



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 40MHz                                                                     |
| Connectivity               | UART/USART                                                                |
| Peripherals                | Brown-out Detect/Reset, LVD, POR, PWM, WDT                                |
| Number of I/O              | 16                                                                        |
| Program Memory Size        | 8KB (4K x 16)                                                             |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | 256 x 8                                                                   |
| RAM Size                   | 256 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 4.2V ~ 5.5V                                                               |
| Data Converters            | A/D 7x10b                                                                 |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 28-VQFN Exposed Pad                                                       |
| Supplier Device Package    | 28-QFN (6x6)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18f1320-i-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 4.0 RESET

The PIC18F1220/1320 devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during Sleep
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state", depending on the type of Reset that occurred. Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register (Register 5-2), RI, TO, PD, POR and BOR, are set or cleared differently in different Reset situations, as indicated in Table 4-2. These bits are used in software to determine the nature of the Reset. See Table 4-3 for a full description of the Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 4-1.

The Enhanced MCU devices have a  $\overline{\text{MCLR}}$  noise filter in the  $\overline{\text{MCLR}}$  Reset path. The filter will detect and ignore small pulses.

The  $\overline{\text{MCLR}}$  pin is not driven low by any internal Resets, including the WDT.

The  $\overline{\text{MCLR}}$  input provided by the  $\overline{\text{MCLR}}$  pin can be disabled with the MCLRE bit in Configuration Register 3H (CONFIG3H<7>).





# PIC18F1220/1320

| Register | Applicable<br>Devices |      | Applicable Power-on Reset,<br>Devices Brown-out Reset |           | Wake-up via WDT<br>or Interrupt |  |  |
|----------|-----------------------|------|-------------------------------------------------------|-----------|---------------------------------|--|--|
| TOSU     | 1220                  | 1320 | 0 0000                                                | 0 0000    | 0 uuuu <b>(3)</b>               |  |  |
| TOSH     | 1220                  | 1320 | 0000 0000                                             | 0000 0000 | uuuu uuuu <sup>(3)</sup>        |  |  |
| TOSL     | 1220                  | 1320 | 0000 0000                                             | 0000 0000 | uuuu uuuu <sup>(3)</sup>        |  |  |
| STKPTR   | 1220                  | 1320 | 00-0 0000                                             | 00-0 0000 | uu-u uuuu <b>(3)</b>            |  |  |
| PCLATU   | 1220                  | 1320 | 0 0000                                                | 0 0000    | u uuuu                          |  |  |
| PCLATH   | 1220                  | 1320 | 0000 0000                                             | 0000 0000 | սսսս սսսս                       |  |  |
| PCL      | 1220                  | 1320 | 0000 0000                                             | 0000 0000 | PC + 2 <sup>(2)</sup>           |  |  |
| TBLPTRU  | 1220                  | 1320 | 00 0000                                               | 00 0000   | uu uuuu                         |  |  |
| TBLPTRH  | 1220                  | 1320 | 0000 0000                                             | 0000 0000 | սսսս սսսս                       |  |  |
| TBLPTRL  | 1220                  | 1320 | 0000 0000                                             | 0000 0000 | սսսս սսսս                       |  |  |
| TABLAT   | 1220                  | 1320 | 0000 0000                                             | 0000 0000 | սսսս սսսս                       |  |  |
| PRODH    | 1220                  | 1320 | xxxx xxxx                                             | uuuu uuuu | uuuu uuuu                       |  |  |
| PRODL    | 1220                  | 1320 | xxxx xxxx                                             | uuuu uuuu | uuuu uuuu                       |  |  |
| INTCON   | 1220                  | 1320 | 0000 000x                                             | 0000 000u | uuuu uuuu <b>(1)</b>            |  |  |
| INTCON2  | 1220                  | 1320 | 1111 -1-1                                             | 1111 -1-1 | uuuu -u-u <b>(1)</b>            |  |  |
| INTCON3  | 1220                  | 1320 | 11-0 0-00                                             | 11-0 0-00 | uu-u u-uu <b>(1)</b>            |  |  |
| INDF0    | 1220                  | 1320 | N/A                                                   | N/A       | N/A                             |  |  |
| POSTINC0 | 1220                  | 1320 | N/A                                                   | N/A       | N/A                             |  |  |
| POSTDEC0 | 1220                  | 1320 | N/A                                                   | N/A       | N/A                             |  |  |
| PREINC0  | 1220                  | 1320 | N/A                                                   | N/A       | N/A                             |  |  |
| PLUSW0   | 1220                  | 1320 | N/A                                                   | N/A       | N/A                             |  |  |
| FSR0H    | 1220                  | 1320 | 0000                                                  | 0000      | uuuu                            |  |  |
| FSR0L    | 1220                  | 1320 | xxxx xxxx                                             | սսսս սսսս | սսսս սսսս                       |  |  |
| WREG     | 1220                  | 1320 | xxxx xxxx                                             | uuuu uuuu | uuuu uuuu                       |  |  |
| INDF1    | 1220                  | 1320 | N/A                                                   | N/A       | N/A                             |  |  |
| POSTINC1 | 1220                  | 1320 | N/A                                                   | N/A       | N/A                             |  |  |
| POSTDEC1 | 1220                  | 1320 | N/A                                                   | N/A       | N/A                             |  |  |
| PREINC1  | 1220                  | 1320 | N/A                                                   | N/A       | N/A                             |  |  |
| PLUSW1   | 1220                  | 1320 | N/A                                                   | N/A       | N/A                             |  |  |
| FSR1H    | 1220                  | 1320 | 0000                                                  | 0000      | uuuu                            |  |  |
| FSR1L    | 1220                  | 1320 | xxxx xxxx                                             | uuuu uuuu | uuuu uuuu                       |  |  |

## TABLE 4-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS

**Legend:** u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

**2:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

**3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-2 for Reset value for specific condition.

**5:** Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the Oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

**6:** Bit 5 of PORTA is enabled if  $\overline{\text{MCLR}}$  is disabled.

## 5.12 Indirect Addressing, INDF and FSR Registers

Indirect addressing is a mode of addressing data memory, where the data memory address in the instruction is not fixed. An FSR register is used as a pointer to the data memory location that is to be read or written. Since this pointer is in RAM, the contents can be modified by the program. This can be useful for data tables in the data memory and for software stacks. Figure 5-8 shows how the fetched instruction is modified prior to being executed.

Indirect addressing is possible by using one of the INDF registers. Any instruction, using the INDF register, actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself, indirectly (FSR = 0), will read 00h. Writing to the INDF register indirectly, results in a no operation (NOP). The FSR register contains a 12-bit address, which is shown in Figure 5-9.

The INDFn register is not a physical register. Addressing INDFn actually addresses the register whose address is contained in the FSRn register (FSRn is a pointer). This is indirect addressing.

Example 5-5 shows a simple use of indirect addressing to clear the RAM in Bank 1 (locations 100h-1FFh) in a minimum number of instructions.

