

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f1320-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5.2 EXIT BY RESET

Normally, the device is held in Reset by the Oscillator Start-up Timer (OST) until the primary clock (defined in Configuration Register 1H) becomes ready. At that time, the OSTS bit is set and the device begins executing code.

Code execution can begin before the primary clock becomes ready. If either the Two-Speed Start-up (see Section 19.3 "Two-Speed Start-up") or Fail-Safe Clock Monitor (see Section 19.4 "Fail-Safe Clock Monitor") are enabled in Configuration Register 1H, the device may begin execution as soon as the Reset source has cleared. Execution is clocked by the INTOSC multiplexer driven by the internal oscillator block. Since the OSCCON register is cleared following all Resets, the INTRC clock source is selected. A higher speed clock may be selected by modifying the IRCF bits in the OSCCON register. Execution is clocked by the internal oscillator block until either the primary clock becomes ready, or a power managed mode is entered before the primary clock becomes ready; the primary clock is then shut down.

3.5.3 EXIT BY WDT TIME-OUT

A WDT time-out will cause different actions, depending on which power managed mode the device is in when the time-out occurs.

If the device is not executing code (all Idle modes and Sleep mode), the time-out will result in a wake from the power managed mode (see Sections 3.2 through 3.4).

If the device is executing code (all Run modes), the time-out will result in a WDT Reset (see Section 19.2 "Watchdog Timer (WDT)").

The WDT timer and postscaler are cleared by executing a SLEEP or CLRWDT instruction, the loss of a currently selected clock source (if the Fail-Safe Clock Monitor is enabled) and modifying the IRCF bits in the OSCCON register if the internal oscillator block is the system clock source.

3.5.4 EXIT WITHOUT AN OSCILLATOR START-UP DELAY

Certain exits from power managed modes do not invoke the OST at all. These are:

- PRI_IDLE mode, where the primary clock source is not stopped; or
- the primary clock source is not any of LP, XT, HS or HSPLL modes.

In these cases, the primary clock source either does not require an oscillator start-up delay, since it is already running (PRI_IDLE), or normally does not require an oscillator start-up delay (RC, EC and INTIO Oscillator modes).

However, a fixed delay (approximately $10 \ \mu$ s) following the wake event is required when leaving Sleep and Idle modes. This delay is required for the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

3.6 INTOSC Frequency Drift

The factory calibrates the internal oscillator block output (INTOSC) for 8 MHz (see Table 22-6). However, this frequency may drift as VDD or temperature changes, which can affect the controller operation in a variety of ways.

It is possible to adjust the INTOSC frequency by modifying the value in the OSCTUNE register (Register 2-1). This has the side effect that the INTRC clock source frequency is also affected. However, the features that use the INTRC source often do not require an exact frequency. These features include the Fail-Safe Clock Monitor, the Watchdog Timer and the RC_RUN/ RC_IDLE modes when the INTRC clock source is selected.

Being able to adjust the INTOSC requires knowing when an adjustment is required, in which direction it should be made and in some cases, how large a change is needed. Three examples follow but other techniques may be used.

