

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f1320-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Details on Individual Family Members

Devices in the PIC18F1220/1320 family are available in 18-pin, 20-pin and 28-pin packages. A block diagram for this device family is shown in Figure 1-1.

The devices are differentiated from each other only in the amount of on-chip Flash program memory (4 Kbytes for the PIC18F1220 device, 8 Kbytes for the PIC18F1320 device). These and other features are summarized in Table 1-1. A block diagram of the PIC18F1220/1320 device architecture is provided in Figure 1-1. The pinouts for this device family are listed in Table 1-2.

TABLE 1-1:DEVICE FEATURES

Features	PIC18F1220	PIC18F1320	
Operating Frequency	DC – 40 MHz	DC – 40 MHz	
Program Memory (Bytes)	4096	8192	
Program Memory (Instructions)	2048	4096	
Data Memory (Bytes)	256	256	
Data EEPROM Memory (Bytes)	256	256	
Interrupt Sources	15	15	
I/O Ports	Ports A, B	Ports A, B	
Timers	4	4	
Enhanced Capture/Compare/PWM Modules	1	1	
Serial Communications	Enhanced USART	Enhanced USART	
10-bit Analog-to-Digital Module	7 input channels	7 input channels	
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	
Programmable Low-Voltage Detect	Yes	Yes	
Programmable Brown-out Reset	Yes	Yes	
Instruction Set	75 Instructions	75 Instructions	
Packages	18-pin SDIP 18-pin SOIC 20-pin SSOP 28-pin QFN	18-pin SDIP 18-pin SOIC 20-pin SSOP 28-pin QFN	

2.0 OSCILLATOR CONFIGURATIONS

2.1 Oscillator Types

The PIC18F1220 and PIC18F1320 devices can be operated in ten different oscillator modes. The user can program the Configuration bits, FOSC3:FOSC0, in Configuration Register 1H to select one of these ten modes:

1.	LP	Low-Power Crystal
2.	XT	Crystal/Resonator
3.	HS	High-Speed Crystal/Resonator
4.	HSPLL	High-Speed Crystal/Resonator with PLL enabled
5.	RC	External Resistor/Capacitor with Fosc/4 output on RA6
6.	RCIO	External Resistor/Capacitor with I/O on RA6
7.	INTIO1	Internal Oscillator with Fosc/4 output on RA6 and I/O on RA7
8.	INTIO2	Internal Oscillator with I/O on RA6 and RA7
9.	EC	External Clock with Fosc/4 output
10.	ECIO	External Clock with I/O on RA6

2.2 Crystal Oscillator/Ceramic Resonators

In XT, LP, HS or HSPLL Oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 2-1 shows the pin connections.

The oscillator design requires the use of a parallel cut crystal.

Note: Use of a series cut crystal may give a frequency out of the crystal manufacturer's specifications.

FIGURE 2-1: C

CRYSTAL/CERAMIC RESONATOR OPERATION (XT, LP, HS OR HSPLL CONFIGURATION)

- Note 1: See Table 2-1 and Table 2-2 for initial values of C1 and C2.
 - 2: A series resistor (Rs) may be required for AT strip cut crystals.
 - **3:** RF varies with the oscillator mode chosen.

TABLE 2-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Typical Capacitor Values Used:					
Mode	Freq.	OSC1	OSC2		
ХТ	455 kHz	56 pF	56 pF		
	2.0 MHz	47 pF	47 pF		
	4.0 MHz	33 pF	33 pF		
HS	8.0 MHz	27 pF	27 pF		
	16.0 MHz	22 pF	22 pF		

Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. **These values are not optimized**.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following Table 2-2 for additional information.

Resonators Used:			
455 kHz	4.0 MHz		
2.0 MHz	8.0 MHz		
16.0 MHz			

5.9.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 5-1 and Table 5-2. The SFRs can be classified into two sets: those associated with the "core" function and those related to the peripheral functions. Those registers related to the "core" are described in this section, while those related to the operation of the peripheral features are described in the section of that peripheral feature.

The SFRs are typically distributed among the peripherals whose functions they control.

The unused SFR locations will be unimplemented and read as '0's.

