

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f1320-h-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.5 Writing to Flash Program Memory

The programming block size is 4 words or 8 bytes. Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are eight holding registers used by the table writes for programming.

Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction must be executed eight times for each programming operation. All of the table write operations will essentially be short writes, because only the holding registers are written. At the end of updating eight registers, the EECON1 register must be written to, to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

FIGURE 6-5: TABLE WRITES TO FLASH PROGRAM MEMORY

6.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer with address being erased.
- 4. Do the row erase procedure (see Section 6.4.1 "Flash Program Memory Erase Sequence").
- 5. Load Table Pointer with address of first byte being written.
- 6. Write the first 8 bytes into the holding registers with auto-increment.
- Set the EECON1 register for the write operation:
 set EEPGD bit to point to program memory;
 - •clear the CFGS bit to access program memory;
 - •set WREN bit to enable byte writes.
- 8. Disable interrupts.
- 9. Write 55h to EECON2.

- 10. Write AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for duration of the write (about 2 ms using internal timer).
- 13. Execute a NOP.
- 14. Re-enable interrupts.
- 15. Repeat steps 6-14 seven times to write 64 bytes.
- 16. Verify the memory (table read).

This procedure will require about 18 ms to update one row of 64 bytes of memory. An example of the required code is given in Example 6-3.

9.4 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Priority registers (IPR1, IPR2). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

REGISTER 9-8: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

U-0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	ADIP	RCIP	TXIP	—	CCP1IP	TMR2IP	TMR1IP
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	Unimplemented: Read as '0'
bit 6	ADIP: A/D Converter Interrupt Priority bit
	1 = High priority0 = Low priority
bit 5	RCIP: EUSART Receive Interrupt Priority bit
	1 = High priority0 = Low priority
bit 4	TXIP: EUSART Transmit Interrupt Priority bit
	1 = High priority0 = Low priority
bit 3	Unimplemented: Read as '0'
bit 2	CCP1IP: CCP1 Interrupt Priority bit
	1 = High priority0 = Low priority
bit 1	TMR2IP: TMR2 to PR2 Match Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 0	TMR1IP: TMR1 Overflow Interrupt Priority bit
	1 = High priority
	0 = Low priority

PIC18F1220/1320

FIGURE 10-3:

BLOCK DIAGRAM OF

FIGURE 10-4: BLOCK DIAGRAM OF RA4/T0CKI PIN

FIGURE 10-5:

BLOCK DIAGRAM OF OSC1/CLKI/RA7 PIN

11.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing the T0CS bit. In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the T0CS bit. In Counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit (T0SE). Clearing the T0SE bit selects the rising edge.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

11.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not readable or writable.

The PSA and T0PS2:T0PS0 bits determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, x, ..., etc.) will clear the prescaler count.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

11.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution).

11.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF bit. The interrupt can be masked by clearing the TMR0IE bit. The TMR0IF bit must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from Low-Power Sleep mode, since the timer requires clock cycles even when T0CS is set.

11.4 16-Bit Mode Timer Reads and Writes

TMR0H is not the high byte of the timer/counter in 16-bit mode, but is actually a buffered version of the high byte of Timer0 (refer to Figure 11-2). The high byte of the Timer0 counter/timer is not directly readable nor writable. TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0, without having to verify that the read of the high and low byte were valid due to a rollover between successive reads of the high and low byte.

A write to the high byte of Timer0 must also take place through the TMR0H Buffer register. Timer0 high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

TABLE 11-1:	REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
TMR0L	Timer0 Modu		xxxx xxxx	uuuu uuuu						
TMR0H	Timer0 Modu	ule High Byte	Register						0000 0000	0000 0000
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	x000 000x	0000 000u
T0CON	TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	1111 1111
TRISA	RA7 ⁽¹⁾	RA6 ⁽¹⁾		PORTA D	ata Directi	ion Registe	11-1 1111	11-1 1111		

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

Note 1: RA6 and RA7 are enabled as I/O pins, depending on the oscillator mode selected in Configuration Word 1H.