Register	Appli Dev	cable ices	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt
BSR	1220	1320	0000	0000	uuuu
INDF2	1220	1320	N/A	N/A	N/A
POSTINC2	1220	1320	N/A	N/A	N/A
POSTDEC2	1220	1320	N/A	N/A	N/A
PREINC2	1220	1320	N/A	N/A	N/A
PLUSW2	1220	1320	N/A	N/A	N/A
FSR2H	1220	1320	0000	0000	uuuu
FSR2L	1220	1320	xxxx xxxx	սսսս սսսս	սսսս սսսս
STATUS	1220	1320	x xxxx	u uuuu	u uuuu
TMR0H	1220	1320	0000 0000	0000 0000	սսսս սսսս
TMR0L	1220	1320	XXXX XXXX	uuuu uuuu	uuuu uuuu
TOCON	1220	1320	1111 1111	1111 1111	սսսս սսսս
OSCCON	1220	1320	0000 q000	0000 q000	uuuu qquu
LVDCON	1220	1320	00 0101	00 0101	uu uuuu
WDTCON	1220	1320	0	0	u
RCON ⁽⁴⁾	1220	1320	01 11q0	0q qquu	uu qquu
TMR1H	1220	1320	xxxx xxxx	սսսս սսսս	սսսս սսսս
TMR1L	1220	1320	XXXX XXXX	นนนน นนนน	սսսս սսսս
T1CON	1220	1320	0000 0000	u0uu uuuu	սսսս սսսս
TMR2	1220	1320	0000 0000	0000 0000	սսսս սսսս
PR2	1220	1320	1111 1111	1111 1111	1111 1111
T2CON	1220	1320	-000 0000	-000 0000	-uuu uuuu
ADRESH	1220	1320	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADRESL	1220	1320	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADCON0	1220	1320	00-0 0000	00-0 0000	uu-u uuuu
ADCON1	1220	1320	-000 0000	-000 0000	-uuu uuuu
ADCON2	1220	1320	0-00 0000	0-00 0000	u-uu uuuu
CCPR1H	1220	1320	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1L	1220	1320	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON	1220	1320	0000 0000	0000 0000	uuuu uuuu
PWM1CON	1220	1320	0000 0000	0000 0000	uuuu uuuu
ECCPAS	1220	1320	0000 0000	0000 0000	uuuu uuuu

TABLE 4-3:	INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)	

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-2 for Reset value for specific condition.

- **5:** Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the Oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.
- **6:** Bit 5 of PORTA is enabled if \overline{MCLR} is disabled.

5.13 Status Register

The STATUS register, shown in Register 5-2, contains the arithmetic status of the ALU. As with any other SFR, it can be the operand for any instruction.

If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, the results of the instruction are not written; instead, the status is updated according to the instruction performed. Therefore, the result of an instruction with the STATUS register as its destination may be different than intended. As an example, CLRF STATUS will set the Z bit and leave the remaining Status bits unchanged ('000u uluu').

It is recommended that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register.

For other instructions that do not affect Status bits, see the instruction set summaries in Table 20-1.

Note: The <u>C and DC bits</u> operate as the borrow and digit borrow bits, respectively, in subtraction.

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u
_	—	—	N	OV	Z	DC	С
bit 7	·						bit C
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all c	ther Resets
'1' = Bit is s	set	'0' = Bit is cle	ared	q = Value de	pends on conditi	ion	
bit 7-5	Unimplemer	nted: Read as '	0'				
bit 4	N: Negative I	bit					
	This bit is use	ed for signed ar	ithmetic (2's o	complement). It	t indicates wheth	her the result w	/as
	negative (AL	UMSB = 1).					
	$\perp = \text{Result was } 0 = Resul$	as negative					
bit 3	OV: Overflow	/ bit					
Site	This bit is use	ed for signed ar	ithmetic (2's o	complement). It	t indicates an ov	erflow of the	
	7-bit magnitu	de, which caus	es the sign bi	t (bit 7) to chan	ge state.		
	1 = Overflow	occurred for sig	gned arithmet	tic (in this arithr	metic operation)		
1	0 = No overfl	ow occurred					
bit 2	Z: Zero bit			<i></i>			
	⊥ = The resu 0 = The resu	It of an arithme	tic or logic op	eration is zero	ero		
bit 1	DC: Digit Ca	rrv/Digit Borrow	bit (ADDWF, A	DDI W. SUBI W.	SUBWE instruction	ons)(1)	
	1 = A carry-o	out from the 4th	low-order bit	of the result oc	curred		
	0 = No carry-	out from the 4t	h low-order bi	t of the result			
bit 0	C: Carry/Bor	row bit ⁽¹⁾ (ADDW	F, ADDLW, SU	BLW, SUBWF in	structions) ⁽¹⁾		
	1 = A carry-o	out from the Mos	st Significant	bit of the result	occurred		
	0 = No carry-	out from the M	ost Significan	t bit of the resu	It occurred		
Note 1:	For Borrow, the po	plarity is reverse	ed. A subtract	ion is executed	I by adding the t	wo's complem	ent of the
:	second operand. F	For rotate (RRF,	RLF) instructi	ons, this bit is le	paded with eithe	r the high-orde	r or low-order
	bit of the source re	egister.					