TABLE 5-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18F1220/1320 DEVICES

Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽²⁾	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2(2)	FBEh	CCPR1L	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2(2)	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽²⁾	FBCh	_	F9Ch	—
FFBh	PCLATU	FDBh	PLUSW2 ⁽²⁾	FBBh	_	F9Bh	OSCTUNE
FFAh	PCLATH	FDAh	FSR2H	FBAh	—	F9Ah	—
FF9h	PCL	FD9h	FSR2L	FB9h	_	F99h	—
FF8h	TBLPTRU	FD8h	STATUS	FB8h	_	F98h	_
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	PWM1CON	F97h	—
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	ECCPAS	F96h	—
FF5h	TABLAT	FD5h	TOCON	FB5h	_	F95h	—
FF4h	PRODH	FD4h	—	FB4h	_	F94h	—
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	LVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	—
FF0h	INTCON3	FD0h	RCON	FB0h	SPBRGH	F90h	—
FEFh	INDF0 ⁽²⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	—
FEEh	POSTINC0(2)	FCEh	TMR1L	FAEh	RCREG	F8Eh	—
FEDh	POSTDEC0(2)	FCDh	T1CON	FADh	TXREG	F8Dh	—
FECh	PREINC0 ⁽²⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	—
FEBh	PLUSW0 ⁽²⁾	FCBh	PR2	FABh	RCSTA	F8Bh	—
FEAh	FSR0H	FCAh	T2CON	FAAh	BAUDCTL	F8Ah	LATB
FE9h	FSR0L	FC9h	—	FA9h	EEADR	F89h	LATA
FE8h	WREG	FC8h	—	FA8h	EEDATA	F88h	—
FE7h	INDF1 ⁽²⁾	FC7h	—	FA7h	EECON2	F87h	—
FE6h	POSTINC1(2)	FC6h	—	FA6h	EECON1	F86h	_
FE5h	POSTDEC1(2)	FC5h	—	FA5h	_	F85h	—
FE4h	PREINC1 ⁽²⁾	FC4h	ADRESH	FA4h	_	F84h	_
FE3h	PLUSW1 ⁽²⁾	FC3h	ADRESL	FA3h	_	F83h	_
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA

Note 1: Unimplemented registers are read as '0'.

2: This is not a physical register.

6.2.2 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The table latch is used to hold 8-bit data during data transfers between program memory and data RAM.

6.2.3 **TBLPTR – TABLE POINTER** REGISTER

The Table Pointer (TBLPTR) addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. Setting the 22nd bit allows access to the device ID, the user ID and the configuration bits.

The Table Pointer (TBLPTR) register is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 6-1. These operations on the TBLPTR only affect the low-order 21 bits.

TABLE POINTER BOUNDARIES 6.2.4

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the Table Pointer determine which byte is read from program or configuration memory into TABLAT.

When a TBLWT is executed, the three LSbs of the Table Pointer (TBLPTR<2:0>) determine which of the eight program memory holding registers is written to. When the timed write to program memory (long write) begins, the 19 MSbs of the Table Pointer (TBLPTR<21:3>) will determine which program memory block of 8 bytes is written to (TBLPTR<2:0> are ignored). For more detail, see Section 6.5 "Writing to Flash Program Memory".

When an erase of program memory is executed, the 16 MSbs of the Table Pointer (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 6-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations.

TABLE 0-1:	TABLE POINTER OPERATIONS WITH TBERD AND TBEWT INSTRUCTIONS				
Example	Operation on Table Pointer				
TBLRD* TBLWT*	TBLPTR is not modified				
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write				

TBLPTR is decremented after the read/write

TBLPTR is incremented before the read/write

FRATIONS WITH TRUDE AND TRUMT INSTRUCTIONS

FIGURE 6-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

TBLRD*-

TBLWT*-TBLRD+*

TBLWT+*

6.5 Writing to Flash Program Memory

The programming block size is 4 words or 8 bytes. Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are eight holding registers used by the table writes for programming.

Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction must be executed eight times for each programming operation. All of the table write operations will essentially be short writes, because only the holding registers are written. At the end of updating eight registers, the EECON1 register must be written to, to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

FIGURE 6-5: TABLE WRITES TO FLASH PROGRAM MEMORY

6.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer with address being erased.
- 4. Do the row erase procedure (see Section 6.4.1 "Flash Program Memory Erase Sequence").
- 5. Load Table Pointer with address of first byte being written.
- 6. Write the first 8 bytes into the holding registers with auto-increment.
- Set the EECON1 register for the write operation:
 set EEPGD bit to point to program memory;
 - •clear the CFGS bit to access program memory;
 - •set WREN bit to enable byte writes.
- 8. Disable interrupts.
- 9. Write 55h to EECON2.

