

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f1320-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Oscillator Configurations	10
3.0	Power Managed Modes	
4.0	Reset	
5.0	Memory Organization	39
6.0	Flash Program Memory	55
7.0	Data EEPROM Memory	64
8.0	8 x 8 Hardware Multiplier	68
9.0	Interrupts	
10.0	I/O Ports	83
11.0	Timer0 Module	95
12.0	Timer1 Module	98
13.0	Timer2 Module	104
14.0		
15.0		
16.0	Enhanced Addressable Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	126
17.0	10-Bit Analog-to-Digital Converter (A/D) Module	149
18.0	Low-Voltage Detect	160
19.0	Special Features of the CPU	165
20.0	Instruction Set Summary	184
21.0	Development Support	226
22.0		
23.0	DC and AC Characteristics Graphs and Tables	262
24.0	Packaging Information	280
Appe	andix A: Revision History	290
Appe	andix B: Device Differences	290
Appe	andix C: Conversion Considerations	291
Appe	andix D: Migration from Baseline to Enhanced Devices	291
	andix E: Migration from Mid-Range to Enhanced Devices	
Appe	andix F: Migration from High-End to Enhanced Devices	292
	Microchip Web Site	
Custo	omer Change Notification Service	293
Custo	omer Support	293
PIC1	8F1220/1320 Product Identification System	

	Pi	n Numb	er	D ' 1	D	
Pin Name	8 9 9 1/O TTL Digital I/O. I Analog Analog input 4.			Description		
	_		_			PORTB is a bidirectional I/O port. PORTB can be softwa programmed for internal weak pull-ups on all inputs.
RB0/AN4/INT0 RB0 AN4 INT0	8	9	9			
RB1/AN5/TX/CK/INT1 RB1 AN5 TX CK INT1	9	10	10	I/O I 0 I/O I	TTL Analog — ST ST	Digital I/O. Analog input 5. EUSART asynchronous transmit. EUSART synchronous clock (see related RX/DT). External interrupt 1.
RB2/P1B/INT2 RB2 P1B INT2	17	19	23	I/O O I	TTL — ST	Digital I/O. Enhanced CCP1/PWM output. External interrupt 2.
RB3/CCP1/P1A RB3 CCP1 P1A	18	20	24	I/O I/O O	TTL ST	Digital I/O. Capture 1 input/Compare 1 output/PWM 1 output. Enhanced CCP1/PWM output.
RB4/AN6/RX/DT/KBI0 RB4 AN6 RX DT KBI0	10	11	12	I/O I I I/O I	TTL Analog ST ST TTL	Digital I/O. Analog input 6. EUSART asynchronous receive. EUSART synchronous data (see related TX/CK). Interrupt-on-change pin.
RB5/PGM/KBI1 RB5 PGM KBI1	11	12	13	I/O I/O I	TTL ST TTL	Digital I/O. Low-Voltage ICSP™ Programming enable pin. Interrupt-on-change pin.
RB6/PGC/T10S0/ T13CKI/P1C/KBI2 RB6 PGC T10S0 T13CKI P1C KBI2	12	13	15	I/O I/O I O I	TTL ST — ST — TTL	Digital I/O. In-Circuit Debugger and ICSP programming clock pin. Timer1 oscillator output. Timer1/Timer3 external clock output. Enhanced CCP1/PWM output. Interrupt-on-change pin.
RB7/PGD/T1OSI/ P1D/KBI3 RB7 PGD T1OSI P1D KBI3	13	14	16	I/O I/O I O I	TTL ST CMOS — TTL	Digital I/O. In-Circuit Debugger and ICSP programming data pin. Timer1 oscillator input. Enhanced CCP1/PWM output. Interrupt-on-change pin.
Vss	5	5, 6	3, 5	Р	—	Ground reference for logic and I/O pins.
Vdd	14	15, 16	17, 19	Р		Positive supply for logic and I/O pins.
NC	—	—	18	—	—	No connect.
ST = Sc	hmitt Tri Itput	atible inp gger inp	ut with (evels	CMOS = CMOS compatible input or output I = Input P = Power

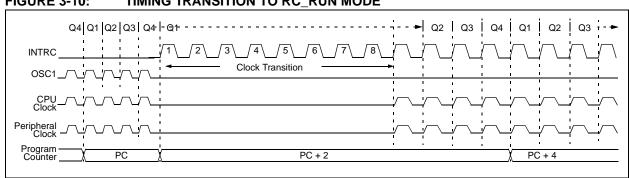
O = Output OD = Open-drain (no P diode to VDD)

3.4.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer and the primary clock is shut down. When using the INTRC source, this mode provides the best power conservation of all the Run modes, while still executing code. It works well for user applications which are not highly timing sensitive, or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block (either of the INTIO1 or INTIO2 oscillators), there are no distinguishable differences between PRI_RUN and RC_RUN modes during execution. However, a clock switch delay will occur during entry to and exit from RC_RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC_RUN mode is not recommended.