REGISTER 5-2: STATUS: STATUS REGISTER

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0	
EEPGD	CFGS		FREE	WRERR ⁽¹⁾	WREN	WR	RD	
bit 7		·					bit 0	
Legend:								
R = Reada	ible bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
S = Bit car	n only be set	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets	
'1' = Bit is	set	'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	are		
bit 7	EEPGD: Flas 1 = Access p 0 = Access d	h Program or E program Flash r lata EEPROM I	Data EEPRO nemory nemory	M Memory Sele	ct bit			
bit 6	CFGS: Flash 1 = Accesses 0 = Accesses	Program/Data s Configuration s Flash Program	EEPROM or , User ID and m or data EE	Configuration S Device ID Reg PROM Memory	elect bit isters			
bit 5	Unimplemen	ted: Read as '	כ'					
bit 4	FREE: Flash	Row Erase En	able bit					
	1 = Erase the (cleared) 0 = Perform	e program men by completion o write only	nory row add of erase oper	ressed by TBLP ation – TBLPTR	TR on the next <5:0> are igno	WR command pred)		
bit 3	WRERR: EEF	PROM Error Fla	ag bit ⁽¹⁾					
	1 = A write o 0 = The write	peration was ple operation com	rematurely te	erminated (any R ally	leset during se	lf-timed program	mming)	
bit 2	WREN: Progr	ram/Erase Ena	ble bit					
	1 = Allows pr 0 = Inhibits p	rogram/erase c rogramming/er	ycles asing of prog	ram Flash and o	data EEPROM			
bit 1	WR: Write Co	ontrol bit						
	 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle. (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.) 0 = Write cycle completed 							
bit 0	RD: Read Co	ntrol bit						
	1 = Initiates a (Read tal software. 0 = Read cor	a memory read kes one cycle. . RD bit cannot mpleted	RD is cleare be set when	ed in hardware. EEPGD = 1.)	The RD bit car	n only be set (r	not cleared) in	
Note 1:	When a WRERR c tracing of the error	occurs, the EEF	GD and CFC	GS bits are not c	leared. This al	lows		

REGISTER 6-1: EECON1: EEPROM CONTROL 1 REGISTER

FIGURE 10-3:

BLOCK DIAGRAM OF

FIGURE 10-4: BLOCK DIAGRAM OF RA4/T0CKI PIN

FIGURE 10-5:

BLOCK DIAGRAM OF OSC1/CLKI/RA7 PIN

14.0 TIMER3 MODULE

The Timer3 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers; TMR3H and TMR3L)
- Readable and writable (both registers)
- Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h
- Reset from CCP module trigger

Figure 14-1 is a simplified block diagram of the Timer3 module.

Register 14-1 shows the Timer3 Control register. This register controls the operating mode of the Timer3 module and sets the CCP clock source.

Register 12-1 shows the Timer1 Control register. This register controls the operating mode of the Timer1 module, as well as contains the Timer1 Oscillator Enable bit (T1OSCEN), which can be a clock source for Timer3.

REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
RD16	—	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	RD16: 16-bit 1 = Enables I 0 = Enables I	Read/Write Mc register read/w register read/w	de Enable bit rite of Timer3 rite of Timer3	in one 16-bit o in two 8-bit op	operation verations		
bit 6	Unimplemen	ted: Read as ')'				
bit 5-4	T3CKPS<1:0	>: Timer3 Inpu	t Clock Presca	ale Select bits			
	11 = 1:8 Pres 10 = 1:4 Pres 01 = 1:2 Pres 00 = 1:1 Pres	cale value cale value cale value cale value					
bit 3	T3CCP1: Tim	er3 and Timer	I to CCP1 En	able bits			
	1 = Timer3 is 0 = Timer1 is	the clock source the clock source	ce for compare	e/capture CCF e/capture CCF	? module ? module		
bit 2	T3SYNC: Tim (Not usable if	er3 External C the system clo	lock Input Syr ck comes fror	nchronization (m Timer1/Time	Control bit er3.)		
	When TMR30	<u> CS = 1</u> :					
	1 = Do not sys	nchronize exte	rnal clock inpu	ut			
	When TMR30	CS = 0	ick input				
	This bit is igno	ored. Timer3 u	ses the interna	al clock when [.]	TMR3CS = 0.		
bit 1	TMR3CS: Tim	ner3 Clock Sou	rce Select bit				
	1 = External	clock input fror	n Timer1 oscil	llator or T13Ck	<i compared="" s<="" second="" td="" the="" to=""><td></td><td></td></i>		
	(on the ris 0 = Internal c	sing edge after lock (Fosc/4)	the first fallin	g edge)			
bit 0	TMR3ON: Tin	ner3 On bit					
	1 = Enables	Timer3					
	0 = Stops Tin	ner3					

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is ur	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is s	et	'0' = Bit is cle	ared				
h:4 7	CCDC: Clask	Course Color	. L. 14				
DIT /		Source Select	DI				
	Don't care.	s moue.					
	<u>Synchronous</u>	mode:					
	1 = Master m	node (clock ger	nerated interna	ally from BRG)			
hit 6	0 = Slave Inc	ode (Clock ITOM	external sour	ce)			
DILO	1 = Selects 9)-bit transmissi	on				
	0 = Selects 8	-bit transmissio	on				
bit 5	TXEN: Transı	mit Enable bit ⁽¹)				
	1 = Transmit	enabled					
		disabled					
bit 4	SYNC: EUSA	RT Mode Sele	ect bit				
	1 = Synchron0 = Asynchron	nous mode					
bit 3	SENDB: Sen	d Break Chara	cter bit				
	Asynchronous	<u>s mode:</u>					
	1 = Send Syr	nc Break on ne	ext transmission	on (cleared by l	hardware upon	completion)	
	0 = Sync bre Synchronous	mode:	in completed				
	Don't care.	<u>modo.</u>					
bit 2	BRGH: High	Baud Rate Sel	ect bit				
	Asynchronous	<u>s mode:</u>					
	$\perp =$ High spe 0 = Low spee	ed ed					
	Synchronous	mode:					
	Unused in this	s mode.					
bit 1	TRMT: Transı	mit Shift Regist	ter Status bit				
	1 = TSR Idle	v					
bit 0	TX9D: 9th bit	, of Transmit Da	ata				
	Can be addre	ess/data bit or a	a parity bit.				
Note 1: S	SREN/CREN over	rides TXEN in	Sync mode.				

REGISTER 16-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

To set up an Asynchronous Transmission:

- Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH (see Section 16.2 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit TXIE.
- If 9-bit transmission is desired, set transmit bit TX9. Can be used as address/data bit.

- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).

If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

TABLE 16-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	—	ADIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	-000 -000	-000 -000
PIE1	—	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	-000 -000	-000 -000
IPR1	—	ADIP	RCIP	TXIP	—	CCP1IP	TMR2IP	TMR1IP	-111 -111	-111 -111
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	x000 000x
RCREG	EUSART Re	eceive Registe	r						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
BAUDCTL	—	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	-1-1 0-00	-1-1 0-00
SPBRGH	SPBRGH Baud Rate Generator Register High Byte								0000 0000	0000 0000
SPBRG	Baud Rate 0	Generator Reg	ister Low E	Byte					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (AVDD and AVSS), or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF- pins.

The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

FIGURE 17-1:	A/D BLOCK DIAGRAM
--------------	-------------------

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D converter can be configured as an analog input, or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is <u>loaded</u> into the ADRESH/ADRESL registers, the GO/DONE bit (ADCON0 register) is cleared and A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 17-1.

17.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 17-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding	g capa	acitor is disco	nne	ected from	the
	input p	in.				