- 10. Write AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for duration of the write (about 2 ms using internal timer).
- 13. Execute a NOP.
- 14. Re-enable interrupts.
- 15. Repeat steps 6-14 seven times to write 64 bytes.
- 16. Verify the memory (table read).

This procedure will require about 18 ms to update one row of 64 bytes of memory. An example of the required code is given in Example 6-3.

9.5 RCON Register

The RCON register contains bits used to determine the cause of the last Reset or wake-up from a low-power mode. RCON also contains the bit that enables interrupt priorities (IPEN).

REGISTER 9-10: RCON: RESET CONTROL REGISTER

R/W-0	U-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	—	—	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	 IPEN: Interrupt Priority Enable bit 1 = Enable priority levels on interrupts 0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)
bit 6-5	Unimplemented: Read as '0'
bit 4	RI: RESET Instruction Flag bit
	For details of bit operation, see Register 5-3.
bit 3	TO: Watchdog Time-out Flag bit
	For details of bit operation, see Register 5-3.
bit 2	PD: Power-down Detection Flag bit
	For details of bit operation, see Register 5-3.
bit 1	POR: Power-on Reset Status bit
	For details of bit operation, see Register 5-3.
bit 0	BOR: Brown-out Reset Status bit
	For details of bit operation, see Register 5-3.

FIGURE 10-3:

BLOCK DIAGRAM OF

FIGURE 10-4: BLOCK DIAGRAM OF RA4/T0CKI PIN

FIGURE 10-5:

BLOCK DIAGRAM OF OSC1/CLKI/RA7 PIN

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0
bit 7 bi					bit 0		
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Rese				ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 15-2: PWM1CON: PWM CONFIGURATION REGISTER

bit 7	PRSEN: PWM Restart Enable bit
	 1 = Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically
	0 = Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM
bit 6-0	PDC<6:0>: PWM Delay Count bits
	Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal should transition active and the actual time it transitions active.

U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1
	_	_	_	BORV1	BORV0	BOR ⁽¹⁾	PWRTEN ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	P = Program	mable bit		
bit 7-4	Unimplement	ted: Read as '	כי				
bit 3-2	BORV<1:0>:	Brown-out Res	et Voltage bit	S			
	11 = Reserve	d					
	10 = VBOR se	t to 2.7V					
	01 = VBOR Se 00 = VBOR Se	t to 4.5V					
bit 1	BOR: Brown-	out Reset Enat	ole bit ⁽¹⁾				
	1 = Brown-out Reset enabled						
	0 = Brown-out	t Reset disable	d				
bit 0	PWRTEN: Po	wer-up Timer I	Enable bit ⁽¹⁾				
	1 = PWRT dis	abled					
	0 = PWRT en	abled					

REGISTER 19-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

Note 1: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

19.2 Watchdog Timer (WDT)

For PIC18F1220/1320 devices, the WDT is driven by the INTRC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: execute a SLEEP or CLRWDT instruction, the IRCF bits (OSCCON<6:4>) are changed or a clock failure has occurred.

Adjustments to the internal oscillator clock period using the OSCTUNE register also affect the period of the WDT by the same factor. For example, if the INTRC period is increased by 3%, then the WDT period is increased by 3%.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - Changing the setting of the IRCF bits (OSCCON<6:4>) clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed the postscaler count will be cleared.

19.2.1 CONTROL REGISTER

Register 19-14 shows the WDTCON register. This is a readable and writable register, which contains a control bit that allows software to override the WDT enable Configuration bit, only if the Configuration bit has disabled the WDT.

REGISTER 19-14: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—	—	—	—	—	SWDTEN ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 Unimplemented: Read as '0'

bit 0 SWDTEN: Software Controlled Watchdog Timer Enable bit⁽¹⁾

- 1 = Watchdog Timer is on
- 0 = Watchdog Timer is off

Note 1: This bit has no effect if the Configuration bit, WDTEN (CONFIG2H<0>), is enabled.

19.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the microcontroller to continue operation, in the event of an external oscillator failure, by automatically switching the system clock to the internal oscillator block. The FSCM function is enabled by setting the Fail-Safe Clock Monitor Enable bit, FSCM (CONFIG1H<6>).