This mode is entered by clearing the IDLEN bit, setting SCS1 (SCS0 is ignored) and executing a SLEEP instruction. The IRCF bits may select the clock frequency before the SLEEP instruction is executed. When the clock source is switched to the INTOSC multiplexer (see Figure 3-10), the primary oscillator is shut down and the OSTS bit is cleared.


The IRCF bits may be modified at any time to immediately change the system clock speed. Executing a SLEEP instruction is not required to select a new clock frequency from the INTOSC multiplexer. Note: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/Fosc specifications are violated.

If the IRCF bits are all clear, the INTOSC output is not enabled and the IOFS bit will remain clear; there will be no indication of the current clock source. The INTRC source is providing the system clocks.

If the IRCF bits are changed from all clear (thus, enabling the INTOSC output), the IOFS bit becomes set after the INTOSC output becomes stable. Clocks to the system continue while the INTOSC source stabilizes, in approximately 1 ms.

If the IRCF bits were previously at a non-zero value before the SLEEP instruction was executed and the INTOSC source was already stable, the IOFS bit will remain set.

When a wake event occurs, the system continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 3-8). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the system clock. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

FIGURE 3-10: TIMING TRANSITION TO RC_RUN MODE

8.0 8 x 8 HARDWARE MULTIPLIER

8.1 Introduction

An 8 x 8 hardware multiplier is included in the ALU of the PIC18F1220/1320 devices. By making the multiply a hardware operation, it completes in a single instruction cycle. This is an unsigned multiply that gives a 16-bit result. The result is stored into the 16-bit product register pair (PRODH:PRODL). The multiplier does not affect any flags in the Status register. Making the 8 x 8 multiplier execute in a single cycle gives the following advantages:

- Higher computational throughput
- Reduces code size requirements for multiply algorithms

The performance increase allows the device to be used in applications previously reserved for Digital Signal Processors.

Table 8-1 shows a performance comparison between Enhanced devices using the single-cycle hardware multiply and performing the same function without the hardware multiply.

		Program	Cycles	Time			
Routine	Multiply Method	Memory (Words)	(Max)	@ 40 MHz	@ 10 MHz	@ 4 MHz	
	Without hardware multiply	13	69	6.9 μs	27.6 μs	69 μs	
8 x 8 unsigned	Hardware multiply	1	1	100 ns	400 ns	1 μs	
8 x 8 signed	Without hardware multiply	33	91	9.1 μs	36.4 μs	91 μs	
	Hardware multiply	6	6	600 ns	2.4 μs	6 μs	
	Without hardware multiply	21	242	24.2 μs	96.8 μs	242 μs	
16 x 16 unsigned	Hardware multiply	28	28	2.8 μs	11.2 μs	28 μs	
	Without hardware multiply	52	254	25.4 μs	102.6 μs	254 μs	
16 x 16 signed	Hardware multiply	35	40	4 μs	16 μs	40 μs	

TABLE 8-1: PERFORMANCE COMPARISON

8.2 Operation

Example 8-1 shows the sequence to do an 8×8 unsigned multiply. Only one instruction is required when one argument of the multiply is already loaded in the WREG register.

Example 8-2 shows the sequence to do an 8 x 8 signed multiply. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 8-1: 8 x 8 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1, W	;
MULWF	ARG2	; ARG1 * ARG2 ->
		; PRODH:PRODL

EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY ROUTINE

MOVF	ARG1, W	
MULWF	ARG2	; ARG1 * ARG2 ->
		; PRODH:PRODL
BTFSC	ARG2, SB	; Test Sign Bit
SUBWF	PRODH, F	; PRODH = PRODH
		; – ARG1
MOVF	ARG2, W	
BTFSC	ARG1, SB	; Test Sign Bit
SUBWF	PRODH, F	; PRODH = PRODH
		; – ARG2

R/W-0/0	U-0	U-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0		
OSCFIE	—	— EEIE		—	LVDIE	TMR3IE	—		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'			
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Reset									
'1' = Bit is set '0' = Bit is cleared									
bit 7		cillator Fail Inte	rrupt Enable b	pit					
	1 = Enabled 0 = Disabled								
		-							
bit 6-5	Unimpleme	nted: Read as '	0′						
bit 4	EEIE: Data E	EEPROM/Flash	Write Operati	ion Interrupt Er	able bit				
	1 = Enabled 0 = Disabled	=							
bit 3	Unimpleme	nted: Read as '	0'						
bit 2	LVDIE: Low-	-Voltage Detect	Interrupt Enat	ole bit					
1 = Enabled									
	0 = Disabled								
bit 1	TMR3IE: TM	IR3 Overflow In	terrupt Enable	e bit					
	1 = Enabled	-							
	0 = Disabled	-							
bit 0	Unimpleme	nted: Read as '	0'						

REGISTER 9-7: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

15.5.6 PROGRAMMABLE DEAD-BAND DELAY

In half-bridge applications where all power switches are modulated at the PWM frequency at all times, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (shootthrough current) may flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In the Half-Bridge Output mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 15-6 for an illustration. The lower seven bits of the PWM1CON register (Register 15-2) sets the delay period in terms of microcontroller instruction cycles (TCY or 4 ToSC).

