

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f1320-h-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.0 MEMORY ORGANIZATION

There are three memory types in Enhanced MCU devices. These memory types are:

- Program Memory
- Data RAM
- Data EEPROM

Data and program memory use separate busses, which allows for concurrent access of these types.

Additional detailed information for Flash program memory and data EEPROM is provided in Section 6.0 "Flash Program Memory" and Section 7.0 "Data **EEPROM Memory**", respectively.

FIGURE 5-1: PROGRAM MEMORY MAP AND STACK FOR PIC18F1220

5.1 **Program Memory Organization**

A 21-bit program counter is capable of addressing the 2-Mbyte program memory space. Accessing a location between the physically implemented memory and the 2-Mbyte address will cause a read of all '0's (a NOP instruction).

The PIC18F1220 has 4 Kbytes of Flash memory and can store up to 2,048 single-word instructions.

The PIC18F1320 has 8 Kbytes of Flash memory and can store up to 4,096 single-word instructions.

The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

The program memory maps for the PIC18F1220 and PIC18F1320 devices are shown in Figure 5-1 and Figure 5-2, respectively.

PROGRAM MEMORY MAP AND STACK FOR PIC18F1320

	PC<20:0>		
CALL, RO	CALL, RETURN		
	Stack Level 1		
	•••		
	Stack Level 31		
	Reset Vector	0000h	
	High Priority Interrupt Vector	0008h	
	Low Priority Interrupt Vector	0018h	
	On-Chip Program Memory	1FFFh	
	Read '0'	2000h	User Memory Space
		1FFFFFh 200000h	<u>,</u>

R/C-0/0	R/C-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
STKFUL ⁽¹⁾	STKUNF ⁽¹⁾				SP<4:0>				
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
u = Bit is unchanged x = Bit is unknown				-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared	C = Clearable	e only bit				
bit 7	STKFUL: Sta	ick Full Flag bit	(1)						
	1 = Stack bec	ame full or ove	erflowed						
	0 = Stack has	s not become fu	Il or overflow	ed					
bit 6	STKUNF: Sta	ack Underflow F	lag bit ⁽¹⁾						
	1 = Stack Und	derflow occurre	d						
	0 = Stack Und	derflow did not	occur						
bit 5	Unimplemen	ted: Read as '	0'						

REGISTER 5-1: STKPTR: STACK POINTER REGISTER

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.

SP<4:0>: Stack Pointer Location bits

5.2.3 PUSH AND POP INSTRUCTIONS

bit 4-0

Since the Top-of-Stack (TOS) is readable and writable, the ability to push values onto the stack and pull values off the stack, without disturbing normal program execution, is a desirable option. To push the current PC value onto the stack, a PUSH instruction can be executed. This will increment the Stack Pointer and load the current PC value onto the stack. TOSU, TOSH and TOSL can then be modified to place data or a return address on the stack.

The ability to pull the TOS value off of the stack and replace it with the value that was previously pushed onto the stack, without disturbing normal execution, is achieved by using the POP instruction. The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto the stack then becomes the TOS value.

5.2.4 STACK FULL/UNDERFLOW RESETS

These Resets are enabled by programming the STVR bit in Configuration Register 4L. When the STVR bit is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit, but not cause a device Reset. When the STVR bit is set, a full or underflow condition will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

8.0 8 x 8 HARDWARE MULTIPLIER

8.1 Introduction

An 8 x 8 hardware multiplier is included in the ALU of the PIC18F1220/1320 devices. By making the multiply a hardware operation, it completes in a single instruction cycle. This is an unsigned multiply that gives a 16-bit result. The result is stored into the 16-bit product register pair (PRODH:PRODL). The multiplier does not affect any flags in the Status register. Making the 8 x 8 multiplier execute in a single cycle gives the following advantages:

- Higher computational throughput
- Reduces code size requirements for multiply algorithms

The performance increase allows the device to be used in applications previously reserved for Digital Signal Processors.