When FSCM is enabled, the INTRC oscillator runs at all times to monitor clocks to peripherals and provide an instant backup clock in the event of a clock failure. Clock monitoring (shown in Figure 19-3) is accomplished by creating a sample clock signal, which is the INTRC output divided by 64. This allows ample time between FSCM sample clocks for a peripheral clock edge to occur. The peripheral system clock and the sample clock are presented as inputs to the Clock Monitor latch (CM). The CM is set on the falling edge of the system clock source, but cleared on the rising edge of the sample clock.

Clock failure is tested for on the falling edge of the sample clock. If a sample clock falling edge occurs while CM is still set, a clock failure has been detected (Figure 19-4). This causes the following:

- the FSCM generates an oscillator fail interrupt by setting bit, OSCFIF (PIR2<7>);
- the system clock source is switched to the internal oscillator block (OSCCON is not updated to show the current clock source – this is the Fail-Safe condition); and
- the WDT is reset.

Since the postscaler frequency from the internal oscillator block may not be sufficiently stable, it may be desirable to select another clock configuration and enter an alternate power managed mode (see Section 19.3.1 "Special Considerations for Using Two-Speed Start-up" and Section 3.1.3 "Multiple Sleep Commands" for more details). This can be done to attempt a partial recovery, or execute a controlled shutdown.

To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IFRC2:IFRC0, immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting IFRC2:IFRC0 prior to entering Sleep mode.

Adjustments to the internal oscillator block, using the OSCTUNE register, also affect the period of the FSCM by the same factor. This can usually be neglected, as the clock frequency being monitored is generally much higher than the sample clock frequency.

The FSCM will detect failures of the primary or secondary clock sources only. If the internal oscillator block fails, no failure would be detected, nor would any action be possible.

19.4.1 FSCM AND THE WATCHDOG TIMER

Both the FSCM and the WDT are clocked by the INTRC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTRC oscillator when the FSCM is enabled.

As already noted, the clock source is switched to the INTOSC clock when a clock failure is detected. Depending on the frequency selected by the IRCF2:IRCF0 bits, this may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, Fail-Safe Clock events also reset the WDT and postscaler, allowing it to start timing from when execution speed was changed and decreasing the likelihood of an erroneous time-out.

20.0 INSTRUCTION SET SUMMARY

The PIC18 instruction set adds many enhancements to the previous PIC instruction sets, while maintaining an easy migration from these PIC instruction sets.

Most instructions are a single program memory word (16 bits), but there are three instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal operations
- Control operations

The PIC18 instruction set summary in Table 20-1 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 20-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction.

The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All **bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located.

The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for three double-word instructions. These three instructions were made double-word instructions so that all the required information is available in these 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 20-1 shows the general formats that the instructions can have.

All examples use the format 'nnh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

The Instruction Set Summary, shown in Table 20-1, lists the instructions recognized by the Microchip Assembler (MPASMTM). **Section 20.2** "Instruction **Set**" provides a description of each instruction.

20.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a "BCF PORTB, 1" instruction will read PORTB, clear bit 1 of the data, then write the result back to PORTB. The read operation would have the unintended result that any condition that sets the RBIF flag would be cleared. The R-M-W operation may also copy the level of an input pin to its corresponding output latch.

GOT	ю	Uncondi	tional B	ranch	ı		
Synt	ax:	[label]	GOTO	k			
Ope	rands:	$0 \le k \le 1048575$					
Ope	ration:	$k \rightarrow PC < $	20:1>				
Statu	us Affected:	None					
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)) 1110) 1111	1111 k ₁₉ kkk	k ₇ kl kkk	kk :k	kkkk ₀ kkkk ₈	
Dest	Description: GOTO allows an unconditional branch anywhere within the entire 2-Mbyte memory range. The 20-b value 'k' is loaded into PC<20:1>. GOTO is always a 2-cycle instruction					entire e 20-bit 20:1>.	
Wor	ds:	2					
Cycl	es:	2					
QC	ycle Activity:						
	Q1	Q2	Q	3		Q4	
	Decode	Read literal 'k'<7:0>,	No opera) tion	Rea 'k' Wri	ad literal <19:8>, ite to PC	
	No operation	No operation	No opera	tion	ор	No eration	

Example: GOTO THERE

After Instruction

PC = Address (THERE)