15.5.7 ENHANCED PWM AUTO-SHUTDOWN

When the ECCP is programmed for any of the Enhanced PWM modes, the active output pins may be configured for auto-shutdown. Auto-shutdown immediately places the Enhanced PWM output pins into a defined shutdown state when a shutdown event occurs.

A shutdown event can be caused by the INT0, INT1 or INT2 pins (or any combination of these three sources). The auto-shutdown feature can be disabled by not selecting any auto-shutdown sources. The auto-shutdown sources to be used are selected using the ECCPAS2:ECCPAS0 bits (bits <6:4> of the ECCPAS register).

When a shutdown occurs, the output pins are asynchronously placed in their shutdown states, specified by the PSSAC1:PSSAC0 and PSSBD1:PSSBD0 bits (ECCPAS<3:0>). Each pin pair (P1A/P1C and P1B/P1D) may be set to drive high, drive low or be tristated (not driving). The ECCPASE bit (ECCPAS<7>) is also set to hold the Enhanced PWM outputs in their shutdown states.

The ECCPASE bit is set by hardware when a shutdown event occurs. If automatic restarts are not enabled, the ECCPASE bit is cleared by firmware when the cause of the shutdown clears. If automatic restarts are enabled, the ECCPASE bit is automatically cleared when the cause of the auto-shutdown has cleared. If the ECCPASE bit is set when a PWM period begins, the PWM outputs remain in their shutdown state for that entire PWM period. When the ECCPASE bit is cleared, the PWM outputs will return to normal operation at the beginning of the next PWM period.

Note: Writing to the ECCPASE bit is disabled while a shutdown condition is active.

REGISTER 15-3: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM/AUTO-SHUTDOWN CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7		CCP Auto-Shu		Status bit						
		tputs are opera	0			_				
				outputs are in	n shutdown stat	e				
bit 6		CCP Auto-Shu	tdown bit 2							
	0 = INT0 pin has no effect 1 = INT0 pin low causes shutdown									
bit 5	•	CCP Auto-Shu								
bit 5	0 = INT2 pin									
	1 = INT2 pin low causes shutdown									
bit 4	ECCPAS0: E	CCP Auto-Shu	tdown bit 0							
	0 = INT1 pin	has no effect								
	1 = INT1 pin	low causes shu	Itdown							
bit 3-2	PSSACn: Pir	ns A and C Shu	tdown State C	ontrol bits						
	00 = Drive Pins A and C to '0'									
	01 = Drive Pins A and C to '1' 1x = Pins A and C tri-state									
h #4.0				a stral bita						
bit 1-0		ns B and D Shu		ontrol dits						
		ns B and D to ' ns B and D to '	-							
	1x = Pins B a		±							

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000:	c 0000 000u
RCON	IPEN	-	-	RI	TO	PD	POR	BOR	01 11q	q 0q qquu
PIR1	_	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	-000 -00	0 -000 -000
PIE1	_	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	-000 -00	0 -000 -000
IPR1	_	- ADIP RCIP TXIP - CCP1IP TMR2IP TMR1IP							-111 -11	L -111 -111
TMR2	Timer2 Mo		0000 000	0000 0000						
PR2	Timer2 Mo	dule Period I	Register						1111 111	l 1111 1111
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 000	0 -000 0000
TRISB	PORTB Da	ta Direction	Register						1111 111	l 1111 1111
CCPR1H	Enhanced Capture/Compare/PWM Register 1 High Byte									k uuuu uuuu
CCPR1L	Enhanced Capture/Compare/PWM Register 1 Low Byte									k uuuu uuuu
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 000	0000 0000
ECCPAS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 000	0000 0000
PWM1CON	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 000) uuuu uuuu
OSCCON	IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0	0000 qq0	000p qq00

TABLE 15-5: REGISTERS ASSOCIATED WITH ENHANCED PWM AND TIMER2

 $\label{eq:loss} \begin{array}{ll} \mbox{Legend:} & x = \mbox{unknown}, \mbox{u} = \mbox{unchanged}, \mbox{-} = \mbox{unimplemented}, \mbox{read as '0'}. \\ & \mbox{Shaded cells are not used by the ECCP module in Enhanced PWM mode}. \end{array}$

16.5 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTA<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the RB1/AN5/TX/CK/INT1 pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

