared on the rising edge of the sample clock.

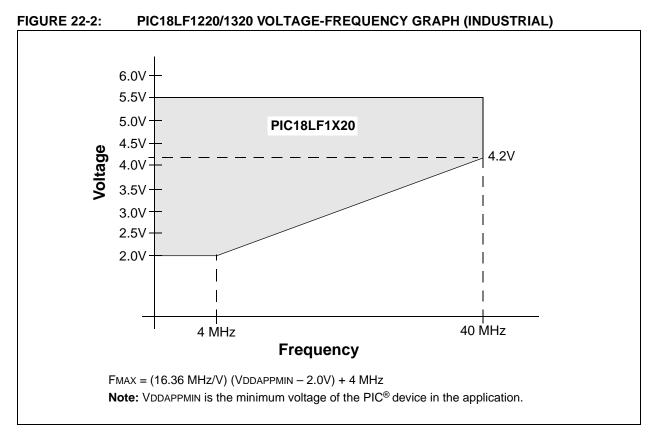
Clock failure is tested for on the falling edge of the sample clock. If a sample clock falling edge occurs while CM is still set, a clock failure has been detected (Figure 19-4). This causes the following:

- the FSCM generates an oscillator fail interrupt by setting bit, OSCFIF (PIR2<7>);
- the system clock source is switched to the internal oscillator block (OSCCON is not updated to show the current clock source – this is the Fail-Safe condition); and
- the WDT is reset.

Since the postscaler frequency from the internal oscillator block may not be sufficiently stable, it may be desirable to select another clock configuration and enter an alternate power managed mode (see Section 19.3.1 "Special Considerations for Using Two-Speed Start-up" and Section 3.1.3 "Multiple Sleep Commands" for more details). This can be done to attempt a partial recovery, or execute a controlled shutdown.

To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IFRC2:IFRC0, immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting IFRC2:IFRC0 prior to entering Sleep mode.


Adjustments to the internal oscillator block, using the OSCTUNE register, also affect the period of the FSCM by the same factor. This can usually be neglected, as the clock frequency being monitored is generally much higher than the sample clock frequency.


The FSCM will detect failures of the primary or secondary clock sources only. If the internal oscillator block fails, no failure would be detected, nor would any action be possible.

19.4.1 FSCM AND THE WATCHDOG TIMER

Both the FSCM and the WDT are clocked by the INTRC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTRC oscillator when the FSCM is enabled.

As already noted, the clock source is switched to the INTOSC clock when a clock failure is detected. Depending on the frequency selected by the IRCF2:IRCF0 bits, this may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, Fail-Safe Clock events also reset the WDT and postscaler, allowing it to start timing from when execution speed was changed and decreasing the likelihood of an erroneous time-out.

22.2 DC Characteristics: Power-Down and Supply Current PIC18F1220/1320 (Industrial) PIC18LF1220/1320 (Industrial) (Continued)

	PIC18LF1220/1320 (Industrial) PIC18F1220/1320 (Industrial, Extended)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended								
Param No.	Device	Тур.	Max.	Units		Condit	ions				
	Supply Current (IDD) ^(2,3)										
	PIC18LF1220/1320	140	220	μA	-40°C						
		145	220	μA	+25°C	VDD = 2.0V					
		155	220	μΑ	+85°C]					
	PIC18LF1220/1320	215	330	μΑ	-40°C		Fosc = 1 MHz (RC_RUN mode, Internal oscillator source)				
		225	330	μA	+25°C	VDD = 3.0V					
		235	330	μA	+85°C	VDD = 5.0V					
	All devices	385	550	μΑ	-40°C						
		390	550	μA	+25°C						
		405	550	μA	+85°C	100 - 0.01					
	Extended devices	410	650	μA	+125°C						
	PIC18LF1220/1320	410	600	μΑ	-40°C						
		425	600	μA	+25°C	VDD = 2.0V					
		435	600	μΑ	+85°C						
	PIC18LF1220/1320	650	900	μΑ	-40°C	_	Fosc = 4 MHz				
		670	900	μΑ	+25°C	VDD = 3.0V	$(\mathbf{RC}_{\mathbf{RUN}} \text{ mode})$				
		680	900	μΑ	+85°C		Internal oscillator source)				
	All devices	1.2	1.8	mA	-40°C						
		1.2	1.8	mA	+25°C	VDD = 5.0V					
		1.2	1.8	mA	+85°C	4					
	Extended devices	1.2	1.8	mA	+125°C						

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- 3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k Ω .
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

22.2 DC Characteristics: Power-Down and Supply Current PIC18F1220/1320 (Industrial) PIC18LF1220/1320 (Industrial) (Continued)