Incremen	tf		
[label]	INCF	f [,d [,a]]	
0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5		
(f) + 1 \rightarrow (dest		
C, DC, N	, OV, Z		
0010	10da	ffff	ffff
increment is placed i is placed i (default). I Bank will i the BSR v bank will is	ed. If 'd' n W. If ' pack in f f 'a' is ' pe selec ralue. If pe selec e (defau	i' is '0', th d' is '1', t register '1 D', the Ac ted, ove 'a' = 1, th ted as per lt).	e result he result f' ccess rriding hen the er the
1			
1			
Q2	Q	3	Q4
Read register 'f'	Proce Dat	ess \ a de	Write to estination
INCF	CNT		
uction = 0xFF = 0 = ? = ?			
	Incremen [label] $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $(f) + 1 \rightarrow 0$ C, DC, N. 0010 The conterinc rement is placed i is placed i (default). I Bank will b BSR value 1 1 Q2 Read register 'f' INCF increment $a \ge 0$ $a \ge 0$	Increment f[label]INCF $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $a \in [0,1]$ $(f) + 1 \rightarrow dest$ C, DC, N, OV, Z 0010 $10da$ The contents of reincremented. If 'd'is placed in W. If 'is placed back in fill(default). If 'a' is '0Bank will be selectBSR value. Ifbank will be selectBSR value (default)1Q2Q3ReadProceregister 'f'DatINCFCNTintcion= $0 = ?$ $= 2$	Increment f[/abe/]INCFf [,d [,a]] $0 \le f \le 255$ d $\in [0,1]$ $a \in [0,1]$ (f) + 1 \rightarrow destC, DC, N, OV, Z001010daffffThe contents of register 'f'incremented. If 'd' is '0', theis placed in W. If 'd' is '1', theis placed back in register 'f'(default). If 'a' is '0', the ActionBank will be selected, overthe BSR value. If 'a' = 1, thebank will be selected as perBSR value (default).111Q2Q3ReadProcessMregister 'f'Datadefunction=0=?

CNT Z C DC = = = =

IOR	LW	Inclusive	e OR lite	ral wi	th V	V
Synt	ax:	[label]	IORLW	k		
Ope	rands:	$0 \le k \le 25$	55			
Ope	ration:	(W) .OR.	$k \rightarrow W$			
Statu	us Affected:	N, Z				
Enco	oding:	0000	1001	kkk	k	kkkk
Des	cription:	The conte the 8-bit I placed in	ents of W iteral 'k'. W.	/ are (The r	OR'é resu	ed with It is
Wor	ds:	1				
Cycl	es:	1				
QC	cycle Activity:					
	Q1	Q2	Q3	3	Q	
	Decode	Read literal 'k'	Proce Dat	ess a	Wr	ite to W
<u>Exar</u>	<u>mple</u> :	IORLW	0x35			
	Before Instru	ction				
	W	= 0x9A				
	After Instruct	ion				
	W	= 0xBF				

IOR	RWF Inclusive OR W with f								
Synt	ax:	[label]	IORWF	f [,d [,a	a]]				
Ope	rands:	$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Ope	ration:	(W) .OR.	$(f) \rightarrow des$	t					
State	us Affected:	N, Z							
Enco	oding:	0001	00da	ffff	ffff				
Desi		Inclusive OR W with register 't'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, over- riding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default)							
Wor	ds:	1							
Cycl	es:	1							
QC	cycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read register 'f'	Proces Data	ss V de	Vrite to stination				
<u>Exa</u>	<u>mple</u> :	IORWF RE	ESULT, W						

Before Instruction RESULT = 0x13 W = 0x91

After Instruction $\begin{array}{rcl} \text{RESULT} &= & 0x13 \\ \text{W} &= & 0x93 \end{array}$

 $\ensuremath{\textcircled{}^{\circ}}$ 2002-2015 Microchip Technology Inc.