12.3 Timer1 Oscillator Layout Considerations

The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 12-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than Vss or VDD.

If a high-speed circuit must be located near the oscillator (such as the CCP1 pin in output compare or PWM mode, or the primary oscillator using the OSC2 pin), a grounded guard ring around the oscillator circuit, as shown in Figure 12-4, may be helpful when used on a single sided PCB, or in addition to a ground plane.

FIGURE 12-4: OSCILLATOR CIRCUIT WITH GROUNDED GUARD RING

12.4 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing Timer1 Interrupt Enable bit, TMR1IE (PIE1<0>).

12.5 Resetting Timer1 Using a CCP Trigger Output

If the CCP module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1 and start an A/D conversion, if the A/D module is enabled (see Section 15.4.4 "Special Event Trigger" for more information).

Note:	The spe	cial e	event	trigg	gers from t	he C	CP1			
	module will not set interrupt flag bit,									
	TMR1IF (PIR1<0>).									

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L register pair effectively becomes the period register for Timer1.

12.6 Timer1 16-Bit Read/Write Mode

Timer1 can be configured for 16-bit reads and writes (see Figure 12-2). When the RD16 control bit (T1CON<7>) is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L will load the contents of the high byte of Timer1 into the Timer1 high byte buffer. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, is valid, due to a rollover between reads.

A write to the high byte of Timer1 must also take place through the TMR1H Buffer register. Timer1 high byte is updated with the contents of TMR1H when a write occurs to TMR1L. This allows a user to write all 16 bits to both the high and low bytes of Timer1 at once.

The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 High Byte Buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L.

FIGURE 15-2: COMPARE MODE OPERATION BLOCK DIAGRAM

TABLE 15-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	Valu all c Res	e on ther sets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000	000x	0000	000u
PIR1	—	ADIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	-000	-000	-000	-000
PIE1	—	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	-000	-000	-000	-000
IPR1	—	ADIP	RCIP	TXIP	_	CCP1IP	TMR2IP	TMR1IP	-111	-111	-111	-111
TRISB	PORTB Da	ata Direction	Register						1111	1111	1111	1111
TMR1L	Holding Re	egister for th	e Least Sigr	nificant Byte	of the 16-bit	TMR1 Reg	gister		xxxx	xxxx	uuuu	uuuu
TMR1H	Holding Re	egister for th	e Most Sign	ificant Byte	of the 16-bit	TMR1 Reg	ister		xxxx	xxxx	uuuu	uuuu
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000	0000	uuuu	uuuu
CCPR1L	Capture/C	ompare/PW	M Register 7	I (LSB)					xxxx	xxxx	uuuu	uuuu
CCPR1H	Capture/C	ompare/PW	M Register 1	I (MSB)					xxxx	xxxx	uuuu	uuuu
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000	0000	0000	0000
TMR3L	Holding Re	egister for th	e Least Sigr	nificant Byte	of the 16-bit	t TMR3 Reg	gister		xxxx	xxxx	uuuu	uuuu
TMR3H	Holding Register for the Most Significant Byte of the 16-bit TMR3 Register								xxxx	xxxx	uuuu	uuuu
T3CON	RD16	_	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0-00	0000	u-uu	uuuu
ADCON0	VCFG1	VCFG0	_	CHS2	CHS1	CHS0	GO/DONE	ADON	00-0	0000	00-0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

17.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has seven inputs for the PIC18F1220/1320 devices. This module allows conversion of an analog input signal to a corresponding 10-bit digital number.

A new feature for the A/D converter is the addition of programmable acquisition time. This feature allows the user to select a new channel for conversion and to set the GO/DONE bit immediately. When the GO/DONE bit is set, the selected channel is sampled for the programmed acquisition time before a conversion is actually started. This removes the firmware overhead that may have been required to allow for an acquisition (sampling) period (see Register 17-3 and Section 17.3 "Selecting and Configuring Automatic Acquisition Time").