16.5.1 EUSART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of the Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREG register.
- c) Flag bit, TXIF, will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit, TXIF, will now be set.
- e) If enable bit, TXIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	_	ADIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	-000 -000	-000 -000
PIE1	_	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	-000 -000	-000 -000
IPR1		ADIP	RCIP	TXIP	_	CCP1IP	TMR2IP	TMR1IP	-111 -111	-111 -111
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	0000 000x
TXREG	EUSART Tra	ansmit Registe	er						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
BAUDCTL	—	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	-1-1 0-00	-1-1 0-00
SPBRGH	Baud Rate G	Generator Reg		0000 0000	0000 0000					
SPBRG	Baud Rate G	Generator Reg	ister Low E	Byte					0000 0000	0000 0000

TABLE 16-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

REGISTER 17-1: ADCON0: A/D CONTROL REGISTER 0

R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
VCFG1	VCFG0	—	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 VCFG<1:0>: Voltage Reference Configuration bits

	A/D VREF+	A/D VREF-
00	AVdd	AVss
01	External VREF+	AVss
10	AVdd	External VREF-
11	External VREF+	External VREF-

bit 5 Unimplemented: Read as '0'

bit 4-2	CHS<2:0>: Analog Channel Select bits
	000 = Channel 0 (AN0)
	001 = Channel 1 (AN1)
	010 = Channel 2 (AN2)
	011 = Channel 3 (AN3)
	100 = Channel 4 (AN4)
	101 = Channel 5 (AN5)
	110 = Channel 6 (AN6)
	111 = Unimplemented ⁽¹⁾
bit 1	GO/DONE: A/D Conversion Status bit
	When ADON = 1:
	1 = A/D conversion in progress
	0 = A/D Idle
bit 0	ADON: A/D On bit
	1 = A/D converter module is enabled
	0 = A/D converter module is disabled
	Performing a conversion on unimplemented channels returns full-scale results.

Note 1: Performing a conversion on unimplemented channels returns full-scale results.

19.0 SPECIAL FEATURES OF THE CPU

PIC18F1220/1320 devices include several features intended to maximize system reliability, minimize cost through elimination of external components and offer code protection. These are:

- Oscillator Selection
- Resets:
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor
- Two-Speed Start-up
- Code Protection
- ID Locations
- In-Circuit Serial Programming

Several oscillator options are available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. These are discussed in detail in **Section 2.0 "Oscillator Configurations"**.

A complete discussion of device Resets and interrupts is available in previous sections of this data sheet.

In addition to their Power-up and Oscillator Start-up Timers provided for Resets, PIC18F1220/1320 devices have a Watchdog Timer, which is either permanently enabled via the Configuration bits, or software controlled (if configured as disabled). The inclusion of an internal RC oscillator also provides the additional benefits of a Fail-Safe Clock Monitor (FSCM) and Two-Speed Start-up. FSCM provides for background monitoring of the peripheral clock and automatic switchover in the event of its failure. Two-Speed Start-up enables code to be executed almost immediately on start-up, while the primary clock source completes its start-up delays.

All of these features are enabled and configured by setting the appropriate Configuration register bits.

19.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 300000h.

The user will note that address 300000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (300000h-3FFFFh), which can only be accessed using table reads and table writes.

Programming the Configuration registers is done in a manner similar to programming the Flash memory. The EECON1 register WR bit starts a self-timed write to the Configuration register. In normal operation mode, a TBLWT instruction, with the TBLPTR pointing to the Configuration register, sets up the address and the data for the Configuration register write. Setting the WR bit starts a long write to the Configuration register. The Configuration registers are written a byte at a time. To write or erase a configuration cell, a TBLWT instruction can write a '1' or a '0' into the cell. For additional details on Flash programming, refer to Section 6.5 "Writing to Flash Program Memory".

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300001h	CONFIG1H	IESO	FSCM			FOSC3	FOSC2	FOSC1	FOSC0	11 1111
300002h	CONFIG2L	_				BORV1	BORV0	BOR	PWRTEN	1111
300003h	CONFIG2H	_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDT	1 1111
300005h	CONFIG3H	MCLRE					—			1
300006h	CONFIG4L	DEBUG	_	_	_	_	LVP	_	STVR	11-1
300008h	CONFIG5L	—					—	CP1	CP0	11
300009h	CONFIG5H	CPD	CPB	_		_	—			11
30000Ah	CONFIG6L	—					_	WRT1	WRT0	11
30000Bh	CONFIG6H	WRTD	WRTB	WRTC			-			111
30000Ch	CONFIG7L	—					_	EBTR1	EBTR0	11
30000Dh	CONFIG7H	—	EBTRB	_	_	_	_	_		-1
3FFFFEh	DEVID1 ⁽¹⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxxx xxxx(1)
3FFFFFh	DEVID2 ⁽¹⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 0111

TABLE 19-1:CONFIGURATION BITS AND DEVICE IDS

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: See Register 19-12 for DEVID1 values. DEVID registers are read-only and cannot be programmed by the user.