MULLW	Multiply Literal with	w	MULWF	Multiply V	V with f	
Syntax:	[label] MULLW	<	Syntax:	[label]	MULWF f	[,a]
Operands:	$0 \leq k \leq 255$		Operands:	$0 \le f \le 255$	5	
Operation:	(W) x k \rightarrow PRODH:P	RODL		a ∈ [0,1]		
Status Affected:	None		Operation:	(W) x (f) –	→ PRODH:PI	RODL
Encoding:	0000 1101 k	kkk kkkk	Status Affected:	None		
Description:	An unsigned multiplic	ation is	Encoding:	0000	001a fff	f ffff
Description: An unsigned multiplication is carried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in the PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the Status flags are affected. Note that neither Overflow nor Carry is possible in this opera- tion. A Zero result is possible but not detected		Description:	An unsign carried ou of W and t 'f'. The 16 the PROD pair. PROD byte. Both W ar None of th affected. Note that Carry is po	ed multiplica t between the he register fi -bit result is s OH:PRODL re DH contains and 'f' are unc he Status flag neither Overl ossible in this	tion is e contents le location stored in egister the high hanged. gs are flow nor s opera-	
Words:	1			tion. A Zei	ro result is po	ossible,
Cvcles:	1			but not de	tected. If 'a' i	is '0', the
Q Cvcle Activity:				overriding	the BSR val	ue. If
Q1	Q2 Q3	Q4		'a' = 1, the	en the bank v	will be
Decode	Read Process literal 'k' Data	Write registers PRODH: PRODL	Words:	selected a (default). 1	is per the BS	R value
			O Cycle Activity:	1		
Example:	MULLW 0xC4		Q Oycle Adimity.	Q2	Q3	Q4
Before Instru W PRODH PRODL After Instruct	ction = 0xE2 = ? = ?		Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL
PRODH PRODL	= 0xE2 $= 0xAD$ $= 0x08$		Example:	MULWF 1	REG	
			Before Instru	iction		
			W REG PRODH PRODL	= 0x0 = 0x1 = ? = ?	C4 B5	
			After Instruct	tion		
			W REG PRODH PRODL	= 0xi $= 0xi$ $= 0xi$ $= 0xi$	C4 B5 8A 94	

RCA	LL	Relative (Call						
Synt	ax:	[<i>label</i>] R	[<i>label</i>] RCALL n						
Ope	rands:	-1024 ≤ n	$-1024 \le n \le 1023$						
Ope	ration:	(PC) + 2 - (PC) + 2 +	$(PC) + 2 \rightarrow TOS,$ $(PC) + 2 + 2n \rightarrow PC$						
Statu	us Affected:	None							
Enco	oding:	1101	1nnn n	nnn	nnnn				
Desi		Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction.							
Wor	ds:	1							
Cycl	es:	2							
QC	ycle Activity:	:							
	Q1	Q2	Q3		Q4				
	Decode	Read literal	Process Data	Wr	ite to PC				

RES	ET	Reset				
Synt	ax:	[label]	RESET			
Ope	rands:	None				
Operation: Reset all registers and flags the are affected by a MCLR Reset.					s that eset.	
Status Affected: All						
Enco	oding:	0000	0000	1111 111		1111
Des	cription:	This instruet a	uction pr MCLR	ovide Rese	es a t in s	way to software.
Wor	ds:	1				
Cycl	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3	3		Q4
	Decode	Start	No)		No
		Reset	opera	tion	op	peration

Example: RESET

After Instruction	
Registers =	Reset Value
Flags* =	Reset Value

Example: HERE RCALL Jump

Push PC to stack

No

operation

No

operation

No

operation

Before Instruction

No

operation

PC = Address (HERE) After Instruction PC = Address (Jump) TOS = Address (HERE + 2)

22.2 DC Characteristics: Power-Down and Supply Current PIC18F1220/1320 (Industrial) PIC18LF1220/1320 (Industrial) (Continued)