Table 8-1 shows a performance comparison between Enhanced devices using the single-cycle hardware multiply and performing the same function without the hardware multiply.

-		Program	Cycles	Time			
Routine	Multiply Method	Memory (Words)	(Max)	@ 40 MHz	@ 10 MHz	@ 4 MHz	
9 x 9 unsigned	Without hardware multiply	13	69	6.9 μs	27.6 μs	69 µs	
8 x 8 unsigned	Hardware multiply	1	1	100 ns	400 ns	1 μs	
9 x 9 signed	Without hardware multiply	33	91	9.1 μs	36.4 μs	91 μs	
o x o signed	Hardware multiply	6	6	600 ns	2.4 μs	6 μs	
16 x 16 upgigpod	Without hardware multiply	21	242	24.2 μs	96.8 μs	242 μs	
To x To unsigned	Hardware multiply	28	28	2.8 μs	11.2 μs	28 μs	
16 x 16 signed	Without hardware multiply	52	254	25.4 μs	102.6 μs	254 μs	
To x to signed	Hardware multiply	35	40	4 μs	16 μs	40 μs	

TABLE 8-1: PERFORMANCE COMPARISON

8.2 Operation

Example 8-1 shows the sequence to do an 8×8 unsigned multiply. Only one instruction is required when one argument of the multiply is already loaded in the WREG register.

Example 8-2 shows the sequence to do an 8 x 8 signed multiply. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 8-1: 8 x 8 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1, W	;
MULWF	ARG2	; ARG1 * ARG2 ->
		; PRODH:PRODL

EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY ROUTINE

MOVF	ARG1, W	
MULWF	ARG2	; ARG1 * ARG2 ->
		; PRODH:PRODL
BTFSC	ARG2, SB	; Test Sign Bit
SUBWF	PRODH, F	; PRODH = PRODH
		; – ARG1
MOVF	ARG2, W	
BTFSC	ARG1, SB	; Test Sign Bit
SUBWF	PRODH, F	; PRODH = PRODH
		; – ARG2

FIGURE 10-10: BLOCK DIAGRAM OF RB3/CCP1/P1A PIN

TABLE 10-3: PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/AN4/INT0	bit 0	TTL ⁽¹⁾ /ST ⁽²⁾	Input/output port pin, analog input or external interrupt input 0.
RB1/AN5/TX/CK/INT1	bit 1	TTL ⁽¹⁾ /ST ⁽²⁾	Input/output port pin, analog input, Enhanced USART Asynchronous Transmit, Addressable USART Synchronous Clock or external interrupt input 1.
RB2/P1B/INT2	bit 2	TTL ⁽¹⁾ /ST ⁽²⁾	Input/output port pin or external interrupt input 2. Internal software programmable weak pull-up.
RB3/CCP1/P1A	bit 3	TTL ⁽¹⁾ /ST ⁽³⁾	Input/output port pin or Capture1 input/Compare1 output/ PWM output. Internal software programmable weak pull-up.
RB4/AN6/RX/DT/KBI0	bit 4	TTL ⁽¹⁾ /ST ⁽⁴⁾	Input/output port pin (with interrupt-on-change), analog input, Enhanced USART Asynchronous Receive or Addressable USART Synchronous Data.
RB5/PGM/KBI1	bit 5	TTL ⁽¹⁾ /ST ⁽⁵⁾	Input/output port pin (with interrupt-on-change). Internal software programmable weak pull-up. Low-Voltage ICSP™ enable pin.
RB6/PGC/T1OSO/T13CKI/ P1C/KBI2	bit 6	TTL ⁽¹⁾ /ST ^(5,6)	Input/output port pin (with interrupt-on-change), Timer1/ Timer3 clock input or Timer1oscillator output. Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD/T1OSI/P1D/KBI3	bit 7	TTL ⁽¹⁾ /ST ⁽⁵⁾	Input/output port pin (with interrupt-on-change) or Timer1 oscillator input. Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a TTL input when configured as a port input pin.