#### EXAMPLE 5-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

|         | LFSR  | FSR0,0x100 | ; |                |
|---------|-------|------------|---|----------------|
| NEXT    | CLRF  | POSTINC0   | ; | Clear INDF     |
|         |       |            | ; | register then  |
|         |       |            | ; | inc pointer    |
|         | BTFSS | FSROH, 1   | ; | All done with  |
|         |       |            | ; | Bank1?         |
|         | GOTO  | NEXT       | ; | NO, clear next |
| CONTINU | JE    |            | ; | YES, continue  |
|         |       |            |   |                |

There are three indirect addressing registers. To address the entire data memory space (4096 bytes), these registers are 12-bit wide. To store the 12 bits of addressing information, two 8-bit registers are required:

- 1. FSR0: composed of FSR0H:FSR0L
- 2. FSR1: composed of FSR1H:FSR1L
- 3. FSR2: composed of FSR2H:FSR2L

In addition, there are registers INDF0, INDF1 and INDF2, which are not physically implemented. Reading or writing to these registers activates indirect addressing, with the value in the corresponding FSR register being the address of the data. If an instruction writes a value to INDF0, the value will be written to the address pointed to by FSR0H:FSR0L. A read from INDF1 reads the data from the address pointed to by FSR1H:FSR1L. INDFn can be used in code anywhere an operand can be used.

If INDF0, INDF1 or INDF2 are read indirectly via an FSR, all '0's are read (zero bit is set). Similarly, if INDF0, INDF1 or INDF2 are written to indirectly, the operation will be equivalent to a NOP instruction and the Status bits are not affected.

## 5.12.1 INDIRECT ADDRESSING OPERATION

Each FSR register has an INDF register associated with it, plus four additional register addresses. Performing an operation using one of these five registers determines how the FSR will be modified during indirect addressing.

When data access is performed using one of the five INDFn locations, the address selected will configure the FSRn register to:

- Do nothing to FSRn after an indirect access (no change) INDFn
- Auto-decrement FSRn after an indirect access (post-decrement) POSTDECn
- Auto-increment FSRn after an indirect access (post-increment) POSTINCn
- Auto-increment FSRn before an indirect access (pre-increment) PREINCn
- Use the value in the WREG register as an offset to FSRn. Do not modify the value of the WREG or the FSRn register after an indirect access (no change) – PLUSWn

When using the auto-increment or auto-decrement features, the effect on the FSR is not reflected in the Status register. For example, if the indirect address causes the FSR to equal '0', the Z bit will not be set.

Auto-incrementing or auto-decrementing an FSR affects all 12 bits. That is, when FSRnL overflows from an increment, FSRnH will be incremented automatically.

Adding these features allows the FSRn to be used as a stack pointer, in addition to its uses for table operations in data memory.

Each FSR has an address associated with it that performs an indexed indirect access. When a data access to this INDFn location (PLUSWn) occurs, the FSRn is configured to add the signed value in the WREG register and the value in FSR to form the address before an indirect access. The FSR value is not changed. The WREG offset range is -128 to +127.

If an FSR register contains a value that points to one of the INDFn, an indirect read will read 00h (zero bit is set), while an indirect write will be equivalent to a NOP (Status bits are not affected).

If an indirect addressing write is performed when the target address is an FSRnH or FSRnL register, the data is written to the FSR register, but no pre- or post-increment/ decrement is performed.

# PIC18F1220/1320



## 9.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Request (Flag) registers (PIR1, PIR2).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>).
  - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

## REGISTER 9-4: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

| U-0   | R/W-0/0 | R-0/0 | R-0/0 | U-0 | R/W-0/0 | R/W-0/0 | R/W-0/0 |
|-------|---------|-------|-------|-----|---------|---------|---------|
| —     | ADIF    | RCIF  | TXIF  | —   | CCP1IF  | TMR2IF  | TMR1IF  |
| bit 7 |         |       |       |     |         |         | bit 0   |
|       |         |       |       |     |         |         |         |

| pit                                | W = Writable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U = Unimplemented bit, read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| anged                              | x = Bit is unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -n/n = Value at POR and BOR/Value at all other Resets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                    | '0' = Bit is cleared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Unimplemen                         | ted: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ADIF: A/D Co                       | onverter Interrupt Flag bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 = An A/D co0 = The A/D co        | onversion completed (must<br>onversion is not complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | be cleared in software)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RCIF: EUSAF                        | RT Receive Interrupt Flag bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 = The EUS<br>0 = The EUS         | ART receive buffer, RCREG<br>ART receive buffer is empty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i, is full (cleared when RCREG is read)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TXIF: EUSAR                        | T Transmit Interrupt Flag bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 = The EUS<br>0 = The EUS         | ART transmit buffer, TXREC<br>ART transmit buffer is full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b, is empty (cleared when TXREG is written)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Unimplemen                         | ted: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CCP1IF: CCF                        | P1 Interrupt Flag bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Capture mode                       | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\perp = A I M R I$<br>0 = No TMR1 | register capture occurred (m<br>L register capture occurred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lust de cleared in software)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Compare mod                        | de:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 = A TMR1<br>0 = No TMR1          | register compare match occ<br>I register compare match oc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | urred (must be cleared in software)<br>curred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PWM mode:<br>Unused in this        | s mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TMR2IF: TMF                        | R2 to PR2 Match Interrupt Fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ag bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 = TMR2 to<br>0 = No TMR2         | PR2 match occurred (must 2 to PR2 match occurred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | be cleared in software)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TMR1IF: TMF                        | R1 Overflow Interrupt Flag bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 = TMR1 reg<br>0 = TMR1 reg       | gister overflowed (must be c<br>gister did not overflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | leared in software)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                    | Unimplemen<br>ADIF: A/D CC<br>1 = An A/D C<br>0 =The A/D C<br>0 =The A/D C<br>0 =The EUS<br>1 = The EUS<br>0 = TMR1<br>1 = TMR2<br>1 = TMR1 res<br>0 = TMR1 res | bit       W = Writable bit         anged       x = Bit is unknown         '0' = Bit is cleared         Unimplemented: Read as '0'         ADIF: A/D Converter Interrupt Flag bit         1 = An A/D conversion completed (must l)         0 =The A/D conversion is not complete         RCIF: EUSART Receive Interrupt Flag bit         1 = The EUSART receive buffer, RCREG         0 = The EUSART receive buffer, RCREG         0 = The EUSART receive buffer is empty         TXIF: EUSART Transmit Interrupt Flag bit         1 = The EUSART transmit buffer, TXREG         0 = The EUSART transmit buffer is full         Unimplemented: Read as '0'         CCP1IF: CCP1 Interrupt Flag bit         Capture mode:         1 = A TMR1 register capture occurred (m         0 = No TMR1 register compare match occ         0 = No TMR2 to PR2 match occurred (must         1 = TMR2 to PR2 match occurred (must         0 = No TMR2 to PR2 match occurred         1 = TMR1 register overflowed (must be context)         0 = No TMR2 to PR2 match occurred         0 = TMR1 register overflowed (must be context) |

# 9.4 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Priority registers (IPR1, IPR2). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