To calculate the minimum acquisition time, Equation 17-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution. Example 17-1 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	120 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V \rightarrow Rss = 7 \ k\Omega$
Temperature	=	50°C (system max.)
VHOLD	=	0V @ time = 0

17.2 A/D VREF+ and VREF- References

If external voltage references are used instead of the internal AVDD and AVss sources, the source impedance of the VREF+ and VREF- voltage sources must be considered. During acquisition, currents supplied by these sources are insignificant. However, during conversion, the A/D module sinks and sources current through the reference sources.

In order to maintain the A/D accuracy, the voltage reference source impedances should be kept low to reduce voltage changes. These voltage changes occur as reference currents flow through the reference source impedance. The maximum recommended impedance of the VREF+ and VREF- external reference voltage sources is 250Ω .

EQUATION 17-1: ACQUISITION TIME

TACQ= Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient = TAMP + TC + TCOFF

EQUATION 17-2: A/D MINIMUM CHARGING TIME

$$\begin{split} V\text{HOLD} &= (\Delta V\text{REF} - (\Delta V\text{REF}/2048)) \bullet (1 - e^{(-\text{TC/CHOLD}(\text{RIC} + \text{RSS} + \text{RS}))}) \\ \text{or} \\ \text{TC} &= -(\text{CHOLD})(\text{RIC} + \text{RSS} + \text{RS}) \ln(1/2048) \end{split}$$

EXAMPLE 17-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

$$\begin{split} & TACQ = TAMP + TC + TCOFF \\ & TAMP = 5 \ \mu s \\ & TCOFF = (Temp - 25^{\circ}C)(0.05 \ \mu s/^{\circ}C) \\ & (50^{\circ}C - 25^{\circ}C)(0.05 \ \mu s/^{\circ}C) \\ & 1.25 \ \mu s \\ & Temperature \ coefficient \ is \ only \ required \ for \ temperatures > 25^{\circ}C. \ Below \ 25^{\circ}C, \ TCOFF = 0 \ \mu s. \\ & TC \ & = -(CHOLD)(RIC + RSS + RS) \ ln(1/2047) \ \mu s \\ & -(120 \ pF) \ (1 \ k\Omega + 7 \ k\Omega + 2.5 \ k\Omega) \ ln(0.0004883) \ \mu s \\ & 9.61 \ \mu s \\ & TACQ = 5 \ \mu s + 1.25 \ \mu s + 9.61 \ \mu s \\ & 12.86 \ \mu s \end{split}$$

R/P-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0
MCLRE	—	—	_	—	—	_	_
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	P = Program	mable bit		

REGISTER 19-4: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)

bit 7	MCLRE: MCLR Pin Enable bit
	$1 = \overline{MCLR}$ pin enabled, RA5 input pin disabled
	$0 = RA5$ input pin enabled, \overline{MCLR} disabled
bit 6-0	Unimplemented: Read as '0'

REGISTER 19-5: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)

R/P-1	U-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1		
DEBUG	—	—	—	_	LVP	—	STVR		
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	P = Programmable bit

bit 7	DEBUG: Background Debugger Enable bit (see note)
	 1 = Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins 0 = Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug
bit 6-3	Unimplemented: Read as '0'
bit 2	LVP: Low-Voltage ICSP Enable bit
	1 = Low-Voltage ICSP enabled 0 = Low-Voltage ICSP disabled
bit 1	Unimplemented: Read as '0'
bit 0	STVR: Stack Full/Underflow Reset Enable bit
	1 = Stack full/underflow will cause Reset0 = Stack full/underflow will not cause Reset

Note: The Timer1 oscillator shares the T1OSI and T1OSO pins with the PGD and PGC pins used for programming and debugging.

When using the Timer1 oscillator, In-Circuit Serial Programming (ICSP) may not function correctly (high voltage or low voltage), or the In-Circuit Debugger (ICD) may not communicate with the controller. As a result of using either ICSP or ICD, the Timer1 crystal may be damaged.

If ICSP or ICD operations are required, the crystal should be disconnected from the circuit (disconnect either lead) or installed after programming. The oscillator loading capacitors may remain in-circuit during ICSP or ICD operation.