- **2:** This buffer is a Schmitt Trigger input when configured as the external interrupt.
- 3: This buffer is a Schmitt Trigger input when configured as the CCP1 input.
- 4: This buffer is a Schmitt Trigger input when used as EUSART receive input.
- 5: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
- 6: This buffer is a TTL input when used as the T13CKI input.

TABLE 10-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxd dddd	uuuu uuuu
LATB	LATB Data	Output Regi	ster						xxxx xxxx	uuuu uuuu
TRISB	PORTB Da	ta Direction I	Register						1111 1111	1111 1111
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	x000 000x	0000 000u
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2		TMR0IP		RBIP	1111 -1-1	1111 -1-1
INTCON3	INT2IP	INT1IP	-	INT2IE	INT1IE	—	INT2IF	INT1IF	11-0 0-00	11-0 0-00
ADCON1	—	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	-000 0000	-000 0000

 $\label{eq:Legend: Legend: Legend: u = unchanged, q = value depends on condition. Shaded cells are not used by PORTB.$

FIGURE 15-11: PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE (ACTIVE-HIGH)

16.3.5 BREAK CHARACTER SEQUENCE

The Enhanced USART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. The Break character transmit consists of a Start bit, followed by twelve '0' bits and a Stop bit. The Frame Break character is sent whenever the SENDB and TXEN bits (TXSTA<3> and TXSTA<5>) are set while the Transmit Shift register is loaded with data. Note that the value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

Note that the data value written to the TXREG for the Break character is ignored. The write simply serves the purpose of initiating the proper sequence.

The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 16-9 for the timing of the Break character sequence.

16.3.5.1 Transmitting A Break Signal

The Enhanced USART module has the capability of sending the Break signal that is required by the LIN bus standard. The Break signal consists of a Start bit, followed by twelve '0' bits and a Stop bit. The Break signal is sent whenever the SENDB (TXSTA<3>) and TXEN (TXSTA<5>) bits are set and TXREG is loaded with data. The data written to TXREG will be ignored and all '0's will be transmitted.

SENDB is automatically cleared by hardware when the Break signal has been sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission.

To send a Break Signal:

- Configure the EUSART for asynchronous transmissions (steps 1-5). Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH (see Section 16.2 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit TXIE.

- 4. If 9-bit transmission is desired, set transmit bit TX9. Can be used as address/data bit.
- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. Set the SENDB bit.
- 7. Load a byte into TXREG. This triggers sending a Break signal. The Break signal is complete when TRMT is set. SENDB will also be cleared.

See Figure 16-9 for the timing of the Break signal sequence.

16.3.6 RECEIVING A BREAK CHARACTER

The Enhanced USART module can receive a Break character in two ways.

The first method forces configuration of the baud rate at a frequency of 9/13 the typical speed. This allows for the Stop bit transition to be at the correct sampling location (12 bits for Break versus Start bit and eight data bits for typical data).

The second method uses the auto-wake-up feature described in **Section 16.3.4 "Auto-Wake-up on Sync Break Character"**. By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Rate Detect feature. For both methods, the user can set the ABD bit before placing the EUSART in its Sleep mode.

16.3.6.1 Transmitting a Break Sync

The following sequence will send a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to set up the Break character.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.
- After the Break has been sent, the SENDB bit is reset by hardware. The Sync character now transmits in the preconfigured mode. When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	x000 000x	0000 000u
PIR1	—	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	-000 -000	-000 -000
PIE1	—	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	-000 -000	-000 -000
IPR1	—	ADIP	RCIP	TXIP	_	CCP1IP	TMR2IP	TMR1IP	-111 -111	-111 -111
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	x000 000x
RCREG	EUSART R	eceive Regis	ter						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
BAUDCTL	—	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	-1-1 0-00	-1-1 0-00
SPBRGH	Baud Rate	Generator R	egister High	n Byte					0000 0000	0000 0000
SPBRG	Baud Rate	Generator R	egister Low	Byte					0000 0000	0000 0000

TABLE 16-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

17.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has seven inputs for the PIC18F1220/1320 devices. This module allows conversion of an analog input signal to a corresponding 10-bit digital number.