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 17-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 17-2, configures the functions of the port pins. The ADCON2 register, shown in Register 17-3, configures the A/D clock source, programmed acquisition time and justification.

R/P-1	R/P-1	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1
IESO	FSCM	_	_	FOSC3	FOSC2	FOSC1	FOSC0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	P = Program	mable bit		
bit 7	IESO: Interna	al External Swite	chover bit				
	1 = Internal E	External Switch	over mode er	nabled			
	0 = Internal E	External Switch	over mode di	sabled			
bit 6	FSCM: Fail-S	afe Clock Moni	tor Enable bi	t			
	1 = Fail-Safe	Clock Monitor	enabled				
	0 = Fail-Safe	Clock Monitor	disabled				
bit 5-4	Unimplemen	ted: Read as ')'				
bit 3-0	FOSC<3:0>:	Oscillator Sele	ction bits				
	11xx = Extern	nal RC oscillato	or, CLKO fund	tion on RA6			
	1001 = Intern	al RC oscillato	r, CLKO funct	ion on RA6 an	d port function c	on RA7	
	1000 = Intern	al RC oscillato	r, port functio	n on RA6 and p	port function on	RA7	
	0111 = Exteri	nal RC oscillato	or, port functio	on on RA6			
	0110 = HS os	scillator, PLL er	habled (clock	frequency = 4	x FOSC1)		
	0101 = EC OS	scillator, port ful	function on RA				
	0100 = EC 0	scillator					
	0001 = XT os	scillator					
	0000 = LP os	cillator					

REGISTER 19-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

20.0 INSTRUCTION SET SUMMARY

The PIC18 instruction set adds many enhancements to the previous PIC instruction sets, while maintaining an easy migration from these PIC instruction sets.

Most instructions are a single program memory word (16 bits), but there are three instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal operations
- Control operations

The PIC18 instruction set summary in Table 20-1 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 20-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction.

The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All **bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located.

The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for three double-word instructions. These three instructions were made double-word instructions so that all the required information is available in these 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 20-1 shows the general formats that the instructions can have.

All examples use the format 'nnh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

The Instruction Set Summary, shown in Table 20-1, lists the instructions recognized by the Microchip Assembler (MPASMTM). **Section 20.2** "Instruction **Set**" provides a description of each instruction.

20.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a "BCF PORTB, 1" instruction will read PORTB, clear bit 1 of the data, then write the result back to PORTB. The read operation would have the unintended result that any condition that sets the RBIF flag would be cleared. The R-M-W operation may also copy the level of an input pin to its corresponding output latch.

PIC18F1220/1320

20.2 **Instruction Set**

W = 0x25

ADD	DLW	ADD liter	al to W					
Synt	ax:	[label] A	DDLW	k				
Ope	rands:	$0 \le k \le 25$	55					
Ope	ration:	(W) + k –	→ W					
Statu	us Affected:	N, OV, C,	DC, Z					
Enco	oding:	0000	1111	kkk	k	kkkk		
Des	cription:	The conte 8-bit litera placed in	ents of W al 'k' and W.	/ are a the r	add esu	ed to the It is		
Wor	ds:	1	1					
Cycl	es:	1	1					
QC	cycle Activity:							
	Q1	Q2	Q	3		Q4		
	Decode	Read literal 'k'	Proce Dat	ess a	W	rite to W		
<u>Exar</u>	<u>mple</u> :	ADDLW	0x15					
	Before Instru	uction						
	W =	0x10						
	After Instruct	tion						