19.5.2 DATA EEPROM CODE PROTECTION

The entire data EEPROM is protected from external reads and writes by two bits: CPD and WRTD. CPD inhibits external reads and writes of data EEPROM. WRTD inhibits external writes to data EEPROM. The CPU can continue to read and write data EEPROM, regardless of the protection bit settings.

19.5.3 CONFIGURATION REGISTER PROTECTION

The Configuration registers can be write-protected. The WRTC bit controls protection of the Configuration registers. In normal execution mode, the WRTC bit is readable only. WRTC can only be written via ICSP or an external programmer.

19.6 ID Locations

Eight memory locations (20000h-200007h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are both readable and writable during normal execution through the TBLRD and TBLWT instructions, or during program/verify. The ID locations can be read when the device is code-protected.

19.7 In-Circuit Serial Programming

PIC18F1220/1320 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed (see Table 19-4).

Note:	The Timer1 oscillator shares the T1OSI and T1OSO pins with the PGD and PGC pins used for programming and debugging.
	When using the Timer1 oscillator, In-Circuit Serial Programming (ICSP) may not function correctly (high voltage or low voltage), or the In-Circuit Debugger (ICD) may not communicate with the controller. As a result of using either ICSP or ICD, the Timer1 crystal may be damaged.
	If ICSP or ICD operations are required, the crystal should be disconnected from the circuit (disconnect either lead), or installed after programming. The oscillator loading capacitors may remain in-circuit during ICSP or ICD operation.

TABLE 19-4: ICSP/ICD CONNECTIONS

Signal	Pin	Notes
PGD	RB7/PGD/T1OSI/ P1D/KBI3	Shared with T1OSC – protect crystal
PGC	RB6/PGC/T1OSO/ T13CKI/P1C/KBI2	Shared with T1OSC – protect crystal
MCLR	MCLR/Vpp/RA5	
Vdd	Vdd	
Vss	Vss	
PGM	RB5/PGM/KBI1	Optional – pull RB5 low is LVP enabled

19.8 In-Circuit Debugger

When the DEBUG bit in Configuration register, CONFIG4L, is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some resources are not available for general use. Table 19-5 shows which resources are required by the background debugger.

TABLE 19-5: DEBUGGER RESOURCES

I/O pins:	RB6, RB7
Stack:	2 levels
Program Memory:	512 bytes
Data Memory:	10 bytes

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to MCLR/VPP, VDD, Vss, RB7 and RB6. This will interface to the In-Circuit Debugger module available from Microchip, or one of the third party development tool companies (see the note following **Section 19.7 "In-Circuit Serial Programming"** for more information).

20.0 INSTRUCTION SET SUMMARY

The PIC18 instruction set adds many enhancements to the previous PIC instruction sets, while maintaining an easy migration from these PIC instruction sets.

Most instructions are a single program memory word (16 bits), but there are three instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal operations
- Control operations

The PIC18 instruction set summary in Table 20-1 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 20-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction.

The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All **bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located.

The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for three double-word instructions. These three instructions were made double-word instructions so that all the required information is available in these 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 20-1 shows the general formats that the instructions can have.

All examples use the format 'nnh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

The Instruction Set Summary, shown in Table 20-1, lists the instructions recognized by the Microchip Assembler (MPASMTM). **Section 20.2** "Instruction **Set**" provides a description of each instruction.

20.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a "BCF PORTB, 1" instruction will read PORTB, clear bit 1 of the data, then write the result back to PORTB. The read operation would have the unintended result that any condition that sets the RBIF flag would be cleared. The R-M-W operation may also copy the level of an input pin to its corresponding output latch.

DAW	Decimal A	djust W Re	gister
Syntax:	[label] D	WAW	
Operands:	None		
Operation:	(W<3:0>) else	> 9] or [DC + 6 → W<3:0 → W<3:0>;	-
Status Affected:	(W<7:4>) else	> 9] or [C = + 6 → W<7:4 → W<7:4>;	
Encoding:	0000	0000 000	00 0111
Description:	DAW adjus resulting fr two variab format) an packed BC may be se	ests the 8-bit work of the earlied les (each in produces a CD result. The toy DAW regard or to the DAW	value in W, er addition of backed BCD a correct e Carry bit ardless of its
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register W	Process Data	Write W
Example 1:	DAW		
Before Instru			
W C	= 0xA5 = 0		
DC	= 0		
After Instruct W	ion = 0x05		
C DC	= 1 = 0		
Example 2:	- 0		
Before Instru	iction		
W	= 0xCE		
C DC	= 0 = 0		
After Instruct	tion		
W C DC	= 0x34 = 1 = 0		