A new feature for the A/D converter is the addition of programmable acquisition time. This feature allows the user to select a new channel for conversion and to set the GO/DONE bit immediately. When the GO/DONE bit is set, the selected channel is sampled for the programmed acquisition time before a conversion is actually started. This removes the firmware overhead that may have been required to allow for an acquisition (sampling) period (see Register 17-3 and Section 17.3 "Selecting and Configuring Automatic Acquisition Time").

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 17-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 17-2, configures the functions of the port pins. The ADCON2 register, shown in Register 17-3, configures the A/D clock source, programmed acquisition time and justification.

18.1 Control Register

The Low-Voltage Detect Control register controls the operation of the Low-Voltage Detect circuitry.

REGISTER 18-1: LVDCON: LOW-VOLTAGE DETECT CONTROL REGISTER

U-0	U-0	R-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1
		IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6 bit 5 bit 4 bit 3-0	Unimplement IRVST: Internation 1 = Indicates range 0 = Indicates age range LVDEN: Low- 1 = Enables L 0 = Disables L LVDL<3:0>: L 1111 = Extern 1100 = 4.04V 1001 = 3.76V 1000 = 3.23V 1001 = 3.41V 1000 = 2.96V 0111 = 2.70V 0100 = 2.25V 0011 = 2.16V	ted: Read as ' al Reference V that the Low-V e and the LVD Voltage Detect VD, powers up LVD, powers du LVD, status du LVD, sta	o' oltage Stable /oltage Detect interrupt shou Power Enable D LVD circuit own LVD circuit own LVD circuit other is used (input)	Flag bit logic will gene logic will not ge uld not be enab le bit uit bits ⁽¹⁾ ut comes from	rate the interrup enerate the inter oled the LVDIN pin)	ot flag at the spo rupt flag at the	ecified voltage specified volt-
	0100 = 2.25V 0011 = 2.16V 0010 = 1.99V 0001 = Reser	-2.86V /-2.75V /-2.53V rved rved					

Note 1: LVDL<3:0> modes, which result in a trip point below the valid operating voltage of the device, are not tested.

U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1
	_	_	_	BORV1	BORV0	BOR ⁽¹⁾	PWRTEN ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	P = Program	mable bit		
bit 7-4	Unimplement	ted: Read as '	כי				
bit 3-2	BORV<1:0>:	Brown-out Res	et Voltage bit	S			
	11 = Reserve	d					
	10 = VBOR se	t to 2.7V					
	01 = VBOR Se 00 = VBOR Se	t to 4.5V					
bit 1	BOR: Brown-	out Reset Enat	ole bit ⁽¹⁾				
	1 = Brown-out	t Reset enable	d				
	0 = Brown-out	t Reset disable	d				
bit 0	PWRTEN: Po	wer-up Timer I	Enable bit ⁽¹⁾				
	1 = PWRT dis	abled					
	0 = PWRT en	abled					

REGISTER 19-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

Note 1: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

19.2 Watchdog Timer (WDT)

For PIC18F1220/1320 devices, the WDT is driven by the INTRC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: execute a SLEEP or CLRWDT instruction, the IRCF bits (OSCCON<6:4>) are changed or a clock failure has occurred.

Adjustments to the internal oscillator clock period using the OSCTUNE register also affect the period of the WDT by the same factor. For example, if the INTRC period is increased by 3%, then the WDT period is increased by 3%.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - Changing the setting of the IRCF bits (OSCCON<6:4>) clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed the postscaler count will be cleared.

19.2.1 CONTROL REGISTER

Register 19-14 shows the WDTCON register. This is a readable and writable register, which contains a control bit that allows software to override the WDT enable Configuration bit, only if the Configuration bit has disabled the WDT.