PIC18LF1220/1320 (Industrial) PIC18F1220/1320 (Industrial, Extended)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Device	Тур.	Max.	Units		Conditio	ons		
	Supply Current (IDD) ^(2,3)								
	PIC18LF1220/1320	35	50	μA	-40°C				
		35	50	μΑ	+25°C	VDD = 2.0V			
		35	60	μΑ	+85°C				
	PIC18LF1220/1320	55	80	μΑ	-40°C				
		50	80	μΑ	+25°C	VDD = 3.0V	Fosc = 1 MHz (PRI_IDLE mode, EC oscillator)		
		60	100	μΑ	+85°C				
	All devices	105	150	μΑ	-40°C				
		110	150	μA	+25°C	Vpp = 5.0V			
		115	150	μΑ	+85°C	VDD = 5.0V			
	Extended devices	125	300	μA	+125°C				
	PIC18LF1220/1320	135	180	μΑ	-40°C				
		140	180	μA	+25°C	VDD = 2.0V			
		140	180	μA	+85°C				
	PIC18LF1220/1320	215	280	μΑ	-40°C				
		225	280	μΑ	+25°C	VDD = 3.0V	Fosc = 4 MHz (PRI IDLE mode,		
		230	280	μΑ	+85°C		EC oscillator)		
	All devices	410	525	μΑ	-40°C				
		420	525	μΑ	+25°C	VDD = 5.0V			
		430	525	μΑ	+85°C				
	Extended devices	450	800	μΑ	+125°C				
	Extended devices	2.2	3.0	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz		
		2.7	3.5	mA	+125°C	VDD = 5.0V	(PRI_IDLE mode, EC oscillator)		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

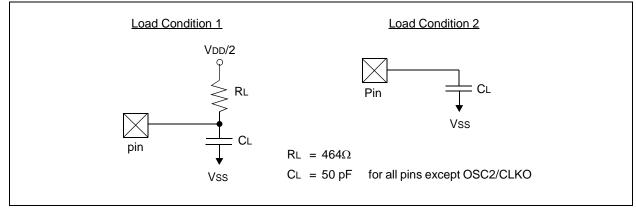
The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.


22.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 22-3 apply to all timing specifications unless otherwise noted. Figure 22-5 specifies the load conditions for the timing specifications.

TABLE 22-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)				
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
AC CHARACTERISTICS	$-40^{\circ}C \le TA \le +125^{\circ}C$ for extended Operating voltage VDD range as described in DC spec Section 22.1 and Section 22.3 . LF parts operate for industrial temperatures only.				

FIGURE 22-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

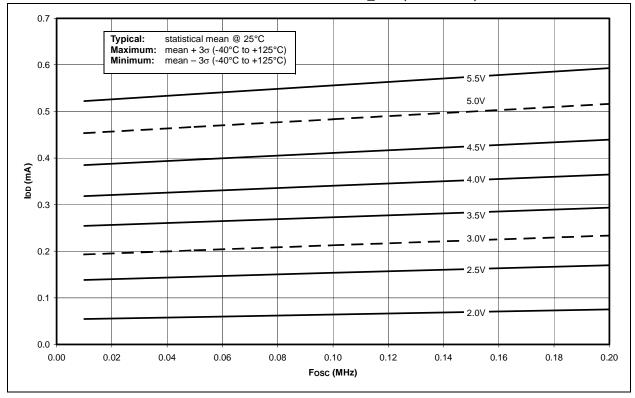
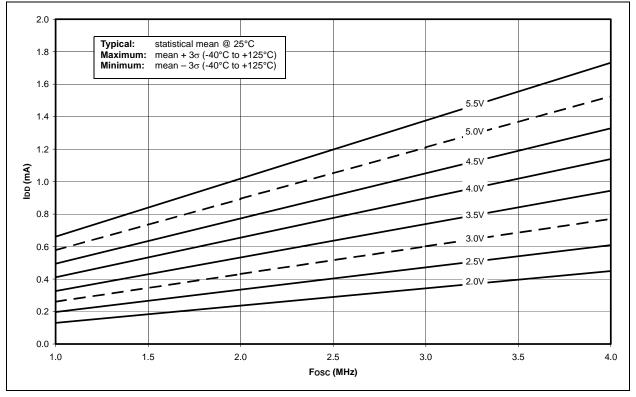



FIGURE 23-3: MAXIMUM IDD vs. Fosc OVER VDD PRI_RUN, EC MODE, -40°C TO +125°C

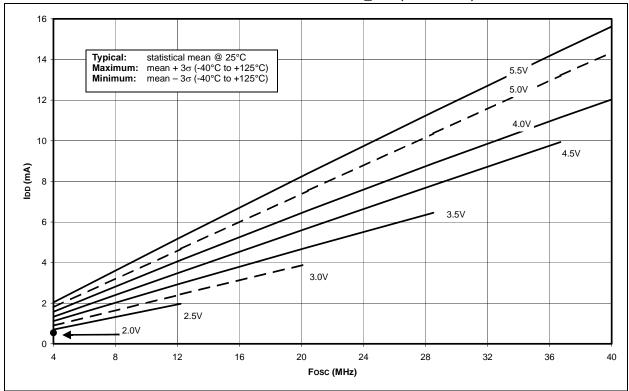
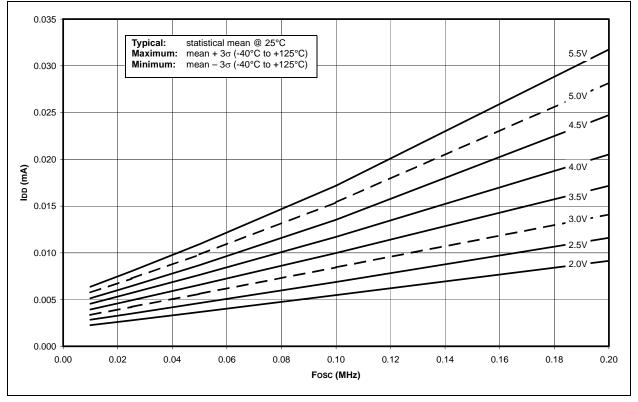



FIGURE 23-7: MAXIMUM IDD vs. Fosc OVER VDD PRI_RUN, EC MODE, -40°C TO +125°C