BNC	V	Branch if Not Overflow BNZ		Branch if	Branch if Not Zero				
Synt	ax:	[<i>label</i>] BNOV n		Synt	ax:	[<i>label</i>] B	[<i>label</i>] BNZ n		
Ope	rands:	$-128 \le n \le 127$		Ope	rands:	-128 ≤ n ≤	-128 ≤ n ≤ 127		
Ope	ration:	if Overflow (PC) + 2 +	t bit is '0' $2n \rightarrow PC$		Ope	ration:	n: if Zero bit is '0' (PC) + 2 + 2n \rightarrow PC		
Statu	us Affected:	None			Statu	us Affected:	None		
Enco	oding:	1110	0101 nn	nn nnnn	Enco	oding:	1110	0001 nn	nn nnnn
Description: If the Overflow bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be $PC + 2 + 2n$. This instruction is then a 2-cycle instruction.		Desc	Description: If the Zero bit is '0', program will branch The 2's complemen added to the PC. Si have incremented t instruction, the new PC + 2 + 2n. This in a 2-cycle instructior		bit is '0', the vill branch. mplement numer he PC. Since mented to fe , the new ad n. This instru- nstruction.	en the umber '2n' is e the PC will etch the next dress will be uction is then			
Wor	ds:	1			Wor	ds:	1		
Cycl	es:	1(2)			Cycl	es:	1(2)		
Q C If Ju	cycle Activity:				Q C If Ju	cycle Activity	:		
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC
	No	No	No	No		No	No	No	No
14 8 1	operation	operation	operation	operation	16 8 1	operation	operation	operation	operation
IT IN	o Jump:	02	02	04	IT IN	o Jump:	02	02	04
	Docodo	QZ Road litoral	Record	Q4		Docodo	QZ Road literal	Record	Q4
	Decode	'n'	Data	operation		Decode	'n'	Data	operation
<u>Exar</u>	<u>mple</u> :	HERE	BNOV Jump		Exar	<u>nple</u> :	HERE	BNZ Jump	
Before Instruction			Before Instru	uction					
PC = address (HERE)			PC	= ade	dress (HERE)				
After Instruction If Overflow = 0; PC = address (Jump) If Overflow = 1; PC = address (HERE : 2)				After Instruc If Zero PC If Zero PC	tion = 0; = ado = 1; = ado	dress (Jump)	+ 2)		

POP	•	Рор Тор	Pop Top of Return Stack						
Synt	ax:	[label]	POP						
Ope	rands:	None							
Ope	ration:	$(TOS) \rightarrow$	bit buck	et					
Statu	us Affected:	None							
Enco	oding:	0000	0000	0000	0110				
Desc	cription:	The TOS return sta TOS valu previous onto the r This instr enable th the return software	The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a software stack.						
Wor	ds:	1	1						
Cycl	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q	3	Q4				
	Decode	No operation	Pop T valu	OS le of	No peration				
<u>Exar</u>	<u>mple</u> :	POP GOTO	NEW						
Before Instructi TOS Stack (1 leve		ction evel down)	= 0 = 0)x0031A2)x014332					
After Instruction TOS PC			= 0 = N	0x014332 NEW					

PUSH	Push Top	Push Top of Return Stack						
Syntax:	[label]	[label] PUSH						
Operands:	None							
Operation:	(PC + 2) –	→ TOS						
Status Affected:	None							
Encoding:	0000	0000	000	0 0101				
Description: The PC + 2 is pushed onto the to of the return stack. The previous TOS value is pushed down on the stack. This instruction allows implement ing a software stack by modifying TOS and then pushing it onto the return stack.								
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	8	Q4				
Decode	Push PC + 2 onto return stack	No opera	tion	No operation				
Example:	PUSH							
Before Instru TOS PC	ıction	= 0 = 0	x0034 x00012	5A 24				
After Instruct PC TOS Stack (1	tion level down)	= 0 = 0 = 0	x0001 x0001 x0034	26 26 5A				