Cycles:	1
Q Cycle Activity	/:
Q1	
Decode	
	re
Example:	P

ADD	WF	ADD W to	o f						
Synt	ax:	[label] A	DDWF	f [,c	l [,a]]				
Ope	rands:	$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Ope	ration:	(W) + (f) -	\rightarrow dest						
Statu	us Affected:	N, OV, C,	DC, Z						
Enco	oding:	0010	01da	fff	f ff	ff			
		result is s result is s (default). Bank will the BSR i	tored in ' tored ba If 'a' is '(be selec s used.	W. If ' ck in)', the ted. If	d' is '1', register Access f 'a' is '1	the 'f'			
Wore	ds:	1							
Cycl	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read register 'f'	Proce Data	ess a	Write t destinat	to tion			
<u>Exar</u>	<u>mple</u> : Before Instru W	ADDWF	REG, N	N					

W	=	0x17
REG	=	0xC2
After Instru	ction	

W	=	0xD9
REG	=	0xC2

PIC18F1220/1320

SUBWFB	Subtract W from f with Borrow			rom f with Borrow SWAPF					Swap f			
Syntax:	[label] S	UBWFB f[,	.d [,a]]	Syntax:		[label]	SWAPF	f [,d [,a]]			
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5		Operan	ds:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$					
Operation:	(f) – (W) –	$(\overline{C}) \rightarrow dest$		Operati	on:	(f<3:0>) –	→ dest<7	:4>,				
Status Affected:	N, OV, C,	DC, Z				(f<7:4>) –	→ dest<3	:0>				
Encoding:	0101	10da fff	f ffff	Status A	Affected:	None			1			
Description:	Subtract W	/ and the Carr	y flag	Encodir	ng:	0011	10da	ffff	ffff			
	(borrow) from ment meth stored in W stored back 'a' is '0', the selected, o 'a' is '1', the selected as (default).	om register 'f' od). If 'd' is '0', /. If 'd' is '1', tr k in register 'f' e Access Ban verriding the E en the bank w s per the BSR	(2's comple- , the result is ne result is (default). If k will be 3SR value. If vill be value	Descrip	tion:	The upper register 'f' '0', the res '1', the res (default). I Bank will I the BSR v bank will b BSR value	and low are exch sult is pla sult is pla f 'a' is '0 pe select value. If 'a pe select e (default	rer nibbl nanged. nced in N nced in r ', the Ar ed, ove a' is '1', ed as p t).	les of If 'd' is W. If 'd' is egister 'f' ccess rrriding then the er the			
Words:	1			Words:		1	·					
Cycles:	1			Cycles:		1						
Q Cycle Activity:				Q Cycl	e Activity:	:						
Q1	Q2	Q3	Q4		Q1	Q2	Q3		Q4			
Decode	Read	Process	Write to	[Decode	Read	Proces	ss \	Nrite to			
Example 1:	SUBWFB	REG. 1. 0	destination				Dala		Sunation			
Before Instru	ction	100, 1, 0		Exampl	<u>e</u> :	SWAPF F	REG					
REG W C	= 0x19 = 0x0D = 0x01	(0001 100 (0000 110	01) 01)	Bei	REG REG	= 0x53 tion						
After Instructi REG ^W C Z N	= 0x0C = 0x0D = 0x01 = 0x00 = 0x00	(0000 101 (0000 110 ; result is po	1))1) ositive		REG	= 0x35						
Example 2:	SUBWFB	REG, 0, 0										
Before Instru REG ₩ C	ction = 0x1B = 0x1A = 0x00	(0001 101 (0001 101	1) 0)									
After Instructi REG W C	= 0x1B = 0x00 = 0x01	(0001 101	1)									
N N	= 0x01 = 0x00	, result is ze	10									
Example 3:	SUBWFB	REG, 1, 0										
Before Instru REG W C	ction = 0x03 = 0x0E = 0x01	(0000 001 (0000 110	1) 1)									
After Instructi REG ^W C Z	ion = $0xF5$ = $0x0E$ = $0x00$ = $0x00$	(1111 010 ; [2's comp] (0000 110	00) 11)									