DECF		Decreme	ent f		
Syntax:		[label]	DECF f	[,d [,a]]	
Operands:		$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$	5		
Operation:		(f) – 1 \rightarrow	dest		
Status Affe	cted:	C, DC, N	, OV, Z		
Encoding:		0000	01da	ffff	ffff
Description		Decreme the result the result 'f' (defaul Bank will the BSR bank will BSR valu	is stored is stored t). If 'a' is be seled value. If be seled	d in W. I d back in s '0', the ted, ove 'a' = 1, f ted as p	f 'd' is '1', n register e Access erriding then the
Words:		1			
Cycles:		1			
Q Cycle A	ctivity:				
Q	1	Q2	Q3	}	Q4
Dece	ode	Read register 'f'	Proce Dat		Write to estination
Example:	Inotr	DECF	CNT		

 $\begin{array}{rrrr} Before Instruction \\ CNT & = & 0 \\ Z & = & 0 \\ \\ After Instruction \\ CNT & = & 0 \\ Z & = & 1 \end{array}$

INCFSZ	Increment	t f, skip if 0	
Syntax:	[label]	NCFSZ f[,d [,a]]
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5	
Operation:	(f) + 1 \rightarrow c skip if resu		
Status Affected:	None		
Encoding:	0011	11da ffi	f ffff
Description:	incrementer is placed in is placed b (default). If the result tion, which discarded instead, m tion. If 'a' is will be selevalue. If 'a be selecter	nts of registe ed. If 'd' is '0 n W. If 'd' is ' back in regist it is '0', the n n is already fe and a NOP is aking it a 2-c s '0', the Acc ected, overric ' = 1, then th d as per the	', the result 1', the result er 'f' ext instruc- etched, is s executed cycle instruc- cess Bank ling the BSR te bank will
Manda.	(default).		
Words: Cycles:	1 1(2)		
Q Cycle Activity:	Note: 3 cy by a	/cles if skip a a 2-word inst	ruction.
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write to destination
If skip:		Dulu	destination
Q1	Q2	Q3	Q4
No	No	No	No
operation If skip and follow	operation	operation	operation
Q1	Q2	Q3	Q4
No	No	No	No
operation	operation	operation	operation
No	No	No	No
operation	operation	operation	operation
Example:	HERE I NZERO : ZERO :		Т
Before Instru	iction		
PC	= Address	(HERE)	
After Instruct			
CNT If CNT	= CNT + 1 = 0;	I	
PC If CNT		(ZERO)	
PC		(NZERO)	

INFSNZ	Incremen	t f, skip if r	not 0
Syntax:	[label]	NFSNZ f	[,d [,a]]
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5	
Operation:	(f) + 1 \rightarrow c skip if resu		
Status Affected:	None		
Encoding:	0100	10da fi	ff ffff
Description: Words: Cycles:	increment is placed i is placed b (default). If the resu instruction fetched, is executed i cycle instr Access Ba riding the l	n W. If 'd' is back in regis It is not '0', , which is a discarded nstead, ma uction. If 'a' ank will be s BSR value. vill be select	0', the result '1', the resu ster 'f' the next Iready and a NOP is king it a 2-
,		weloe if ekir	and followe
-	Note: 3 c by	cycles if skip a 2-word in	and followe struction.
Q Cycle Activity:	Note: 3 c by	a 2-word in	struction.
-	Note: 3 c by Q2 Read	a 2-word in Q3 Process	Struction. Q4 Write to
Q Cycle Activity: Q1 Decode	Note: 3 c by Q2	a 2-word in Q3	Struction. Q4 Write to
Q Cycle Activity:	Note: 3 c by Q2 Read	a 2-word in Q3 Process	struction. Q4
Q Cycle Activity: Q1 Decode If skip: Q1 No	Note: 3 c by Q2 Read register 'f' Q2 No	a 2-word in Q3 Process Data Q3 No	struction. Q4 Write to destination Q4 No
Q Cycle Activity: Q1 Decode If skip: Q1 No operation	Note: 3 c by Q2 Read register 'f' Q2 No operation	a 2-word in Q3 Process Data Q3 No operation	struction. Q4 Write to destination Q4 No operation
Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and follow	Note: 3 c by Q2 Read register 'f' Q2 No operation	a 2-word in Q3 Process Data Q3 No operation d instructior	struction. Q4 Write to destination Q4 No operation
Q Cycle Activity: Q1 Decode If skip: Q1 No operation	Note: 3 c by Q2 Read register 'f' Q2 No operation /ed by 2-word	a 2-word in Q3 Process Data Q3 No operation	struction. Q4 Write to destination Q4 No operation D:
Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation	Note: 3 c by Q2 Read register 'f' Q2 No operation /ed by 2-word Q2 No operation	a 2-word in Q3 Process Data Q3 No operation d instructior Q3 No operation	struction. Q4 Write to destination Q4 No operation No operation
Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and follow Q1 No	Note: 3 c by Q2 Read register 'f' Q2 No operation /ed by 2-word Q2 No	a 2-word in Q3 Process Data Q3 No operation d instructior Q3 No	struction. Q4 Write to destination Q4 No operation n: Q4 No No
Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation No	Note: 3 c by Q2 Read register 'f' Q2 No operation Ved by 2-word Q2 No operation No operation	a 2-word in Q3 Process Data Q3 No operation d instructior Q3 No operation No	struction. Q4 Write to destination Q4 No operation No operation No operation
Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation No operation	Note: 3 c by Q2 Read register 'f' Q2 No operation ved by 2-word Q2 No operation No operation No operation	a 2-word in Q3 Process Data Q3 No operation d instructior Q3 No operation No operation	struction. Q4 Write to destination Q4 No operation No operation No operation

