

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f1320t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected. To take advantage of the POR circuitry, just tie the MCLR pin through a resistor (1k to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 4-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

FIGURE 4-2: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1:External Power-on Reset circuit is required only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: $R < 40 \text{ k}\Omega$ is recommended to make sure that the voltage drop across R does not violate the device's electrical specification.
 - 3: $R1 \ge 1 \ k\Omega$ will limit any current flowing into \overline{MCLR} from external capacitor C, in the event of \overline{MCLR}/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

4.2 Power-up Timer (PWRT)

The Power-up Timer (PWRT) of the PIC18F1220/1320 is an 11-bit counter, which uses the INTRC source as the clock input. This yields a count of $2048 \times 32 \ \mu s = 65.6 \ ms$. While the PWRT is counting, the device is held in Reset.

The power-up time delay will vary from chip-to-chip due to VDD, temperature and process variation. See DC parameter 33 for details.

The PWRT is enabled by clearing Configuration bit, PWRTEN.

4.3 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter 33). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP, HS and HSPLL modes and only on Power-on Reset, or on exit from most low-power modes.

4.4 PLL Lock Time-out

With the PLL enabled in its PLL mode, the time-out sequence following a Power-on Reset is slightly different from other oscillator modes. A portion of the Power-up Timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the Oscillator Start-up Time-out.

4.5 Brown-out Reset (BOR)

A Configuration bit, BOR, can disable (if clear/ programmed), or enable (if set) the Brown-out Reset circuitry. If VDD falls below VBOR (parameter D005) for greater than TBOR (parameter 35), the brown-out situation will reset the chip. A Reset may not occur if VDD falls below VBOR for less than TBOR. The chip will remain in Brown-out Reset until VDD rises above VBOR. If the Power-up Timer is enabled, it will be invoked after VDD rises above VBOR; it then will keep the chip in Reset for an additional time delay, TPWRT (parameter 33). If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above VBOR, the Power-up Timer will execute the additional time delay. Enabling BOR Reset does not automatically enable the PWRT.

4.6 Time-out Sequence

On power-up, the time-out sequence is as follows: First, after the POR pulse has cleared, PWRT time-out is invoked (if enabled). Then, the OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, all time-outs will expire. Bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 4-5). This is useful for testing purposes or to synchronize more than one PIC18FXXXX device operating in parallel.

Table 4-2 shows the Reset conditions for some Special Function Registers, while Table 4-3 shows the Reset conditions for all the registers.

TABLE 4-1: TIME-OUT IN VARIOUS SITUATIONS

Oscillator	Power-up ⁽²⁾ a	Exit from	
Configuration	PWRTEN = 0	PWRTEN = 1	Low-Power Mode
HSPLL	66 ms ⁽¹⁾ + 1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾
HS, XT, LP	66 ms ⁽¹⁾ + 1024 Tosc	1024 Tosc	1024 Tosc
EC, ECIO	66 ms ⁽¹⁾	5-10 μs ⁽³⁾	5-10 μs ⁽³⁾
RC, RCIO	66 ms ⁽¹⁾	5-10 μs ⁽³⁾	5-10 μs ⁽³⁾
INTIO1, INTIO2	66 ms ⁽¹⁾	5-10 μs ⁽³⁾	5-10 μs ⁽³⁾

Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.

2: 2 ms is the nominal time required for the 4x PLL to lock.

3: The program memory bias start-up time is always invoked on POR, wake-up from Sleep, or on any exit from power managed mode that disables the CPU and instruction execution.

REGISTER 4-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0/0	U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1
IPEN	—	—	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Note: Refer to Section 5.14 "RCON Register" for bit definitions.

TABLE 4-2:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	01 1100	1	1	1	0	0	0	0
RESET Instruction	0000h	00 uuuu	0	u	u	u	u	u	u
Brown-out	0000h	01 11u-	1	1	1	u	0	u	u
MCLR during Power Managed Run modes	0000h	0u luuu	u	1	u	u	u	u	u
MCLR during Power Managed Idle modes and Sleep	0000h	0u 10uu	u	1	0	u	u	u	u
WDT Time-out during Full-Power or Power Managed Run	0000h	0u 0uuu	u	0	u	u	u	u	u
MCLR during Full-Power Execution								u	u
Stack Full Reset (STVR = 1)	0000h	0u uuuu	u	u	u	u	u	1	u
Stack Underflow Reset (STVR = 1)								u	1
Stack Underflow Error (not an actual Reset, STVR = 0)	0000h	uu uuuu	u	u	u	u	u	u	1
WDT Time-out during Power Man- aged Idle or Sleep	PC + 2	uu 00uu	u	0	0	u	u	u	u
Interrupt Exit from Power Managed modes	PC + 2	uu u0uu	u	u	0	u	u	u	u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (0x000008h or 0x000018h).