TBLWT	Table Write							
Syntax:	[<i>label</i>] TBLWT (*; *+; *-; +*)							
Operands:	None							
Operation:	if TBLWT*, (TABLAT) \rightarrow Holding Register; TBLPTR – No Change; if TBLWT*+, (TABLAT) \rightarrow Holding Register; (TBLPTR) + 1 \rightarrow TBLPTR; if TBLWT*-, (TABLAT) \rightarrow Holding Register; (TBLPTR) – 1 \rightarrow TBLPTR; if TBLWT+*, (TBLPTR) + 1 \rightarrow TBLPTR; (TABLAT) \rightarrow Holding Register;							
Status Affected:	None							
Encoding:	0000 0000 0000 11nn nn = 0 ⁴ = 1 ⁴ = 2 ⁴ = 3 ⁴	; ;+ ;-						
Description:	This instruction uses the 3 LSBs of TBLPTR to determine which of the eight holding registers the TABLAT is written to. The holding registers are used to program the contents of Program Memory (P.M.). (Refer to Section 6.0 "Flash Program Memory" for additional details on programming Flash memory.) The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-Mbyte address range. The LSb of the TBLPTR selects which byte of the program memory location to access. TBLPTR[0] = 0:Least Significant Byte of Program Memory Word TBLPTR[0] = 1:Most Significant Byte of Program Memory Word							

- post-decrement
- pre-increment

TBLWT

Table Write (Continued)

```
Words: 1
```

Cycles: 2

Q Cycle Activity:

, ,	,			
	Q1	Q2	Q3	Q4
	Decode	No	No	No
		operation	operation	operation
	No operation	No operation (Read TABLAT)	No operation	No operation (Write to Holding
				Register)
<u>Example</u>	<u>) 1</u> : 5	TBLWT *+;		•
Befo	ore Instructio	n		
	TABLAT TBLPTR HOLDING RE	= = EGISTER	= 0x55 = 0x00A356	6
	(0x00A356)	= 0xFF		
Afte	r Instructions	s (table write	e completion)
	TABLAT TBLPTR		= 0x55 = 0x00A357	7
	(0x00A356)	-010121	= 0x55	
Example	<u>e 2</u> :	TBLWT +*;		
Befo	ore Instructio	n		
	TABLAT TBLPTR HOLDING RE		= 0x34 = 0x01389A	١
	(0x01389A)		= 0xFF	
	(0x01389B)	-010121(= 0xFF	
Afte	r Instruction	(table write	completion)	
	TABLAT TBLPTR HOLDING RE	= = GISTER	= 0x34 = 0x01389E	3
	(0x01389A)		= 0xFF	
	(0x01389B)	= = = = = = = = = = = = = = = = = = = =	= 0x34	

21.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
 Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

21.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- Built-in support for Bugzilla issue tracker

21.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

21.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

22.2 DC Characteristics: Power-Down and Supply Current PIC18F1220/1320 (Industrial) PIC18LF1220/1320 (Industrial) (Continued)