REGISTER 19-14: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—	—	—	—	—	SWDTEN ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 Unimplemented: Read as '0'

bit 0 SWDTEN: Software Controlled Watchdog Timer Enable bit⁽¹⁾

- 1 = Watchdog Timer is on
- 0 = Watchdog Timer is off

Note 1: This bit has no effect if the Configuration bit, WDTEN (CONFIG2H<0>), is enabled.

PIC18F1220/1320

BCF	Bit Clear	f		BN		Branch if	Negative		
Syntax:	[label] B	[label] BCF f,b[,a]		Syntax:		[label] B	Nn		
Operands:	0 ≤ f ≤ 255	5		Operand	ds:	-128 ≤ n ≤	127		
	$\begin{array}{l} 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$		Operatio	on:	if Negative (PC) + 2 +	if Negative bit is '1' (PC) + 2 + 2n \rightarrow PC			
Operation:	$0 \rightarrow f < b >$			Status A	ffected:	None			
Status Affected:	None			Encodin	ia:	1110	0110 n	nnn	nnnn
Encoding:	1001	bbba ff	ff ffff	Descript	tion:	If the Neg	ative bit is '	1'. the	en the
Description:	Bit 'b' in re is '0', the selected, o If 'a' = 1, t selected a (default).	egister 'f' is c Access Bank overriding the hen the banh is per the BS	leared. If 'a' will be BSR value. will be R value			program w The 2's co added to t have incre instruction PC + 2 + 2	vill branch. mplement he PC. Sin mented to , the new a n. This inst	numb ce the fetch iddres ructio	er '2n' is e PC will the next is will be n is then
Words:	1					a 2-cycle i	nstruction.		
Cycles:	1			Words:		1			
Q Cycle Activity:				Cycles:		1(2)			
Q1	Q2	Q3	Q4	Q Cycle	e Activity:				
Decode	Read register 'f'	Process Data	Write register 'f'	If Jump	0: Q1	Q2	Q3		Q4
Example:	BCF	LAG REG. 7		1	Decode	Read literal 'n'	Process Data	Wr	ite to PC
Before Instru	iction	····		o	No peration	No operation	No operation	op	No peration
After Instruct	EG = 07			lf No Ju	ump:				
FLAG_R	EG = 0	(47			Q1	Q2	Q3		Q4
					Decode	Read literal 'n'	Process Data	op	No peration
				Example	e:	HERE	BN Jun	qı	

Before Instructio	n =	address (HERE)
After Instruction If Negative PC If Negative PC	= = =	1; address (Jump) 0; address (HERE + 2)

PIC18F1220/1320

GOT	ю	Unconditional Branch					
Synt	ax:	[label]	GOTO	k			
Ope	rands:	$0 \le k \le 10$	$0 \leq k \leq 1048575$				
Ope	ration:	$k \rightarrow PC <$	$k \rightarrow PC < 20:1 >$				
Statu	us Affected:	None					
Enco 1st v 2nd	oding: vord (k<7:0>) word(k<19:8>) 1110) 1111	1111 k ₁₉ kkk	k ₇ kl kkk	kk :k	kkkk ₀ kkkk ₈	
Des	Description: GOTO allows an unconditional branch anywhere within the entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a 2-cycle instruction.					e entire e 20-bit 20:1>.	
Wor	ds:	2					
Cycl	es:	2					
QC	cycle Activity:						
	Q1	Q2	Q	3		Q4	
	Decode	Read literal 'k'<7:0>,	Nc opera) tion	Rea 'k' Wri	ad literal <19:8>, ite to PC	
	No operation	No operation	No opera) tion	op	No eration	

Example: GOTO THERE

After Instruction

PC = Address (THERE)