### REGISTER 9-8: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

| U-0   | R/W-1/1          | R/W-1/1 | R/W-1/1 | U-0    | R/W-1/1 | R/W-1/1 | R/W-1/1 |
|-------|------------------|---------|---------|--------|---------|---------|---------|
| —     | - ADIP RCIP TXIP |         | —       | CCP1IP | TMR2IP  | TMR1IP  |         |
| bit 7 |                  |         |         |        |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

| bit 7 | Unimplemented: Read as '0'                                   |
|-------|--------------------------------------------------------------|
| bit 6 | ADIP: A/D Converter Interrupt Priority bit                   |
|       | <ul><li>1 = High priority</li><li>0 = Low priority</li></ul> |
| bit 5 | RCIP: EUSART Receive Interrupt Priority bit                  |
|       | <ul><li>1 = High priority</li><li>0 = Low priority</li></ul> |
| bit 4 | TXIP: EUSART Transmit Interrupt Priority bit                 |
|       | <ul><li>1 = High priority</li><li>0 = Low priority</li></ul> |
| bit 3 | Unimplemented: Read as '0'                                   |
| bit 2 | CCP1IP: CCP1 Interrupt Priority bit                          |
|       | <ul><li>1 = High priority</li><li>0 = Low priority</li></ul> |
| bit 1 | TMR2IP: TMR2 to PR2 Match Interrupt Priority bit             |
|       | 1 = High priority                                            |
|       | 0 = Low priority                                             |
| bit 0 | TMR1IP: TMR1 Overflow Interrupt Priority bit                 |
|       | 1 = High priority                                            |
|       | 0 = Low priority                                             |

### TABLE 10-3: PORTB FUNCTIONS

| Name                              | Bit#  | Buffer                                  | Function                                                                                                                                                                                 |
|-----------------------------------|-------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RB0/AN4/INT0                      | bit 0 | TTL <sup>(1)</sup> /ST <sup>(2)</sup>   | Input/output port pin, analog input or external interrupt input 0.                                                                                                                       |
| RB1/AN5/TX/CK/INT1                | bit 1 | TTL <sup>(1)</sup> /ST <sup>(2)</sup>   | Input/output port pin, analog input, Enhanced USART<br>Asynchronous Transmit, Addressable USART<br>Synchronous Clock or external interrupt input 1.                                      |
| RB2/P1B/INT2                      | bit 2 | TTL <sup>(1)</sup> /ST <sup>(2)</sup>   | Input/output port pin or external interrupt input 2.<br>Internal software programmable weak pull-up.                                                                                     |
| RB3/CCP1/P1A                      | bit 3 | TTL <sup>(1)</sup> /ST <sup>(3)</sup>   | Input/output port pin or Capture1 input/Compare1 output/<br>PWM output. Internal software programmable weak pull-up.                                                                     |
| RB4/AN6/RX/DT/KBI0                | bit 4 | TTL <sup>(1)</sup> /ST <sup>(4)</sup>   | Input/output port pin (with interrupt-on-change), analog input,<br>Enhanced USART Asynchronous Receive or Addressable<br>USART Synchronous Data.                                         |
| RB5/PGM/KBI1                      | bit 5 | TTL <sup>(1)</sup> /ST <sup>(5)</sup>   | Input/output port pin (with interrupt-on-change).<br>Internal software programmable weak pull-up.<br>Low-Voltage ICSP™ enable pin.                                                       |
| RB6/PGC/T1OSO/T13CKI/<br>P1C/KBI2 | bit 6 | TTL <sup>(1)</sup> /ST <sup>(5,6)</sup> | Input/output port pin (with interrupt-on-change), Timer1/<br>Timer3 clock input or Timer1oscillator output.<br>Internal software programmable weak pull-up.<br>Serial programming clock. |
| RB7/PGD/T1OSI/P1D/KBI3            | bit 7 | TTL <sup>(1)</sup> /ST <sup>(5)</sup>   | Input/output port pin (with interrupt-on-change) or Timer1<br>oscillator input. Internal software programmable weak pull-up.<br>Serial programming data.                                 |

**Legend:** TTL = TTL input, ST = Schmitt Trigger input

**Note 1:** This buffer is a TTL input when configured as a port input pin.

- **2:** This buffer is a Schmitt Trigger input when configured as the external interrupt.
- 3: This buffer is a Schmitt Trigger input when configured as the CCP1 input.
- 4: This buffer is a Schmitt Trigger input when used as EUSART receive input.
- 5: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
- 6: This buffer is a TTL input when used as the T13CKI input.

### TABLE 10-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

| Name    | Bit 7                                         | Bit 6          | Bit 5    | Bit 4   | Bit 3 | Bit 2  | Bit 1         | Bit 0 | Value on<br>POR, BOR | Value on<br>all other<br>Resets |
|---------|-----------------------------------------------|----------------|----------|---------|-------|--------|---------------|-------|----------------------|---------------------------------|
| PORTB   | RB7                                           | RB6            | RB5      | RB4     | RB3   | RB2    | RB1           | RB0   | xxxd dddd            | uuuu uuuu                       |
| LATB    | LATB Data                                     | Output Regi    | ster     |         |       |        |               |       | xxxx xxxx            | uuuu uuuu                       |
| TRISB   | PORTB Da                                      | ta Direction I | Register |         |       |        |               |       | 1111 1111            | 1111 1111                       |
| INTCON  | GIE/GIEH                                      | PEIE/GIEL      | TMR0IE   | INT0IE  | RBIE  | TMR0IF | <b>INT0IF</b> | RBIF  | x000 000x            | 0000 000u                       |
| INTCON2 | RBPU                                          | INTEDG0        | INTEDG1  | INTEDG2 |       | TMR0IP |               | RBIP  | 1111 -1-1            | 1111 -1-1                       |
| INTCON3 | INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF |                |          |         |       |        |               |       | 11-0 0-00            | 11-0 0-00                       |
| ADCON1  | —                                             | PCFG6          | PCFG5    | PCFG4   | PCFG3 | PCFG2  | PCFG1         | PCFG0 | -000 0000            | -000 0000                       |

 $\label{eq:Legend: Legend: Legend: u = unchanged, q = value depends on condition. Shaded cells are not used by PORTB.$ 

### 16.2 EUSART Baud Rate Generator (BRG)

The BRG is a dedicated 8-bit or 16-bit generator, that supports both the Asynchronous and Synchronous modes of the EUSART. By default, the BRG operates in 8-bit mode; setting the BRG16 bit (BAUDCTL<3>) selects 16-bit mode.

The SPBRGH:SPBRG register pair controls the period of a free running timer. In Asynchronous mode, bits BRGH (TXSTA<2>) and BRG16 also control the baud rate. In Synchronous mode, bit BRGH is ignored. Table 16-1 shows the formula for computation of the baud rate for different EUSART modes which only apply in Master mode (internally generated clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRGH:SPBRG registers can be calculated using the formulas in Table 16-1. From this, the error in baud rate can be determined. An example calculation is shown in Example 16-1. Typical baud rates and error values for the various asynchronous modes are shown in Table 16-2. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG to reduce the baud rate error, or achieve a slow baud rate for a fast oscillator frequency.

Writing a new value to the SPBRGH:SPBRG registers causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

#### 16.2.1 POWER MANAGED MODE OPERATION

The system clock is used to generate the desired baud rate; however, when a power managed mode is entered, the clock source may be operating at a different frequency than in PRI\_RUN mode. In Sleep mode, no clocks are present and in PRI\_IDLE mode, the primary clock source continues to provide clocks to the Baud Rate Generator; however, in other power managed modes, the clock frequency will probably change. This may require the value in SPBRG to be adjusted.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit and make sure that the receive operation is Idle before changing the system clock.