PIC18LF1220/1320 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial											
PIC18F12 (Indus	Standa Operati	rd Oper ng temp	ating Co erature	onditions (unless -40°C ≤ TA -40°C ≤ TA	<pre>otherwise stated ≤ +85°C for indust ≤ +125°C for exter</pre>) rial nded							
Param No.	Device	Тур.	Max.	Units		Condit	ions						
	Module Differential Currer	nts (∆lw	от, ∆Іво	r, ∆Ilvd	.vd, ∆Ioscb, ∆IAD)								
D022	Watchdog Timer	1.5	4.0	μΑ	-40°C								
(∆Iwdt)		2.2	4.0	μΑ	+25°C	VDD = 2.0V							
		3.1	5.0	μΑ	+85°C								
		2.5	6.0	μΑ	-40°C								
		3.3	6.0	μΑ	+25°C	VDD = 3.0V							
		4.7	7.0	μΑ	+85°C								
		3.7	10.0	μΑ	-40°C								
		4.5	10.0	μΑ	+25°C	VDD = 5.0V							
		6.1	13.0	μΑ	+85°C								
D022A	Brown-out Reset	19	35.0	μΑ	-40°C to +85°C	VDD = 3.0V							
(ΔIBOR)		24	45.0	μΑ	-40°C to +85°C	VDD = 5.0V							
D022B	Low-Voltage Detect	8.5	25.0	μΑ	-40°C to +85°C	VDD = 2.0V							
(ΔILVD)		16	35.0	μΑ	-40°C to +85°C	VDD = 3.0V							
		20	45.0	μΑ	-40°C to +85°C	VDD = 5.0V							
D025	Timer1 Oscillator	1.7	3.5	μΑ	-40°C								
(∆IOSCB)		1.8	3.5	μΑ	+25°C	VDD = 2.0V	32 kHz on Timer1 ⁽⁴⁾						
		2.1	4.5	μΑ	+85°C								
		2.2	4.5	μΑ	-40°C								
		2.6	4.5	μΑ	+25°C	VDD = 3.0V	32 kHz on Timer1 ⁽⁴⁾						
		2.8	5.5	μΑ	+85°C								
		3.0	6.0	μΑ	-40°C								
		3.3	6.0	μA	+25°C	VDD = 5.0V	32 kHz on Timer1 ⁽⁴⁾						
		3.6	7.0	μA	+85°C								
D026	A/D Converter	1.0	3.0	μA	-40°C to +85°C	VDD = 2.0V							
(ΔIAD)		1.0	4.0	μA	-40°C to +85°C	VDD = 3.0V	A/D on not converting						
		2.0	10.0	μΑ	-40°C to +85°C	VDD = 5.0V	A/D on, not converting						
		1.0	8.0	μΑ	-40°C to +125°C	VDD = 5.0V							

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

							D = 4.2V 10 5.5V)
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	—	10	MHz	HS and HSPLL mode only
F11	Fsys	On-Chip VCO System Frequency	16	—	40	MHz	HSPLL mode only
F12	TPLL	PLL Start-up Time (Lock Time)	—	—	2	ms	HSPLL mode only
F13	ΔCLK	CLKO Stability (Jitter)	-2	_	+2	%	HSPLL mode only

TABLE 22-5: PLL CLOCK TIMING SPECIFICATIONS, HS/HSPLL MODE (VDD = 4.2V TO 5.5V)

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 22-6: INTERNAL RC ACCURACY: PIC18F1220/1320 (INDUSTRIAL) PIC18LF1220/1320 (INDUSTRIAL)

PIC18LF [,] (Indus	1220/1320 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F12 (Indus	220/1320 strial)	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Device	Min.	Тур.	Max.	Units		Conditions		
	INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz ⁽¹⁾								
	PIC18LF1220/1320	-2	+/-1	2	%	+25°C	VDD = 2.7-3.3V		
		-5	—	5	%	-10°C to +85°C	VDD = 2.7-3.3V		
		-10	_	10	%	-40°C to +85°C	VDD = 2.7-3.3V		
	PIC18F1220/	-2	+/-1	2	%	+25°C	VDD = 4.5-5.5V		
	1320PIC18F1220/1320	-5	—	5	%	-10°C to +85°C	VDD = 4.5-5.5V		
		-10	_	10	%	-40°C to +85°C	VDD = 4.5-5.5V		
	INTRC Accuracy @ Freq = 31 kHz ⁽²⁾								
	PIC18LF1220/1320	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 2.7-3.3V		
	PIC18F1220/ 1320PIC18F1220/1320	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 4.5-5.5V		

Legend: Shading of rows is to assist in readability of the table.

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature and VDD drift.

2: INTRC frequency after calibration.

3: Change of INTRC frequency as VDD changes.

FIGURE 23-25: VOH vs. IOH OVER TEMPERATURE (-40°C TO +125°C), VDD = 5.0V

FIGURE 23-26: Vol vs. IoL OVER TEMPERATURE (-40°C TO +125°C), VDD = 3.0V

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N	S		
Dimensio	n Limits	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		9.40		
Contact Pad Width	X			0.60	
Contact Pad Length	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Contact Pitch E			
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A