R/C-0/0	R/C-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
STKFUL ⁽¹⁾	STKUNF ⁽¹⁾				SP<4:0>					
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	'0'			
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared	C = Clearable only bit						
bit 7	STKFUL: Sta	ick Full Flag bit	(1)							
	1 = Stack bec	ame full or ove	erflowed							
	0 = Stack has	s not become fu	Il or overflow	ed						
bit 6	STKUNF: Sta	ack Underflow F	lag bit ⁽¹⁾							
1 = Stack Underflow occurred										
	0 = Stack Und	derflow did not	occur							
bit 5	Unimplemen	ted: Read as '	0'							

REGISTER 5-1: STKPTR: STACK POINTER REGISTER

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.

SP<4:0>: Stack Pointer Location bits

5.2.3 PUSH AND POP INSTRUCTIONS

bit 4-0

Since the Top-of-Stack (TOS) is readable and writable, the ability to push values onto the stack and pull values off the stack, without disturbing normal program execution, is a desirable option. To push the current PC value onto the stack, a PUSH instruction can be executed. This will increment the Stack Pointer and load the current PC value onto the stack. TOSU, TOSH and TOSL can then be modified to place data or a return address on the stack.

The ability to pull the TOS value off of the stack and replace it with the value that was previously pushed onto the stack, without disturbing normal execution, is achieved by using the POP instruction. The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto the stack then becomes the TOS value.

5.2.4 STACK FULL/UNDERFLOW RESETS

These Resets are enabled by programming the STVR bit in Configuration Register 4L. When the STVR bit is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit, but not cause a device Reset. When the STVR bit is set, a full or underflow condition will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on	Details on
									POR, BOR	Page:
TMR1H	Timer1 Regis	XXXX XXXX	35, 103							
TMR1L	Timer1 Regis	ster Low Byte		i	i	i	i	i	XXXX XXXX	35, 103
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	35, 98
TMR2	Timer2 Regis	ster							0000 0000	35, 104
PR2	Timer2 Perio	d Register							1111 1111	35, 104
T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	35, 104
ADRESH	A/D Result R	legister High E	Byte						XXXX XXXX	35, 159
ADRESL	A/D Result R	egister Low E	lyte			n		r	XXXX XXXX	35, 159
ADCON0	VCFG1	VCFG0	_	CHS2	CHS1	CHS0	GO/DONE	ADON	00-0 0000	35, 150
ADCON1	—	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	-000 0000	35, 151
ADCON2	ADFM	—	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	0-00 0000	35, 152
CCPR1H	Capture/Con	npare/PWM R	egister 1 High	n Byte					XXXX XXXX	35. 110
CCPR1L	Capture/Con	npare/PWM R	egister 1 Low	Byte					xxxx xxxx	35, 110
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	35, 109
PWM1CON	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000	35, 121
ECCPAS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 0000	35, 122
TMR3H	Timer3 Regis	ster High Byte							xxxx xxxx	36, 108
TMR3L	Timer3 Register Low Byte								xxxx xxxx	36, 108
T3CON	RD16	_	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0-00 0000	36, 106
SPBRGH	EUSART Ba	ud Rate Gene	rator High By	te	•	•	•	•	0000 0000	36
SPBRG	EUSART Ba	0000 0000	36, 130							
RCREG	EUSART Re	ceive Registe	r						0000 0000	36, 138, 137
TXREG	EUSART Tra	ansmit Registe	er						0000 0000	36, 135, 137
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	36, 127
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	36, 128
BAUDCTL	_	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	-1-1 0-00	36, 129
EEADR	EEPROM Ac	dress Registe	er						0000 0000	36, 64
EEDATA	EEPROM Da	ata Register							0000 0000	36, 67
EECON2	EEPROM Co	ontrol Register	2 (not a phys	sical register)					0000 0000	36, 56, 64
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	xx-0 x000	36, 57, 65
IPR2	OSCFIP	—		EEIP	—	LVDIP	TMR3IP	_	11 -11-	36, 80
PIR2	OSCFIF	_	_	EEIF	_	LVDIF	TMR3IF	_	00 -00-	36, 76
PIE2	OSCFIE	_	_	EEIE	_	LVDIE	TMR3IE	_	00 -00-	36, 78
IPR1	_	ADIP	RCIP	TXIP	—	CCP1IP	TMR2IP	TMR1IP	-111 -111	36, 79
PIR1	_	ADIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	-000 -000	36, 75
PIE1	_	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	-000 -000	36, 77
OSCTUNE	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	36, 14
TRISB	Data Directio	on Control Reg	gister for POR	TB					1111 1111	36, 94
TRISA	TRISA7 ⁽²⁾	TRISA6 ⁽¹⁾		Data Directio	on Control Reg	gister for POR	TA		11-1 1111	36, 85
LATB	Read/Write F	PORTB Data L	atch						xxxx xxxx	36, 94
LATA	LATA<7>(2)	LATA<6>(1)	_	Read/Write F	PORTA Data L	atch			xx-x xxxx	36, 85
PORTB	Read PORT	B pins, Write I	PORTB Data	Latch					xxxx xxxx	36, 94
PORTA	RA7 ⁽²⁾	RA6 ⁽¹⁾	RA5 ⁽⁴⁾	Read PORT	A pins, Write F	PORTA Data L	atch		xx0x 0000	36, 85