PIC18LF (Indus	1 220/1320 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial) rial	
PIC18F12 (Indus	220/1320 strial, Extended)	Standa Operati	rd Oper ng temp	ating Co erature	onditions (unless -40°C ≤ TA -40°C ≤ TA	<pre>otherwise stated ≤ +85°C for indust ≤ +125°C for exter</pre>) rial nded	
Param No.	Device	Тур.	Max.	Units	Conditions			
	Module Differential Currer	nts (∆lw	от, ∆Іво	r, ∆Ilvd	, Δ IOSCB, Δ IAD)			
D022	Watchdog Timer	1.5	4.0	μΑ	-40°C			
(∆Iwdt)		2.2	4.0	μΑ	+25°C	VDD = 2.0V		
		3.1	5.0	μΑ	+85°C			
		2.5	6.0	μΑ	-40°C			
		3.3	6.0	μΑ	+25°C	VDD = 3.0V		
		4.7	7.0	μΑ	+85°C			
		3.7	10.0	μΑ	-40°C			
		4.5	10.0	μΑ	+25°C	VDD = 5.0V		
		6.1	13.0	μΑ	+85°C			
D022A	Brown-out Reset	19	35.0	μA	-40°C to +85°C	VDD = 3.0V		
(ΔIBOR)		24	45.0	μΑ	-40°C to +85°C	VDD = 5.0V		
D022B	Low-Voltage Detect	8.5	25.0	μΑ	-40°C to +85°C	VDD = 2.0V		
(ΔILVD)		16	35.0	μΑ	-40°C to +85°C	VDD = 3.0V		
		20	45.0	μΑ	-40°C to +85°C	VDD = 5.0V		
D025	Timer1 Oscillator	1.7	3.5	μΑ	-40°C			
(∆IOSCB)		1.8	3.5	μΑ	+25°C	VDD = 2.0V	32 kHz on Timer1 ⁽⁴⁾	
		2.1	4.5	μΑ	+85°C			
		2.2	4.5	μΑ	-40°C			
		2.6	4.5	μΑ	+25°C	VDD = 3.0V	32 kHz on Timer1 ⁽⁴⁾	
		2.8	5.5	μΑ	+85°C			
		3.0	6.0	μΑ	-40°C			
		3.3	6.0	μA	+25°C	VDD = 5.0V	32 kHz on Timer1 ⁽⁴⁾	
		3.6	7.0	μA	+85°C			
D026	A/D Converter	1.0	3.0	μA	-40°C to +85°C	VDD = 2.0V		
(ΔIAD)		1.0	4.0	μA	-40°C to +85°C	VDD = 3.0V	A/D on not converting	
		2.0	10.0	μΑ	-40°C to +85°C	VDD = 5.0V	A/D on, not converting	
		1.0	8.0	μΑ	-40°C to +125°C	VDD = 5.0V		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

22.3 DC Characteristics: PIC18F1220/1320 (Industrial) PIC18LF1220/1320 (Industrial) (Continued)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Max.	Units	Conditions	
	Vol	Output Low Voltage					
D080		I/O ports	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C	
D083		OSC2/CLKO (RC mode)	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C	
	Vон	Output High Voltage ⁽³⁾					
D090		I/O ports	VDD - 0.7	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С	
D092		OSC2/CLKO (RC mode)	Vdd - 0.7	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С	
D150	Vod	Open-Drain High Voltage	—	8.5	V	RA4 pin	
		Capacitive Loading Specs on Output Pins					
D100 ⁽⁴⁾	Cosc2	OSC2 pin	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1	
D101	Сю	All I/O pins and OSC2 (in RC mode)	—	50	pF	To meet the AC timing specifications	
D102	Св	SCL, SDA	—	400	pF	In I ² C mode	

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC[®] device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Parameter is characterized but not tested.

FIGURE 22-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions	
50	TccL	CCPx Input Low Time	No prescaler		0.5 Tcy + 20		ns	
			With prescaler	PIC18F1X20	10	_	ns	
				PIC18LF1X20	20	_	ns	
51	ТссН	CCPx Input High Time	No prescaler		0.5 TCY + 20	_	ns	
			With prescaler	PIC18F1X20	10	_	ns	
				PIC18LF1X20	20	_	ns	
52	TccP	CCPx Input Period			<u>3 Tcy + 40</u> N		ns	N = prescale value (1, 4 or 16)
53	TccR	CCPx Output Fall Time PIC18F1X20 PIC18LF1X2		PIC18F1X20	—	25	ns	
				PIC18LF1X20	—	45	ns	
54	TccF	CCPx Output Fall Time F		PIC18F1X20	—	25	ns	
				PIC18LF1X20	—	45	ns	

TABLE 22-10: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)

FIGURE 22-12: EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 22-11: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param. No.	Symbol	Characteristic			Max.	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)					
		Clock High to Data Out Valid	PIC18F1X20		40	ns	
			PIC18LF1X20		100	ns	
121	Tckrf	Clock Out Rise Time and Fall Time	PIC18F1X20	—	20	ns	
		(Master mode)	PIC18LF1X20	—	50	ns	
122	Tdtrf	Data Out Rise Time and Fall Time	PIC18F1X20		20	ns	
			PIC18LF1X20		50	ns	

FIGURE 22-13: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