## 16.2.2 SAMPLING

The data on the RB4/AN6/RX/DT/KBI0 pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

| Configuration Bits |       |      |                     | Raud Pata Formula   |  |  |
|--------------------|-------|------|---------------------|---------------------|--|--|
| SYNC               | BRG16 | BRGH | BRG/EUSART Mode     | Bauu Kale Formula   |  |  |
| 0                  | 0     | 0    | 8-bit/Asynchronous  | Fosc/[64 (n + 1)]   |  |  |
| 0                  | 0     | 1    | 8-bit/Asynchronous  | $E_{OSC}/[16(p+1)]$ |  |  |
| 0                  | 1     | 0    | 16-bit/Asynchronous | FOSC/[16 (11 + 1)]  |  |  |
| 0                  | 1     | 1    | 16-bit/Asynchronous |                     |  |  |
| 1                  | 0     | x    | 8-bit/Synchronous   | Fosc/[4 (n + 1)]    |  |  |
| 1                  | 1     | х    | 16-bit/Synchronous  |                     |  |  |

TABLE 16-1:BAUD RATE FORMULAS

**Legend:** x = Don't care, n = value of SPBRGH:SPBRG register pair

## EXAMPLE 16-1: CALCULATING BAUD RATE ERROR

```
For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:
Desired Baud Rate= Fosc/(64 ([SPBRGH:SPBRG] + 1))
Solving for SPBRGH:SPBRG:
     Х
          =
              ((FOSC/Desired Baud Rate)/64) - 1
              ((1600000/9600)/64) - 1
          =
              [25.042] = 25
          =
Calculated Baud Rate=16000000/(64 (25 + 1))
              9615
          =
Error
          =
              (Calculated Baud Rate - Desired Baud Rate)/Desired Baud Rate
              (9615 - 9600)/9600 = 0.16\%
          =
```

To set up an Asynchronous Transmission:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set transmit bit TX9. Can be used as address/data bit.

- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).

If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

### FIGURE 16-2: EUSART TRANSMIT BLOCK DIAGRAM



### FIGURE 16-3: ASYNCHRONOUS TRANSMISSION



#### 16.5.2 EUSART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep, or any Idle mode and bit SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting the CREN bit prior to entering Sleep or any Idle mode, then a word may be received while in this low-power mode. Once the word is received, the RSR register will transfer the data to the RCREG register; if the RCIE enable bit is set, the interrupt generated will wake the chip from low-power mode. If the global interrupt is enabled, the program will branch to the interrupt vector. To set up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit, RCIF, will be set when reception is complete. An interrupt will be generated if enable bit, RCIE, was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

### TABLE 16-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

| Name    | Bit 7                                  | Bit 6         | Bit 5  | Bit 4     | Bit 3     | Bit 2  | Bit 1         | Bit 0  | Value on<br>POR, BOR | Value on<br>all other<br>Resets |
|---------|----------------------------------------|---------------|--------|-----------|-----------|--------|---------------|--------|----------------------|---------------------------------|
| INTCON  | GIE/GIEH                               | PEIE/GIEL     | TMR0IE | INT0IE    | RBIE      | TMR0IF | <b>INT0IF</b> | RBIF   | 0000 000x            | 0000 000u                       |
| PIR1    | —                                      | ADIF          | RCIF   | TXIF      | —         | CCP1IF | TMR2IF        | TMR1IF | -000 -000            | -000 -000                       |
| PIE1    | —                                      | ADIE          | RCIE   | TXIE      | —         | CCP1IE | TMR2IE        | TMR1IE | -000 -000            | -000 -000                       |
| IPR1    | —                                      | ADIP          | RCIP   | TXIP      | —         | CCP1IP | TMR2IP        | TMR1IP | -111 -111            | -111 -111                       |
| RCSTA   | SPEN                                   | RX9           | SREN   | CREN      | ADDEN     | FERR   | OERR          | RX9D   | 0000 000x            | 0000 000x                       |
| RCREG   | EUSART Re                              | ceive Registe | r      |           |           |        |               |        | 0000 0000            | 0000 0000                       |
| TXSTA   | CSRC                                   | TX9           | TXEN   | SYNC      | SENDB     | BRGH   | TRMT          | TX9D   | 0000 0010            | 0000 0010                       |
| BAUDCTL | —                                      | RCIDL         | —      | SCKP      | BRG16     | _      | WUE           | ABDEN  | -1-1 0-00            | -1-1 0-00                       |
| SPBRGH  | Baud Rate Generator Register High Byte |               |        |           |           |        |               |        | 0000 0000            | 0000 0000                       |
| SPBRG   | Baud Rate G                            | Generator Reg |        | 0000 0000 | 0000 0000 |        |               |        |                      |                                 |

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

# 17.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has seven inputs for the PIC18F1220/1320 devices. This module allows conversion of an analog input signal to a corresponding 10-bit digital number.

A new feature for the A/D converter is the addition of programmable acquisition time. This feature allows the user to select a new channel for conversion and to set the GO/DONE bit immediately. When the GO/DONE bit is set, the selected channel is sampled for the programmed acquisition time before a conversion is actually started. This removes the firmware overhead that may have been required to allow for an acquisition (sampling) period (see Register 17-3 and Section 17.3 "Selecting and Configuring Automatic Acquisition Time").

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 17-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 17-2, configures the functions of the port pins. The ADCON2 register, shown in Register 17-3, configures the A/D clock source, programmed acquisition time and justification.

# 18.0 LOW-VOLTAGE DETECT

In many applications, the ability to determine if the device voltage (VDD) is below a specified voltage level is a desirable feature. A window of operation for the application can be created, where the application software can do "housekeeping tasks", before the device voltage exits the valid operating range. This can be done using the Low-Voltage Detect module.

This module is a software programmable circuitry, where a device voltage trip point can be specified. When the voltage of the device becomes lower then the specified point, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to that interrupt source.

The Low-Voltage Detect circuitry is completely under software control. This allows the circuitry to be turned off by the software, which minimizes the current consumption for the device. Figure 18-1 shows a possible application voltage curve (typically for batteries). Over time, the device voltage decreases. When the device voltage equals voltage VA, the LVD logic generates an interrupt. This occurs at time TA. The application software then has the time, until the device voltage is no longer in valid operating range, to shut down the system. Voltage point VB is the minimum valid operating voltage specification. This occurs at time TB. The difference, TB – TA, is the total time for shutdown.

The block diagram for the LVD module is shown in Figure 18-2 (following page). A comparator uses an internally generated reference voltage as the set point. When the selected tap output of the device voltage crosses the set point (is lower than), the LVDIF bit is set.

Each node in the resistor divider represents a "trip point" voltage. The "trip point" voltage is the minimum supply voltage level at which the device can operate before the LVD module asserts an interrupt. When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array is equal to the 1.2V internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal setting the LVDIF bit. This voltage is software programmable to any one of 16 values (see Figure 18-2). The trip point is selected by programming the LVDL3:LVDL0 bits (LVDCON<3:0>).

### FIGURE 18-1: TYPICAL LOW-VOLTAGE DETECT APPLICATION



# 19.5 Program Verification and Code Protection

The overall structure of the code protection on the PIC18 Flash devices differs significantly from other PIC devices.

The user program memory is divided into three blocks. One of these is a boot block of 512 bytes. The remainder of the memory is divided into two blocks on binary boundaries. Each of the three blocks has three protection bits associated with them. They are:

- Code-Protect bit (CPn)
- Write-Protect bit (WRTn)
- External Block Table Read bit (EBTRn)

Figure 19-5 shows the program memory organization for 4 and 8-Kbyte devices and the specific code protection bit associated with each block. The actual locations of the bits are summarized in Table 19-3.