REGISTER FILE SUMMARY (PIC18E1220/1320) (CONTINUED) TABLE 5-2

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition **Note** 1:RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator mode only and read '0' in all other oscillator modes.

RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read '0' in all other modes. 2:

Bit 21 of the PC is only available in Test mode and Serial Programming modes.
 The RA5 port bit is only available when MCLRE fuse (CONFIG3H<7>) is programmed to '0'. Otherwise, RA5 reads '0'. This bit is read-only.

6.2.2 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The table latch is used to hold 8-bit data during data transfers between program memory and data RAM.

6.2.3 **TBLPTR – TABLE POINTER** REGISTER

The Table Pointer (TBLPTR) addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. Setting the 22nd bit allows access to the device ID, the user ID and the configuration bits.

The Table Pointer (TBLPTR) register is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 6-1. These operations on the TBLPTR only affect the low-order 21 bits.

TABLE POINTER BOUNDARIES 6.2.4

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the Table Pointer determine which byte is read from program or configuration memory into TABLAT.

When a TBLWT is executed, the three LSbs of the Table Pointer (TBLPTR<2:0>) determine which of the eight program memory holding registers is written to. When the timed write to program memory (long write) begins, the 19 MSbs of the Table Pointer (TBLPTR<21:3>) will determine which program memory block of 8 bytes is written to (TBLPTR<2:0> are ignored). For more detail, see Section 6.5 "Writing to Flash Program Memory".

When an erase of program memory is executed, the 16 MSbs of the Table Pointer (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 6-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations.

TABLE 0-1:	TABLE POINTER OPERATIONS WITH TBERD AND TBEWT INSTRUCTIONS
Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write