Incremen	tf		
[label]	INCF	f [,d [,a]]	
0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5		
(f) + 1 \rightarrow (dest		
C, DC, N	, OV, Z		
0010	10da	ffff	ffff
increment is placed i is placed i (default). I Bank will i the BSR v bank will is	ed. If 'd' n W. If 'd pack in i f 'a' is '(pe selec ralue. If pe selec e (defau	is '0', the d' is '1', the register 'f b', the Ac ted, over 'a' = 1, the ted as pe lt).	e result he result ccess riding hen the er the
1			
1			
Q2	Q3	3	Q4
Read register 'f'	Proce Dat	ess V a de	Vrite to stination
INCF	CNT		
uction = 0xFF = 0 = ? = ?			
	Incremen [label] $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $(f) + 1 \rightarrow 0$ C, DC, N. 0010 The conte increment is placed I (default). I Bank will B BSR value 1 1 Q2 Read register 'f' INCF itcion = 0xFF = 0 = ?	Increment f[label]INCF $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $a \in [0,1]$ (f) + 1 \rightarrow destC, DC, N, OV, Z001010daThe contents of reincremented. If 'd'is placed in W. If 'd'is placed back in fill(default). If 'a' is 'CBank will be selectBSR value. Ifbank will be selectBSR value (default)11Q2Q3Readregister 'f'DattINCFCNTINCFCNTiction=0=?	Increment f [/abe/] INCF f [,d [,a]] $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $a \in [0,1]$ (f) + 1 → dest C, DC, N, OV, Z 0010 10da ffff The contents of register 'f' incremented. If 'd' is '0', the is placed in W. If 'd' is '1', the splaced back in register 'f' (default). If 'a' is '0', the Act Bank will be selected, over the BSR value. If 'a' = 1, the bank will be selected as per BSR value (default). 1 1 Q2 Q3 Read Process V INCF CNT INCF CNT Inction = 0 = ? ?

CNT Z C DC = = = =

PIC18F1220/1320

XOF	RWF	Exclusive OR W with f						
Synt	tax:	[label]	XORWF	f [,	d [,a	a]]		
Ope	rands:	$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$	5					
Operation: (W) .XOR. (f) \rightarrow dest								
State	us Affected:	N, Z	N, Z					
Enco	oding:	0001	10da	fff	f	ffff		
Des	cription:	Exclusive OR the contents of W with register 'f'. If 'd' is '0', the resu is stored in W. If 'd' is '1', the resu is stored back in the register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default)				of W le result le result er 'f' cess riding hen the r the		
Wor	ds:	1						
Cycl	es:	1						
QC	Cycle Activity:							
	Q1	Q2	Q3	3		Q4		
	Decode	Read register 'f'	Proce Dat	ess a	W des	/rite to stination		
<u>Exa</u>	<u>mple</u> : Before Instru REG W	XORWF uction = 0xAF = 0xB5	REG					
	After Instruct REG W	tion = 0x1A = 0xB5						

22.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	0.3V to +5.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Voltage on RA4 with respect to Vss	
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, IIK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA
Note 1: Power dissipation is calculated as follows:	

- Pdis = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD VOH) x IOH} + Σ (VOL x IOL)
- **2:** Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

23.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

24.2 Package Details

The following sections give the technical details of the packages.

18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES				
Dimensior	n Limits	MIN	MAX		
Number of Pins	N	18			
Pitch	е	.100 BSC			
Top to Seating Plane	Α	-	-	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.300	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.880	.900	.920	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.014	
Upper Lead Width	b1	.045	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	_	_	.430	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-007B

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		18	
Pitch	е		1.27 BSC	
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	I
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	11.55 BSC		
Chamfer (Optional)	h	0.25 - 0.75		
Foot Length	L	0.40 - 1.27		
Footprint	L1	1.40 REF		
Lead Angle	Θ	0°	-	I
Foot Angle	φ	0° - 8°		
Lead Thickness	С	0.20 - 0.33		
Lead Width	b	0.31 - 0.51		
Mold Draft Angle Top	α	5° - 15°		
Mold Draft Angle Bottom	β	5°	_	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-051C Sheet 2 of 2