### FIGURE 19-5: CODE-PROTECTED PROGRAM MEMORY FOR PIC18F1220/1320

| Block Code                      |                    | MEMORY S                   | MORY SIZE/DEVICE Block Code            |                    |                                 |  |  |
|---------------------------------|--------------------|----------------------------|----------------------------------------|--------------------|---------------------------------|--|--|
| Protection<br>Controlled By:    | Address<br>Range   | 4 Kbytes<br>(PIC18F1220)   | 8 Kbytes Address<br>(PIC18F1320) Range |                    | Protection<br>Controlled By:    |  |  |
| CPB, WRTB, EBTRB                | 000000h<br>0001FFh | Boot Block                 | Boot Block                             | 000000h<br>0001FFh | CPB, WRTB, EBTRB                |  |  |
| CP0, WRT0, EBTR0                | 000200h<br>0007FFh | Block 0                    | Block 0                                | 000200h            | CP0, WRT0, EBTR0                |  |  |
| CP1, WRT1, EBTR1                | 000800h<br>000FFFh | Block 1                    | 000FFFr                                |                    |                                 |  |  |
|                                 | 001000h            |                            |                                        | 001000h            |                                 |  |  |
|                                 |                    |                            | Block 1                                |                    | CP1, WRT1, EBTR1                |  |  |
| (Unimplemented<br>Memory Space) |                    | Unimplemented<br>Read '0's |                                        | 001FFFh<br>002000h |                                 |  |  |
|                                 |                    |                            | Unimplemented<br>Read '0's             |                    | (Unimplemented<br>Memory Space) |  |  |
|                                 | 1FFFFFh            |                            |                                        | 1FFFFFh            |                                 |  |  |

### TABLE 19-3: SUMMARY OF CODE PROTECTION REGISTERS

| File Name |          | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|
| 300008h   | CONFIG5L | _     | —     | _     | —     | —     | _     | CP1   | CP0   |
| 300009h   | CONFIG5H | CPD   | CPB   | _     | —     | —     | -     | —     | —     |
| 30000Ah   | CONFIG6L | —     | —     | _     | —     | —     | _     | WRT1  | WRT0  |
| 30000Bh   | CONFIG6H | WRTD  | WRTB  | WRTC  | —     | —     |       | —     | _     |
| 30000Ch   | CONFIG7L | —     | —     | _     | —     | —     | -     | EBTR1 | EBTR0 |
| 30000Dh   | CONFIG7H | _     | EBTRB |       |       | _     |       | —     |       |

**Legend:** Shaded cells are unimplemented.

<sup>© 2002-2015</sup> Microchip Technology Inc.

# PIC18F1220/1320

| BNC                                                                                                         | <b>V</b>                                                                                                                                                                                                                                                                                                | Branch if Not Overflow    |                                  | BNZ                                             | :                                                                                                              | Branch if                                                                                                                           | Not Zero                                                                                     |                 |             |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------|-------------|
| Synt                                                                                                        | ax:                                                                                                                                                                                                                                                                                                     | [label] B                 | NOV n                            |                                                 | Synt                                                                                                           | ax:                                                                                                                                 | [ <i>label</i> ] B                                                                           | NZ n            |             |
| Ope                                                                                                         | rands:                                                                                                                                                                                                                                                                                                  | -128 ≤ n ≤                | 127                              |                                                 | Ope                                                                                                            | rands:                                                                                                                              | -128 ≤ n ≤                                                                                   | 127             |             |
| Ope                                                                                                         | ration:                                                                                                                                                                                                                                                                                                 | if Overflow<br>(PC) + 2 + | t bit is '0' $2n \rightarrow PC$ |                                                 | Ope                                                                                                            | ration:                                                                                                                             | if Zero bit is '0' (PC) + 2 + 2n $\rightarrow$ PC                                            |                 |             |
| Statu                                                                                                       | us Affected:                                                                                                                                                                                                                                                                                            | None                      |                                  |                                                 | Statu                                                                                                          | Status Affected: None                                                                                                               |                                                                                              |                 |             |
| Enco                                                                                                        | oding:                                                                                                                                                                                                                                                                                                  | 1110                      | 0101 nn                          | nn nnnn                                         | Enco                                                                                                           | Encodina: 1110 0001 nn                                                                                                              |                                                                                              |                 | nn nnnn     |
| Des                                                                                                         | escription:<br>If the Overflow bit is '0', then the<br>program will branch.<br>The 2's complement number '2n' is<br>added to the PC. Since the PC will<br>have incremented to fetch the next<br>instruction, the new address will be<br>PC + 2 + 2n. This instruction is then<br>a 2-cycle instruction. |                           | Desc                             | cription:                                       | If the Zero<br>program w<br>The 2's co<br>added to t<br>have incre<br>instruction<br>PC + 2 + 2<br>a 2-cycle i | bit is '0', the<br>vill branch.<br>mplement numer<br>he PC. Since<br>mented to fe<br>, the new ad<br>n. This instru-<br>nstruction. | en the<br>umber '2n' is<br>e the PC will<br>etch the next<br>dress will be<br>uction is then |                 |             |
| Wor                                                                                                         | ds:                                                                                                                                                                                                                                                                                                     | 1                         |                                  | Wor                                             | ds:                                                                                                            | 1                                                                                                                                   |                                                                                              |                 |             |
| Cycl                                                                                                        | es:                                                                                                                                                                                                                                                                                                     | 1(2)                      |                                  | Cycl                                            | es:                                                                                                            | 1(2)                                                                                                                                |                                                                                              |                 |             |
| Q C<br>If Ju                                                                                                | cycle Activity:                                                                                                                                                                                                                                                                                         |                           |                                  |                                                 | Q C<br>If Ju                                                                                                   | cycle Activity                                                                                                                      | :                                                                                            |                 |             |
|                                                                                                             | Q1                                                                                                                                                                                                                                                                                                      | Q2                        | Q3                               | Q4                                              |                                                                                                                | Q1                                                                                                                                  | Q2                                                                                           | Q3              | Q4          |
|                                                                                                             | Decode                                                                                                                                                                                                                                                                                                  | Read literal<br>'n'       | Process<br>Data                  | Write to PC                                     |                                                                                                                | Decode                                                                                                                              | Read literal<br>'n'                                                                          | Process<br>Data | Write to PC |
|                                                                                                             | No                                                                                                                                                                                                                                                                                                      | No                        | No                               | No                                              |                                                                                                                | No                                                                                                                                  | No                                                                                           | No              | No          |
| 14 8 1                                                                                                      | operation                                                                                                                                                                                                                                                                                               | operation                 | operation                        | operation                                       | 16 8 1                                                                                                         | operation                                                                                                                           | operation                                                                                    | operation       | operation   |
| IT IN                                                                                                       | o Jump:                                                                                                                                                                                                                                                                                                 | 02                        | 02                               | 04                                              | IT IN                                                                                                          | o Jump:                                                                                                                             | 02                                                                                           | 02              | 04          |
|                                                                                                             | Docodo                                                                                                                                                                                                                                                                                                  | QZ<br>Road litoral        | Record                           | Q4                                              |                                                                                                                | Docodo                                                                                                                              | QZ<br>Road literal                                                                           | Record          | Q4          |
|                                                                                                             | Decode                                                                                                                                                                                                                                                                                                  | 'n'                       | Data                             | operation                                       |                                                                                                                | Decode                                                                                                                              | 'n'                                                                                          | Data            | operation   |
| <u>Exar</u>                                                                                                 | <u>mple</u> :                                                                                                                                                                                                                                                                                           | HERE                      | BNOV Jump                        |                                                 | Exar                                                                                                           | <u>nple</u> :                                                                                                                       | HERE                                                                                         | BNZ Jump        |             |
| Before Instruction                                                                                          |                                                                                                                                                                                                                                                                                                         |                           |                                  | Before Instru                                   | uction                                                                                                         |                                                                                                                                     |                                                                                              |                 |             |
| PC = address (HERE)                                                                                         |                                                                                                                                                                                                                                                                                                         |                           |                                  | PC                                              | = ade                                                                                                          | dress (HERE)                                                                                                                        |                                                                                              |                 |             |
| After Instruction<br>If Overflow = 0;<br>PC = address (Jump)<br>If Overflow = 1;<br>PC = address (HERE + 2) |                                                                                                                                                                                                                                                                                                         |                           |                                  | After Instruc<br>If Zero<br>PC<br>If Zero<br>PC | tion<br>= 0;<br>= ado<br>= 1;<br>= ado                                                                         | dress (Jump)                                                                                                                        | + 2)                                                                                         |                 |             |