TBLPTR is decremented after the read/write

TBLPTR is incremented before the read/write

FRATIONS WITH TRUDE AND TRUMT INSTRUCTIONS

FIGURE 6-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

TBLRD*-

TBLWT*-TBLRD+*

TBLWT+*

EXAMPLE 6-3: WRITING TO FLASH PROGRAM MEMORY

	MOVLW MOVWF	D'64 COUNTER	;	number of bytes in erase block
	MOVLW	BUFFER_ADDR_HIGH	;	point to buffer
	MOVWF	FSROH		
	MOVLW	BUFFER_ADDR_LOW		
	MOVWF	FSROL		
	MOVLW	CODE_ADDR_UPPER	;	Load TBLPTR with the base
	MOVWF	TBLPTRU	;	address of the memory block
	MOVLW	CODE_ADDR_HIGH		
	MOVWF	TBLPTRH		
	MOVEW		'	0 LSB = 0
READ BLOCK	MO V WI			
	TBLRD*+	-	;	read into TABLAT, and inc
	MOVF	TABLAT, W	;	get data
	MOVWF	POSTINCO	;	store data and increment FSR0
	DECFSZ	COUNTER	;	done?
	GOTO	READ_BLOCK	;	repeat
MODIFY_WORI	0			
	MOVLW	DATA_ADDR_HIGH	;	point to buffer
	MOVWF	FSROH		
	MOVLW	DATA_ADDR_LOW		
	MOVWF	FSROL		
	MOVLW	NEW_DATA_LOW	;	update buffer word and increment FSR0
	MOVWF	POSTINCO		
	MOVLW	NEW_DATA_HIGH	;	update builer word
FDACE BLOCK	MOVWF	INDFO		
ERASE_BLOCI	MOVIW	CODE ADDE LIPPER	;	load TBLPTR with the base
	MOVWF	TBLPTRU	;	address of the memory block
	MOVLW	CODE ADDR HIGH	·	
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW	;	6 LSB = 0
	MOVWF	TBLPTRL		
	BCF	EECON1, CFGS	;	point to PROG/EEPROM memory
	BSF	EECON1, EEPGD	;	point to FLASH program memory
	BSF	EECON1, WREN	;	enable write to memory
	BSF	EECON1, FREE	;	enable Row Erase operation
	BCF	INTCON, GIE	;	disable interrupts
	MOVLW	55h	;	Required sequence
	MOVWE	EECON2	i	Write 55H
	MOVEW	AAII FECONO		Write AAU
	BSE	FFCON1 WR	;	start erase (CDU stall)
	NOP	ELECONT, WR	'	start crase (cro starr)
	BSF	INTCON, GIE	;	re-enable interrupts
WRITE_BUFFI	ER_BACK	,		
	MOVLW	8	;	number of write buffer groups of 8 bytes
	MOVWF	COUNTER_HI		
	MOVLW	BUFFER_ADDR_HIGH	;	point to buffer
	MOVWF	FSROH		
	MOVLW	BUFFER_ADDR_LOW		
	MOVWF	FSROL		
PROGRAM_LOO)P			
	MOVLW	8	;	number of bytes in holding register
	MOVWF	COUNTER		

R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
INT2IP	INT1IP	—	INT2IE	INT1IE		INT2IF	INT1IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unc	hanged	x = Bit is unk	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	eared				
bit 7	INT2IP: INT2	External Inter	rupt Priority bi	t			
	1 = High pric 0 = Low prio	ority rity					
bit 6	INT1IP: INT1	External Inter	rupt Priority bi	t			
	1 = High pric	ority					
	0 = Low prio	rity					
bit 5	Unimplemen	ted: Read as	'0'				
bit 4	INT2IE: INT2	External Inter	rupt Enable bi	t			
	1 = Enables	the INT2 exter	nal interrupt				
h it 0			mai interrupt	L			
DIT 3		External Inter	rupt Enable bi	L			
	1 = Disables 0 = Disables	the INT1 extension	rnal interrupt				
bit 2	Unimplemen	nted: Read as	'0'				
bit 1	INT2IF: INT2	External Inter	rupt Flag bit				
	1 = The INT2	2 external inter	rupt occurred	(must be cleare	ed in software)		
	0 = The INT	2 external inter	rupt did not oc	cur			
bit 0	INT1IF: INT1	External Inter	rupt Flag bit				
	1 = The INT	1 external inter	rupt occurred	(must be cleare	ed in software)		
	0 = 1 me INT	i externar mer		CUI			
Note: Int	terrunt flag hits a	are set when ar	interrunt				

REGISTER 9-3: INTCON3: INTERRUPT CONTROL REGISTER 3

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the Global
	Interrupt Enable bit. User software should
	ensure the appropriate interrupt flag bits
	are clear prior to enabling an interrupt.
	This feature allows for software polling.

PIC18F1220/1320

FIGURE 11-1: TIMER0 BLOCK DIAGRAM IN 8-BIT MODE

PIC18F1220/1320

FIGURE 15-9: EXAMPLE OF FULL-BRIDGE APPLICATION

15.5.5.1 Direction Change in Full-Bridge Mode

In the Full-Bridge Output mode, the P1M1 bit in the CCP1CON register allows the user to control the Forward/Reverse direction. When the application firmware changes this direction control bit, the module will assume the new direction on the next PWM cycle.

Just before the end of the current PWM period, the modulated outputs (P1B and P1D) are placed in their inactive state, while the unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction. This occurs in a time interval of (4 Tosc * (Timer2 Prescale Value) before the next PWM period begins. The Timer2 prescaler will be either 1,4 or 16, depending on the value of the T2CKPS bit (T2CON<1:0>). During the interval from the switch of the unmodulated outputs to the beginning of the next period, the modulated outputs (P1B and P1D) remain inactive. This relationship is shown in Figure 15-10.