SLEEP	Enter Sle	Enter Sleep mode				
Syntax:	[label]	[label] SLEEP				
Operands:	None	None				
Operation:		$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ postscaler,} \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$				
Status Affected:	TO, PD	TO, PD				
Encoding:	0000	0000 000	00 0011			
Description:	is cleared (TO) is se and its po The proce	The Power-down Status bit (PD) is cleared. The Time-out status bit (TO) is set. The Watchdog Timer and its postscaler are cleared. The processor is put into Sleep mode with the oscillator stopped.				
Words:	1					
Cycles:	1					
Q Cycle Activity	:					
Q1	Q2	Q3	Q4			
Decode	No operation	Process Data	Go to Sleep			
Example:	SLEEP					
Before Instru TO = PD = After Instruc TO = PD =	? ?					
† If WDT causes wake-up, this bit is cleared.						

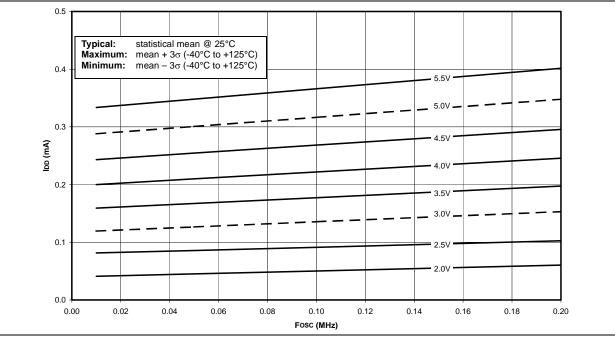
SUBFWB	Subtract f from W with borrow					
Syntax:	[[<i>label</i>] SUBFWB f [,d [,a]]				
Operands:	d	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$				
Operation:	(\	$(W) - (f) - (\overline{C}) \rightarrow dest$				
Status Affected:	Ν	N, OV, C, DC, Z				
Encoding:		0101	01da ffff ffff			
Description:	(t rr st st '0 st st	Subtract register 'f' and Carry flag (borrow) from W (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1		Q2	Q3		Q4	
Decode		ead ster 'f'	Process Data		Write to destination	
Example 1: Before Instru REG W C After Instruct REG W	ictior = = =	0x03 0x02 0x02 0x01 0xFF 0x02	REG			
C Z	= =	0x00 0x00				
N Example 2:	=	0x01	; result is		gative	
Example 2: Before Instru		UBFWB	REG, 0,	, 0		
REG W C	= = =	2 5 1				
After Instruct REG W C Z N	= = = = =	2 3 1 0 0	; result i	s po	ositive	
Example 3: SUBFWB REG, 1, 0						
Before Instru REG W C After Instruct REG	= = =	1 2 0				
W C Z N	= = = =	0 2 1 1 0	; result is	s ze	ro	

TSTFSZ	Test f, sk	Test f, skip if 0				
Syntax:	[label]	[label] TSTFSZ f[,a]				
Operands:	$0 \le f \le 25$	$0 \le f \le 255$				
	a ∈ [0,1]	a ∈ [0,1]				
Operation:	skip if f =	0				
Status Affected:	None					
Encoding:	0110	011a	ffff	ffff		
Description:	If 'f' = 0, the next instruction, fetched during the current instruction execution is discarded and a NOP is executed, making this a 2-cycle instruction. If 'a' is '0', the Access Bank will be selected, over- riding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).					
Words:	1					
Cycles:	1(2)					
	Note: 3 cycles if skip and followed by a 2-word instruction.					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read	Proces		No		
lf skip:	register 'f'	Data	0	peration		
Q1	Q2	Q3		Q4		
No	No	No		No		
operation	operation			operation		
If skip and follow		-	tion:	04		
Q1 No	Q2 No	Q3 No		Q4 No		
operation	operation	operati	on or	peration		
No	No	No		No		
operation	operation	operati	on o	peration		
Example:	NZERO	ISTFSZ C	INT			
Before Instruction PC = Address (HERE)						
After Instruction If CNT = 0x00, PC = Address (ZERO) If CNT ≠ 0x00, PC = Address (NZERO)						