# PIC18F1220/1320

| DECFSZ Decrement f, skip if 0 |                     |                                                                                              |                                                                                                                                                                                                                                                     |                                                                 |                                                                    |  |  |  |
|-------------------------------|---------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|
| Synt                          | tax:                | [ label ]                                                                                    | [label] DECFSZ f[,d[,a]]                                                                                                                                                                                                                            |                                                                 |                                                                    |  |  |  |
| Ope                           | rands:              | $0 \le f \le 25$<br>$d \in [0,1]$<br>$a \in [0,1]$                                           | 5                                                                                                                                                                                                                                                   |                                                                 |                                                                    |  |  |  |
| Ope                           | ration:             | (f) – 1 $\rightarrow$ skip if res                                                            | $(f) - 1 \rightarrow dest,$<br>skip if result = 0                                                                                                                                                                                                   |                                                                 |                                                                    |  |  |  |
| State                         | us Affected:        | None                                                                                         |                                                                                                                                                                                                                                                     |                                                                 |                                                                    |  |  |  |
| Enc                           | oding:              | 0010                                                                                         | 11da                                                                                                                                                                                                                                                | ffff                                                            | ffff                                                               |  |  |  |
| Des                           | cription:           | The conte<br>decremen<br>is placed<br>is placed<br>(default).<br>If the resu<br>tion, whic   | ents of reg<br>nted. If 'd'<br>in W. If 'd'<br>back in re<br>ult is '0', th<br>h is alread                                                                                                                                                          | gister 'f<br>is '0',<br>is '1',<br>egister<br>ne nex<br>dy fetc | f' are<br>the result<br>the result<br>'f'<br>t instruc-<br>hed, is |  |  |  |
|                               |                     | discarded<br>instead, n<br>tion. If 'a'<br>will be se<br>BSR valu<br>will be se<br>value (de | discarded and a NOP is executed<br>instead, making it a 2-cycle instruc-<br>tion. If 'a' is '0', the Access Bank<br>will be selected, overriding the<br>BSR value. If 'a' = 1, then the bank<br>will be selected as per the BSR<br>value (default). |                                                                 |                                                                    |  |  |  |
| Wor                           | ds:                 | 1                                                                                            |                                                                                                                                                                                                                                                     |                                                                 |                                                                    |  |  |  |
| Cycles:                       |                     | 1(2)<br>Note: 3 c<br>by                                                                      | cycles if sl<br>a 2-word                                                                                                                                                                                                                            | kip and<br>instrue                                              | d followed<br>ction.                                               |  |  |  |
|                               | Q1                  | Q2                                                                                           | Q3                                                                                                                                                                                                                                                  |                                                                 | Q4                                                                 |  |  |  |
|                               | Decode              | Read                                                                                         | Proces                                                                                                                                                                                                                                              | s                                                               | Write to                                                           |  |  |  |
| lf ol                         | kin:                | register T                                                                                   | Data                                                                                                                                                                                                                                                | d                                                               | estination                                                         |  |  |  |
| 11 31                         | Q1                  | Q2                                                                                           | Q3                                                                                                                                                                                                                                                  |                                                                 | Q4                                                                 |  |  |  |
|                               | No                  | No                                                                                           | No                                                                                                                                                                                                                                                  |                                                                 | No                                                                 |  |  |  |
| lf al                         | operation           | operation                                                                                    | operatio                                                                                                                                                                                                                                            | on o                                                            | operation                                                          |  |  |  |
| 11 51                         |                     |                                                                                              |                                                                                                                                                                                                                                                     | ION.                                                            | ∩4                                                                 |  |  |  |
|                               | No                  | No                                                                                           | No                                                                                                                                                                                                                                                  |                                                                 | No                                                                 |  |  |  |
|                               | operation           | operation                                                                                    | operatio                                                                                                                                                                                                                                            | on d                                                            | operation                                                          |  |  |  |
|                               | No                  | No                                                                                           | No                                                                                                                                                                                                                                                  |                                                                 | No                                                                 |  |  |  |
|                               | operation           | operation                                                                                    | operation                                                                                                                                                                                                                                           | on d                                                            | operation                                                          |  |  |  |
| <u>Exa</u>                    | <u>mple</u> :       | HERE                                                                                         | DECFSZ<br>GOTO                                                                                                                                                                                                                                      | CN<br>LO                                                        | T<br>OP                                                            |  |  |  |
|                               | Refore Instru       | iction                                                                                       |                                                                                                                                                                                                                                                     |                                                                 |                                                                    |  |  |  |
|                               | PC<br>After Instruc | = Addres                                                                                     | S (HERE)                                                                                                                                                                                                                                            |                                                                 |                                                                    |  |  |  |
|                               | CNT<br>If CNT<br>PC | = CNT –<br>= 0;<br>= Addres                                                                  | 1<br>s (CONTI                                                                                                                                                                                                                                       | NUE )                                                           |                                                                    |  |  |  |
|                               | IT CN I<br>PC       | ≠ 0;<br>= Addres                                                                             | S (HERE                                                                                                                                                                                                                                             | + 2)                                                            |                                                                    |  |  |  |