Note that in the Full-Bridge Output mode, the ECCP module does not provide any dead-band delay. In general, since only one output is modulated at all times, dead-band delay is not required. However, there is a situation where a dead-band delay might be required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.

Figure 15-11 shows an example where the PWM direction changes from forward to reverse, at a near 100% duty cycle. At time t1, the output P1A and P1D become inactive, while output P1C becomes active. In this example, since the turn-off time of the power devices is longer than the turn-on time, a shoot-through current may flow through power devices QC and QD (see Figure 15-9) for the duration of 't'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, one of the following requirements must be met:

- 1. Reduce PWM for a PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0				
bit 7 bit 0											
Legend:											
R = Readable b	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'							
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared								

REGISTER 15-2: PWM1CON: PWM CONFIGURATION REGISTER

bit 7	PRSEN: PWM Restart Enable bit							
	 1 = Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically 							
	0 = Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM							
bit 6-0	PDC<6:0>: PWM Delay Count bits							
	Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal should transition active and the actual time it transitions active.							

PIC18F1220/1320

BNC	NOV Branch if Not Overflow		BNZ	:	Branch if	Branch if Not Zero				
Synt	ax:	[label] B	NOV n		Synt	ax:	[<i>label</i>] B	[<i>label</i>] BNZ n		
Ope	rands:	-128 ≤ n ≤	127		Ope	rands:	-128 ≤ n ≤	-128 \leq n \leq 127		
Operation: if Overflow bit is '0' (PC) + 2 + 2n \rightarrow PC		Ope	Operation: if Zero bit is '0' (PC) + 2 + 2n \rightarrow PC							
Statu	us Affected:	None			Statu	Status Affected: None				
Enco	oding:	1110	0101 nn	nn nnnn	Enco	Encodina:		0001 nn	nn nnnn	
Description:		If the Overflow bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be $PC + 2 + 2n$. This instruction is then a 2-cycle instruction.			Desc	cription:	If the Zero program w The 2's co added to t have incre instruction PC + 2 + 2 a 2-cycle i	bit is '0', the vill branch. mplement numer he PC. Since mented to fe , the new ad n. This instru- nstruction.	en the umber '2n' is e the PC will etch the next dress will be uction is then	
Words: 1		1			Wor	ds:	1			
Cycl	Cycles: 1(2)		Cycl	Cycles: 1(2)						
Q Cycle Activity:					Q C If Ju	cycle Activity	:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC	
	No	No	No	No		No	No	No	No	
14 8 1	operation	operation	operation	operation	16 8 1	operation	operation	operation	operation	
IT IN	o Jump:	02	02	04	IT IN	o Jump:	02	02	04	
	Docodo	QZ Road litoral	Record	Q4		Docodo	QZ Road literal	Record	Q4	
	Decode	'n'	Data	operation		Decode	'n'	Data	operation	
<u>Exar</u>	<u>mple</u> :	HERE	BNOV Jump		Exar	<u>nple</u> :	HERE	BNZ Jump		
Before Instruction					Before Instru	uction				
	PC	= ad	dress (HERE)		PC	= ade	dress (HERE)		
After Instruction If Overflow = 0; PC = address (Jump) If Overflow = 1; PC = address (HERE + 2)						After Instruc If Zero PC If Zero PC	tion = 0; = ado = 1; = ado	dress (Jump)	+ 2)	

MO	/FF	Move f to	f							
Synt	ax:	[label]	MOVFF	f _s ,f _d						
Ope	rands:	$\begin{array}{l} 0 \leq f_{s} \leq 40 \\ 0 \leq f_{d} \leq 40 \end{array}$	95 95							
Ope	ration:	$(f_s) \rightarrow f_d$								
Statu	us Affected:	None	None							
Enco 1st v 2nd	oding: vord (source) word (destin.)	1100 ffff ffff ffff 1111 ffff ffff ffff								
Des	cription:	The conte	nts of s	ource re	gister 'f _s '					
		f_d . Location of source f_s can be anywhere in the 4096-byte data space (000h to FFFh) and location of destination f_d can also be anywhere from 000h to FFFh. Either source or destination can be W (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port). The MOVFF instruction cannot use the PCL_TOSULTOSU ar TOSU ar								
		The MOVF be used to while any page 70).	F instru modify interrup	ction sho interrup t is enab	ould not t settings bled (see					
Wor	ds:	2								
Cycl	es:	2 (3)								
QC	cycle Activity:									
	Q1	Q2	Q	3	Q4					
	Decode	Read register 'f' (src)	Proce Dat	ess a c	No operation					
	Decode	No operation No dummy read	Nc opera	tion re	Write egister 'f' (dest)					
Exar	Example: MOVFF REG1, REG2									