SUB	LW	Sul	Subtract W from literal					
Synt	ax:	[<i>la</i> .	[<i>label</i>] SUBLW k					
Ope	rands:	0 ≤	k ≤ 25	55				
Ope	ration:	k –	(W) –	→ W				
Statu	us Affected:	N, (DV, C	DC, Z				
Enco	oding:	0	000	1000	kkk	k	kkkk	
Desc	cription:	W i liter in V	s subt al 'k'. V.	racted fi The res	rom t ult is	he 8 pla	3-bit ced	
Word	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
i	Q1	Q	2	Q3			Q4	
	Decode	Re: litera	ad ıl 'k'	Proce Data	SS A	W	rite to W	
<u>Exar</u>	<u>mple 1:</u>	SUE	LW ()x02				
	Before Instru	iction						
	W C	= 1 = ?						
	After Instruct W C Z N	tion = 1 = 1 = 0 = 0	; re	esult is po	ositive)		
Exar	<u>nple 2</u> :	SUE	LW C	x02				
	Before Instru W C	iction = 2 = ?						
	After Instruct	tion						
	W C Z N	= 0 = 1 = 1 = 0	; re	esult is ze	ero			
Exar	<u>mple 3</u> :	SUE	LW (x02				
	Before Instru	iction						
	W C	= 3 = ?						
	After Instruct	ion						
	W C Z N	= F = 0 = 0 = 1	F ; (2 ; re	2's compl esult is ne	emen egativ	t) e		

SUBWF	Sub	Subtract W from f					
Syntax:	[lab	[<i>label</i>] SUBWF f [,d [,a]]					
Operands:	0 ≤ f d ∈ [a ∈ [$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operation:	(f) —	(W) -	\rightarrow dest				
Status Affected:	N, O	N, OV, C, DC, Z					
Encoding:	01	01	11da ffi	f ffff			
Description:	Subt comp the r '1', th regis Acce over '1', th as po	Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).					
Words:	1			. ,			
Cycles:	1						
Q Cycle Activity:							
Q1	Q2		Q3	Q4			
Decode	Rea registe	d r'f'	Process Data	Write to destination			
Example 1:	SUBW	FRE	G				
Before Instru REG W C After Instruct REG W C Z	$\begin{array}{rcl} \text{iction} \\ &=& 3 \\ &=& 2 \\ &=& ? \\ \text{tion} \\ &=& 1 \\ &=& 2 \\ &=& 1 \\ &=& 0 \\ &=& 0 \end{array}$; re	esult is positive	•			
Example 2:	SUBW	FRE	G, W				
Before Instru REG W C After Instruct REG W C	Example 2:SUBWF REG, WBefore InstructionREG W $=$ 2 C $=$?After InstructionREG REG W $=$ 0						
Z N	= 1 = 0						
Example 3:	SUBW	FRE	G				
Before Instru	iction	~ /					
REG W C After Instruct	= 0x = 0x = ?	01 02					
REG W C Z N	= 0x = 0x = 0x = 0x = 0x	FFh 02 00 00 00 01	;(2's complem ;result is nega	ent) tive			

21.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

21.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
		Internal Program Memory Programming Specifications ⁽¹⁾							
D110	Vpp	Voltage on MCLR/VPP pin	9.00	—	13.25	V	(Note 2)		
D112	IPP	Current into MCLR/VPP pin	—	—	5	μA			
D113	IDDP	Supply Current during Programming	—	—	10	mA			
		Data EEPROM Memory							
D120	ED	Byte Endurance	100K	1M	—	E/W	-40°C to +85°C		
D121	Vdrw	VDD for Read/Write	Vmin	—	5.5	V	Using EECON to read/write VMIN = Minimum operating voltage		
D122	TDEW	Erase/Write Cycle Time	—	4	—	ms			
D123	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated		
D124	TREF	Number of Total Erase/Write Cycles before Refresh ⁽³⁾	1M	10M	—	E/W	-40°C to +85°C		
		Program Flash Memory							
D130	Eр	Cell Endurance	10K	100K	—	E/W	-40°C to +85°C		
D131	Vpr	VDD for Read	VMIN	_	5.5	V	Vмın = Minimum operating voltage		
D132	VIE	VDD for Block Erase	4.5	—	5.5	V	Using ICSP port		
D132A	Viw	VDD for Externally Timed Erase or Write	4.5	—	5.5	V	Using ICSP port		
D132B	Vpew	VDD for Self-Timed Write	Vmin	—	5.5	V	VMIN = Minimum operating voltage		
D133	TIE	ICSP™ Block Erase Cycle Time	—	4	—	ms	VDD > 4.5V		
D133A	Tiw	ICSP Erase or Write Cycle Time (externally timed)	1	—	—	ms	Vdd > 4.5V		
D133A	Tiw	Self-Timed Write Cycle Time	—	2	—	ms			
D134	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated		