| DCFSNZ                       | Decreme                                                                                                                                                  | nt f, skip if n                                                                                                                                                                       | ot 0                                                                                                                                                  |  |  |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:                      | [label]                                                                                                                                                  | DCFSNZ f[                                                                                                                                                                             | ,d [,a]]                                                                                                                                              |  |  |  |  |  |
| Operands:                    | $0 \le f \le 255$<br>$d \in [0,1]$<br>$a \in [0,1]$                                                                                                      | 5                                                                                                                                                                                     |                                                                                                                                                       |  |  |  |  |  |
| Operation:                   | (f) – 1 $\rightarrow$ c<br>skip if rest                                                                                                                  | lest,<br>µlt ≠ 0                                                                                                                                                                      |                                                                                                                                                       |  |  |  |  |  |
| Status Affected:             | None                                                                                                                                                     | None                                                                                                                                                                                  |                                                                                                                                                       |  |  |  |  |  |
| Encoding:                    | 0100                                                                                                                                                     | 11da fff                                                                                                                                                                              | f ffff                                                                                                                                                |  |  |  |  |  |
| Description:                 | The conte<br>decremen<br>is placed i<br>is placed b<br>(default).<br>If the resu<br>instruction<br>fetched, is<br>executed i<br>cycle instr<br>Access Ba | nts of registe<br>ted. If 'd' is 'c<br>n W. If 'd' is 'c<br>back in regist<br>It is not '0', th<br>, which is alr<br>discarded a<br>nstead, mak<br>uction. If 'a' i<br>ank will be se | r 'f' are<br>)', the result<br>1', the result<br>1', the result<br>rer 'f'<br>ne next<br>eady<br>nd a NOP is<br>ing it a 2-<br>s '0', the<br>elected, |  |  |  |  |  |
|                              | overriding<br>then the b<br>per the BS                                                                                                                   | the BSR value<br>ank will be so<br>SR value (def                                                                                                                                      | ue. If 'a' = 1,<br>elected as<br>fault).                                                                                                              |  |  |  |  |  |
| Words:                       | 1                                                                                                                                                        |                                                                                                                                                                                       |                                                                                                                                                       |  |  |  |  |  |
| Cycles:<br>Q Cycle Activity: | 1(2)<br><b>Note:</b> 3 c<br>by                                                                                                                           | ycles if skip a<br>a 2-word ins                                                                                                                                                       | and followed<br>truction.                                                                                                                             |  |  |  |  |  |
| Q1                           | Q2                                                                                                                                                       | Q3                                                                                                                                                                                    | Q4                                                                                                                                                    |  |  |  |  |  |
| Decode                       | Read<br>register 'f'                                                                                                                                     | Process<br>Data                                                                                                                                                                       | Write to destination                                                                                                                                  |  |  |  |  |  |
| If skip:                     | -                                                                                                                                                        |                                                                                                                                                                                       |                                                                                                                                                       |  |  |  |  |  |
| Q1                           | Q2                                                                                                                                                       | Q3                                                                                                                                                                                    | Q4                                                                                                                                                    |  |  |  |  |  |
| No                           | No                                                                                                                                                       | No                                                                                                                                                                                    | No                                                                                                                                                    |  |  |  |  |  |
| If skip and follow           | red by 2-wor                                                                                                                                             | d instruction.                                                                                                                                                                        | operation                                                                                                                                             |  |  |  |  |  |
| Q1                           | Q2                                                                                                                                                       | Q3                                                                                                                                                                                    | Q4                                                                                                                                                    |  |  |  |  |  |
| No                           | No                                                                                                                                                       | No                                                                                                                                                                                    | No                                                                                                                                                    |  |  |  |  |  |
| operation                    | operation                                                                                                                                                | operation                                                                                                                                                                             | operation                                                                                                                                             |  |  |  |  |  |
| No                           | No                                                                                                                                                       | No                                                                                                                                                                                    | No                                                                                                                                                    |  |  |  |  |  |
| operation                    | operation                                                                                                                                                | operation                                                                                                                                                                             |                                                                                                                                                       |  |  |  |  |  |
| Example:                     | HERE I<br>ZERO<br>NZERO                                                                                                                                  | DCFSNZ TEMP<br>:<br>:                                                                                                                                                                 |                                                                                                                                                       |  |  |  |  |  |
| Before Instru                | iction _                                                                                                                                                 | 2                                                                                                                                                                                     |                                                                                                                                                       |  |  |  |  |  |
| After Instruct               | ion =                                                                                                                                                    | •                                                                                                                                                                                     |                                                                                                                                                       |  |  |  |  |  |
| TEMP                         | =                                                                                                                                                        | TEMP – 1,                                                                                                                                                                             |                                                                                                                                                       |  |  |  |  |  |
| If TEMP<br>PC                | =                                                                                                                                                        | 0;<br>Address (2                                                                                                                                                                      | ZERO)                                                                                                                                                 |  |  |  |  |  |
| If TEMP<br>PC                | ≠<br>=                                                                                                                                                   | 0;<br>Address (1                                                                                                                                                                      | JZERO)                                                                                                                                                |  |  |  |  |  |

# 22.2 DC Characteristics: Power-Down and Supply Current PIC18F1220/1320 (Industrial) PIC18LF1220/1320 (Industrial) (Continued)

| PIC18LF<br>(Indu | 1 <b>220/1320</b><br>strial)          | <b>Standa</b><br>Operati | rd Oper | ating Co<br>erature | onditions (unles -40°C $\leq$ T/             | <b>as otherwise stated</b> )<br>$A \le +85^{\circ}C$ for industr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )<br>ial                     |  |  |  |
|------------------|---------------------------------------|--------------------------|---------|---------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|
| PIC18F1<br>(Indu | <b>220/1320</b><br>strial, Extended)  | <b>Standa</b><br>Operati | rd Oper | erating Co          | onditions (unles<br>-40°C ≤ T/<br>-40°C ≤ T/ | A solution of the state of the | )<br>ial<br>ded              |  |  |  |
| Param<br>No.     | Device                                | Тур.                     | Max.    | Units               |                                              | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |  |  |  |
|                  | Supply Current (IDD) <sup>(2,3)</sup> |                          |         |                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |  |  |  |
|                  | All devices                           | 3.2                      | 4.1     | mA                  | -40°C                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |  |  |  |
|                  |                                       | 3.2                      | 4.1     | mA                  | +25°C                                        | VDD = 4.2 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |  |  |  |
|                  |                                       | 3.3                      | 4.1     | mA                  | +85°C                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fosc = 40 MHz                |  |  |  |
|                  | All devices                           | 4.0                      | 5.1     | mA                  | -40°C                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EC oscillator)               |  |  |  |
|                  |                                       | 4.1                      | 5.1     | mA                  | +25°C                                        | VDD = 5.0V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                            |  |  |  |
|                  |                                       | 4.1                      | 5.1     | mA                  | +85°C                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |  |  |  |
|                  | PIC18LF1220/1320                      | 5.1                      | 9       | μΑ                  | -10°C                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |  |  |  |
|                  |                                       | 5.8                      | 9       | μΑ                  | +25°C                                        | VDD = 2.0V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |  |  |  |
|                  |                                       | 7.9                      | 11      | μΑ                  | +70°C                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |  |  |  |
|                  | PIC18LF1220/1320                      | 7.9                      | 12      | μΑ                  | -10°C                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fosc = 32 kHz <sup>(4)</sup> |  |  |  |
|                  |                                       | 8.9                      | 12      | μΑ                  | +25°C                                        | VDD = 3.0V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (SEC_RUN mode,               |  |  |  |
|                  |                                       | 10.5                     | 14      | μA                  | +70°C                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Timer1 as clock)             |  |  |  |
|                  | All devices                           | 12.5                     | 20      | μΑ                  | -10°C                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |  |  |  |
|                  |                                       |                          | 20      | μΑ                  | +25°C                                        | VDD = 5.0V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |  |  |  |
|                  |                                       |                          | 25      | μΑ                  | +70°C                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |  |  |  |

Legend: Shading of rows is to assist in readability of the table.