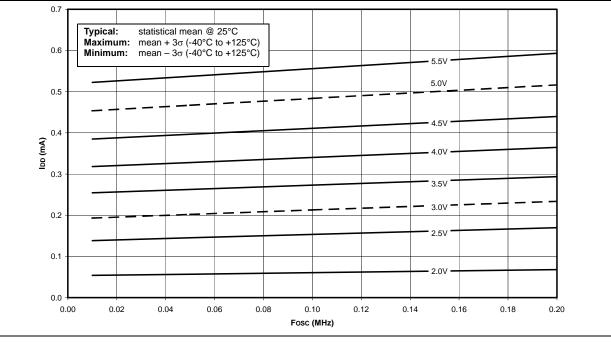
XOF	RLW	Exclusiv	Exclusive OR literal with W			
Synt	tax:	[<i>label</i>]]	[<i>label</i>] XORLW k			
Ope	rands:	$0 \le k \le 2$	$0 \le k \le 255$			
Ope	ration:	(W) .XOF	(W) .XOR. $k \rightarrow W$			
State	us Affected:	N, Z	N, Z			
Enco	oding:	0000 1010 kkkk kkk				
Des	cription:	The contents of W are XOR'ed with the 8-bit literal 'k'. The result is placed in W.				
Wor	Words: 1					
Cycl	ycles: 1					
QC	Q Cycle Activity:					
	Q1	Q2	Q3		Q4	
	Decode	Read literal 'k'	Proce Data		/rite to W	

Example: XORLW 0xAF

Before Instruction					
W	=	0xB5			
After Instruction					


W = 0x1A

23.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES


Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

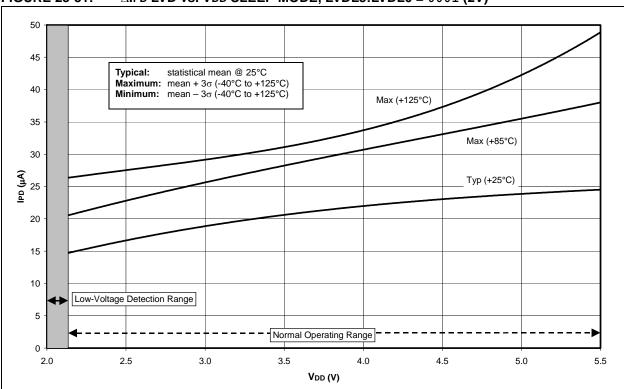
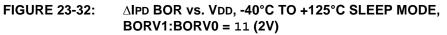
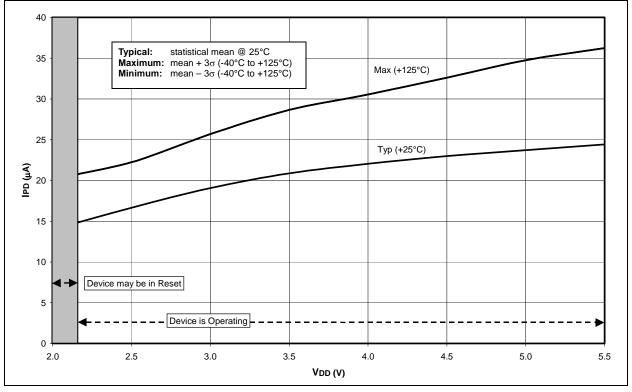
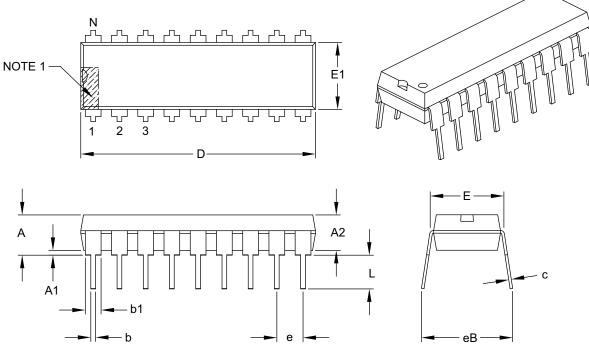




FIGURE 23-31: △IPD LVD vs. VDD SLEEP MODE, LVDL3:LVDL0 = 0001 (2V)



24.2 Package Details

The following sections give the technical details of the packages.

18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES		
Dimensio	Dimension Limits		NOM	MAX		
Number of Pins	Ν	18				
Pitch	е	.100 BSC				
Top to Seating Plane	А	– – .210				
Molded Package Thickness	A2	.115	.130	.195		
Base to Seating Plane	A1	.015	-	-		
Shoulder to Shoulder Width	Е	.300	.310	.325		
Molded Package Width	E1	.240	.250	.280		
Overall Length	D	.880	.900	.920		
Tip to Seating Plane	L	.115	.130	.150		
Lead Thickness	С	.008	.010	.014		
Upper Lead Width	b1	.045	.060	.070		
Lower Lead Width	b	.014	.018	.022		
Overall Row Spacing §	eB	-	_	.430		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-007B