TABLE 22-1: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

2: The pin may be kept in this range at times other than programming, but it is not recommended.

3: Refer to **Section 7.8 "Using the Data EEPROM"** for a more detailed discussion on data EEPROM endurance.

TABLE 22-7:	CLKO AND I/O TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
10	TosH2ckL	OSC1↑ to CLKO↓			75	200	ns	(Note 1)
11	TosH2ckH	OSC1↑ to CLKO↑		—	75	200	ns	(Note 1)
12	TckR	CLKO Rise Time		—	35	100	ns	(Note 1)
13	TckF	CLKO Fall Time		—	35	100	ns	(Note 1)
14	TckL2ioV	CLKO↓ to Port Out Valid		—	_	0.5 TCY + 20	ns	(Note 1)
15	TioV2ckH	Port In Valid before CLKO↑	0.25 Tcy + 25	_	—	ns	(Note 1)	
16	TckH2iol	Port In Hold after CLKO [↑]	0	_	—	ns	(Note 1)	
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port Ou	ut Valid	—	50	150	ns	
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	PIC18F1X20	100	_	—	ns	
18A		Input Invalid (I/O in hold time)	PIC18LF1X20	200	_	—	ns	
19	TioV2osH	Port Input Valid to OSC1↑ (I/O in setup time)		0		—	ns	
20	TioR	Port Output Rise Time	PIC18F1X20	—	10	25	ns	
20A			PIC18LF1X20	—	_	60	ns	
21	TioF	Port Output Fall Time	PIC18F1X20	—	10	25	ns	
21A			PIC18LF1X20	_	_	60	ns	

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

Param. No.	Symbol	Characteristic			Min.	Max.	Units	Conditions
50	TccL	CCPx Input Low Time	No prescaler		0.5 Tcy + 20		ns	
			With prescaler	PIC18F1X20	10	_	ns	
				PIC18LF1X20	20	_	ns	
51	ТссН	CCPx Input High Time	No prescaler		0.5 TCY + 20	_	ns	
			With prescaler	PIC18F1X20	10	_	ns	
				PIC18LF1X20	20	_	ns	
52	TccP	CCPx Input Period			<u>3 Tcy + 40</u> N		ns	N = prescale value (1, 4 or 16)
53	TccR	CCPx Output Fall Time F		PIC18F1X20	—	25	ns	
				PIC18LF1X20	—	45	ns	
54	TccF	CCPx Output Fall Time		PIC18F1X20	—	25	ns	
				PIC18LF1X20	—	45	ns	

TABLE 22-10: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)

FIGURE 22-12: EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 22-11: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param. No.	Symbol	Characteristic			Max.	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)					
		Clock High to Data Out Valid	PIC18F1X20	—	40	ns	
			PIC18LF1X20	_	100	ns	
121	Tckrf	Clock Out Rise Time and Fall Time	PIC18F1X20	—	20	ns	
		(Master mode)	PIC18LF1X20	—	50	ns	
122	Tdtrf	Data Out Rise Time and Fall Time	PIC18F1X20	—	20	ns	
			PIC18LF1X20		50	ns	

FIGURE 22-13: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

FIGURE 23-28: AIPD TIMER1 OSCILLATOR, -10°C TO +70°C SLEEP MODE, TMR1 COUNTER DISABLED

© 2002-2015 Microchip Technology Inc.