**Note 1:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

# 22.2 DC Characteristics: Power-Down and Supply Current PIC18F1220/1320 (Industrial) PIC18LF1220/1320 (Industrial) (Continued)

| PIC18LF<br>(Indus  | <b>1220/1320</b><br>strial)           | <b>Standa</b><br>Operati   | rd Oper    | ating Co<br>erature                               | onditions (unless -40°C $\leq$ TA                                                             | s otherwise states $4 \le +85^{\circ}$ C for indust | l)<br>rial                   |  |  |
|--------------------|---------------------------------------|----------------------------|------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------|--|--|
| PIC18F12<br>(Indus | <b>Standa</b><br>Operati              | rd Oper                    | erating Co | pnditions (unless -40°C $\leq$ TA -40°C $\leq$ TA | s otherwise states<br>$x \le +85^{\circ}$ C for indust<br>$x \le +125^{\circ}$ C for extended | l <b>)</b><br>rial<br>nded                          |                              |  |  |
| Param<br>No.       | Device                                | Typ. Max. Units Conditions |            |                                                   |                                                                                               |                                                     | ions                         |  |  |
|                    | Supply Current (IDD) <sup>(2,3)</sup> |                            |            |                                                   |                                                                                               |                                                     |                              |  |  |
|                    | PIC18LF1220/1320                      | 9.2                        | 15         | μΑ                                                | -10°C                                                                                         |                                                     |                              |  |  |
|                    |                                       | 9.6                        | 15         | μA                                                | +25°C                                                                                         | VDD = 2.0V                                          |                              |  |  |
|                    |                                       | 12.7                       | 18         | μA                                                | +70°C                                                                                         |                                                     |                              |  |  |
|                    | PIC18LF1220/1320                      | 22                         | 30         | μA                                                | -10°C                                                                                         |                                                     | Fosc = 32 kHz <sup>(4)</sup> |  |  |
|                    |                                       | 21                         | 30         | μA                                                | +25°C                                                                                         | VDD = 3.0V                                          | (SEC_IDLE mode,              |  |  |
|                    |                                       | 20                         | 35         | μA                                                | +70°C                                                                                         | Timer1 as clock)                                    |                              |  |  |
|                    | All devices                           | 50                         | 80         | μA                                                | -10°C                                                                                         |                                                     |                              |  |  |
|                    |                                       | 45                         | 80         | μA                                                | +25°C                                                                                         | VDD = 5.0V                                          |                              |  |  |
|                    |                                       | 45                         | 80         | μΑ                                                | +70°C                                                                                         |                                                     |                              |  |  |

Legend: Shading of rows is to assist in readability of the table.

**Note 1:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

# TABLE 22-8:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER<br/>AND BROWN-OUT RESET REQUIREMENTS

| Param.<br>No. | Symbol | Characteristic                                              | Min.      | Тур. | Max.      | Units | Conditions                |
|---------------|--------|-------------------------------------------------------------|-----------|------|-----------|-------|---------------------------|
| 30            | TmcL   | MCLR Pulse Width (low)                                      | 2         | —    | —         | μS    |                           |
| 31            | Twdt   | Watchdog Timer Time-out Period<br>(No postscaler)           | 3.48      | 4.00 | 4.71      | ms    |                           |
| 32            | Tost   | Oscillation Start-up Timer Period                           | 1024 Tosc |      | 1024 Tosc | _     | Tosc = OSC1 period        |
| 33            | TPWRT  | Power-up Timer Period                                       | —         | 65.5 | 132       | ms    |                           |
| 34            | Tıoz   | I/O High-Impedance from MCLR<br>Low or Watchdog Timer Reset | —         | 2    | —         | μS    |                           |
| 35            | TBOR   | Brown-out Reset Pulse Width                                 | 200       |      | —         | μS    | $VDD \le BVDD$ (see D005) |
| 36            | TIVRST | Time for Internal Reference<br>Voltage to become stable     | —         | 20   | 50        | μS    |                           |
| 37            | Tlvd   | Low-Voltage Detect Pulse Width                              | 200       | _    | —         | μS    | $VDD \leq VLVD$           |

## FIGURE 22-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS



| Param.<br>No.      | Symbol | Characteristic   |                |             | Min.                   | Max. | Units | Conditions                         |
|--------------------|--------|------------------|----------------|-------------|------------------------|------|-------|------------------------------------|
| 50                 | TccL   | CCPx Input Low   | No prescaler   |             | 0.5 Tcy + 20           |      | ns    |                                    |
|                    |        | Time             | With prescaler | PIC18F1X20  | 10                     | _    | ns    |                                    |
|                    |        |                  |                | PIC18LF1X20 | 20                     | _    | ns    |                                    |
| 51 TccH CCPx Input |        | CCPx Input High  | No prescaler   |             | 0.5 TCY + 20           | _    | ns    |                                    |
|                    |        | Time             | With prescaler | PIC18F1X20  | 10                     | _    | ns    |                                    |
|                    |        |                  |                | PIC18LF1X20 | 20                     | _    | ns    |                                    |
| 52                 | TccP   | CCPx Input Perio | d              |             | <u>3 Tcy + 40</u><br>N |      | ns    | N = prescale<br>value (1, 4 or 16) |
| 53                 | TccR   | CCPx Output Fall | Time           | PIC18F1X20  | —                      | 25   | ns    |                                    |
|                    |        | PIC18LF          |                | PIC18LF1X20 | —                      | 45   | ns    |                                    |
| 54                 | TccF   | CCPx Output Fall | Time           | PIC18F1X20  | —                      | 25   | ns    |                                    |
|                    |        |                  |                | PIC18LF1X20 | —                      | 45   | ns    |                                    |

## TABLE 22-10: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)

## FIGURE 22-12: EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING



## TABLE 22-11: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

| Param.<br>No. | Symbol   | Characteristic                    | Min.        | Max. | Units | Conditions |  |
|---------------|----------|-----------------------------------|-------------|------|-------|------------|--|
| 120           | TckH2dtV | SYNC XMIT (MASTER & SLAVE)        |             |      |       |            |  |
|               |          | Clock High to Data Out Valid      | PIC18F1X20  | —    | 40    | ns         |  |
|               |          |                                   | PIC18LF1X20 | _    | 100   | ns         |  |
| 121           | Tckrf    | Clock Out Rise Time and Fall Time | PIC18F1X20  | —    | 20    | ns         |  |
|               |          | (Master mode)                     | PIC18LF1X20 | —    | 50    | ns         |  |
| 122           | Tdtrf    | Data Out Rise Time and Fall Time  | PIC18F1X20  |      | 20    | ns         |  |
|               |          |                                   | PIC18LF1X20 |      | 50    | ns         |  |

## FIGURE 22-13: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING



# 24.0 PACKAGING INFORMATION

## 24.1 Package Marking Information

#### 18-Lead PDIP



### 18-Lead SOIC



### 20-Lead SSOP



## 28-Lead QFN



Example



## Example



## Example



## Example



| Legend | : XXX<br>Y<br>YY<br>WW<br>NNN<br>@3<br>* | Customer-specific information<br>Year code (last digit of calendar year)<br>Year code (last 2 digits of calendar year)<br>Week code (week of January 1 is week '01')<br>Alphanumeric traceability code<br>Pb-free JEDEC designator for Matte Tin (Sn)<br>This package is Pb-free. The Pb-free JEDEC designator (e3)<br>can be found on the outer packaging for this package. |
|--------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note:  | In the ever<br>be carried<br>characters  | nt the full Microchip part number cannot be marked on one line, it will<br>d over to the next line, thus limiting the number of available<br>for customer-specific information.                                                                                                                                                                                              |