Example:

Refore Instruction

Before Instructio	n	
REG1	=	0x33
REG2	=	0x11
After Instruction		
REG1	=	0x33,
REG2	=	0x33

MO۱	/LB	Move lite	Move literal to low nibble in BSR						
Synt	ax:	[label]	MOVLB	k					
Ope	rands:	$0 \le k \le 25$	55						
Ope	ration:	$k \to BSR$							
Statu	us Affected:	None							
Enco	oding:	0000	0001	kkkk	kkkk				
Description:		The 8-bit the Bank	The 8-bit literal 'k' is loaded into the Bank Select Register (BSR).						
Wor	ds:	1							
Cycl	es:	1							
QC	cycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'k'	Proce Data	ess a li	Write teral 'k' to BSR				
Exar	mple:	MOVLB	5						

Before Instruction BSR register = 0x02 After Instruction BSR register = 0x05

21.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
 Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

21.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- Built-in support for Bugzilla issue tracker

PIC18LF1220/1320 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F1220/1320 (Industrial, Extended)									
Param No.	Device	Тур.	Max.	Units	Conditions				
	Supply Current (IDD) ^(2,3)								
	PIC18LF1220/1320	140	220	μA	-40°C				
		145	220	μΑ	+25°C	VDD = 2.0V			
		155	220	μA	+85°C				
	PIC18LF1220/1320	215	330	μΑ	-40°C				
		225	330	μΑ	+25°C	VDD = 3.0V	Fosc = 1 MHz		
		235	330	μA	+85°C		Internal oscillator source)		
	All devices	385	550	μΑ	-40°C		,,		
		390	550	μΑ	+25°C				
		405	550	μΑ	+85°C	VDD = 5.0V			
	Extended devices	410	650	μΑ	+125°C				
	PIC18LF1220/1320	410	600	μΑ	-40°C				
		425	600	μΑ	+25°C	VDD = 2.0V			
		435	600	μΑ	+85°C				
	PIC18LF1220/1320	650	900	μΑ	-40°C				
		670	900	μΑ	+25°C	VDD = 3.0V (RC_RUN model Internal oscillator sc	FOSC = 4 MHz		
		680	900	μΑ	+85°C		Internal oscillator source)		
	All devices	1.2	1.8	mA	-40°C		· · · · · /		
		1.2	1.8	mA	+25°C				
		1.2	1.8	mA	+85°C	VDD = 5.0V			
	Extended devices	1.2	1.8	mA	+125°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- 3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k Ω .
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

PIC18LF1220/1320 (Industrial)		Standa Operati	i rd Ope i ing temp	ating Co erature	onditions (unles $-40^{\circ}C \le T_{e}$	s otherwise stated A ≤ +85°C for indust	l) Irial	
PIC18F1220/1320 (Industrial, Extended)		Standa Operati	i rd Ope i ing temp	erating Co	onditions (unles -40°C ≤ T, -40°C ≤ T,	as otherwise stated $A \le +85^{\circ}C$ for indust $A \le +125^{\circ}C$ for extended	I) rrial nded	
Param No.	Device	Тур.	Max.	Units	Conditions			
	Supply Current (IDD) ^(2,3)							
	PIC18LF1220/1320	4.7	8	μΑ	-40°C			
		5.0	8	μΑ	+25°C	VDD = 2.0V		
		5.8	11	μA	+85°C			
	PIC18LF1220/1320	7.0	11	μΑ	-40°C			
		7.8	11	μΑ	+25°C	VDD = 3.0V	Fosc = 31 kHz	
		8.7	15	μA	+85°C		Internal oscillator source)	
	All devices	12	16	μΑ	-40°C		,	
		14	16	μΑ	+25°C			
		14	22	μΑ	+85°C	VDD = 3.0V		
	Extended devices	25	75	μΑ	+125°C			
	PIC18LF1220/1320	75	150	μΑ	-40°C			
		85	150	μΑ	+25°C	VDD = 2.0V		
		95	150	μΑ	+85°C			
	PIC18LF1220/1320	110	180	μΑ	-40°C			
		125	180	μΑ	+25°C	VDD = 3.0V	FOSC = 1 MHz	
		135	180	μΑ	+85°C		Internal oscillator source)	
	All devices	180	380	μΑ	-40°C			
		195	380	μA	+25°C			
		200	380	μA	+85°C	VDD = 3.0V		
	Extended devices	350	435	μA	+125°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

PIC18LF1220/1320 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F1220/1320 (Industrial, Extended)									
Param No.	Device	Тур.	Max.	Units	Conditions				
	Supply Current (IDD) ^(2,3)								
	PIC18LF1220/1320	35	50	μA	-40°C				
		35	50	μA	+25°C	VDD = 2.0V			
		35	60	μA	+85°C				
	PIC18LF1220/1320	55	80	μΑ	-40°C				
		50	80	μΑ	+25°C	VDD = 3.0V	Fosc = 1 MHz		
		60	100	μΑ	+85°C	EC oscillato	EC oscillator)		
	All devices	105	150	μΑ	-40°C		,		
		110	150	μΑ	+25°C				
		115	150	μΑ	+85°C	VDD = 0.0V			
	Extended devices	125	300	μΑ	+125°C				
	PIC18LF1220/1320	135	180	μΑ	-40°C				
		140	180	μΑ	+25°C	VDD = 2.0V			
		140	180	μΑ	+85°C				
	PIC18LF1220/1320	215	280	μΑ	-40°C				
		225	280	μΑ	+25°C	VDD = 3.0V	FOSC = 4 MHZ		
		230	280	μΑ	+85°C	EC oscillato	EC oscillator)		
	All devices	410	525	μΑ	-40°C				
		420	525	μΑ	+25°C	$V_{DD} = 5.0V$			
		430	525	μΑ	+85°C	VDD = 0.0V			
	Extended devices	450	800	μΑ	+125°C				
	Extended devices	2.2	3.0	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz		
		2.7	3.5	mA	+125°C	VDD = 5.0V	(PRI_IDLE mode, EC oscillator)		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k Ω .

4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

PIC18LF1220/1320 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F1 (Indu	Standa Operati	rd Oper	erating Co	onditions (unles -40°C ≤ T/ -40°C ≤ T/	A solution of the state of the) ial ded			
Param No.	Device	Тур.	Max.	Units	Conditions				
Supply Current (IDD) ^(2,3)									
	All devices	3.2	4.1	mA	-40°C				
		3.2	4.1	mA	+25°C	VDD = 4.2 V			
		3.3	4.1	mA	+85°C		Fosc = 40 MHz		
	All devices	4.0	5.1	mA	-40°C	EC oscillate	EC oscillator)		
		4.1	5.1	mA	+25°C	VDD = 5.0V	,		
		4.1	5.1	mA	+85°C				
	PIC18LF1220/1320	5.1	9	μΑ	-10°C				
		5.8	9	μΑ	+25°C	VDD = 2.0V			
		7.9	11	μΑ	+70°C				
	PIC18LF1220/1320	7.9	12	μΑ	-10°C		Fosc = 32 kHz ⁽⁴⁾		
		8.9	12	μΑ	+25°C	VDD = 3.0V (SEC	(SEC_RUN mode,		
		10.5	14	μA	+70°C		Timer1 as clock)		
	All devices	12.5	20	μΑ	-10°C				
		16.3	20	μΑ	+25°C	VDD = 5.0V			
		18.4	25	μΑ	+70°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

PIC18F1220/1320 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	− X /XX XXX Temperature Package Pattern Range	Examples: a) PIC18LF1320-I/P 301 = Industrial temp., PDIP package, Extended VDD limits, QTP pattern #301.
Device:	PIC18F1220/1320 ⁽¹⁾ , PIC18F1220/1320T ⁽²⁾ ; VDD range 4.2V to 5.5V PIC18LF1220/1320 ⁽¹⁾ , PIC18LF1220/1320T ⁽²⁾ ; VDD range 2.5V to 5.5V	b) PIC18LF1220-I/SO = Industrial temp., SOIC package, Extended VDD limits.
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	Note 1: F = Standard Voltage range LF = Wide Voltage Range
Package:	SO = SOIC SS = SSOP P = PDIP ML = QFN	2: I = In tape and reel – SOIC package only
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	