

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f1320t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 POWER MANAGED MODES

The PIC18F1220/1320 devices offer a total of six operating modes for more efficient power management (see Table 3-1). These provide a variety of options for selective power conservation in applications where resources may be limited (i.e., battery powered devices).

There are three categories of power managed modes:

- Sleep mode
- Idle modes
- Run modes

These categories define which portions of the device are clocked and sometimes, what speed. The Run and Idle modes may use any of the three available clock sources (primary, secondary or INTOSC multiplexer); the Sleep mode does not use a clock source.

The clock switching feature offered in other PIC18 devices (i.e., using the Timer1 oscillator in place of the primary oscillator) and the Sleep mode offered by all PIC[®] devices (where all system clocks are stopped) are both offered in the PIC18F1220/1320 devices (SEC_RUN and Sleep modes, respectively). However, additional power managed modes are available that allow the user greater flexibility in determining what portions of the device are operating. The power managed modes are event driven; that is, some specific event must occur for the device to enter or (more particularly) exit these operating modes.

For PIC18F1220/1320 devices, the power managed modes are invoked by using the existing SLEEP instruction. All modes exit to PRI_RUN mode when triggered by an interrupt, a Reset or a WDT time-out (PRI_RUN mode is the normal full-power execution mode; the CPU and peripherals are clocked by the primary oscillator source). In addition, power managed Run modes may also exit to Sleep mode, or their corresponding Idle mode.

3.1 Selecting Power Managed Modes

Selecting a power managed mode requires deciding if the CPU is to be clocked or not and selecting a clock source. The IDLEN bit controls CPU clocking, while the SCS1:SCS0 bits select a clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 3-1.

3.1.1 CLOCK SOURCES

The clock source is selected by setting the SCS bits of the OSCCON register (Register 2-2). Three clock sources are available for use in power managed Idle modes: the primary clock (as configured in Configuration Register 1H), the secondary clock (Timer1 oscillator) and the internal oscillator block. The secondary and internal oscillator block sources are available for the power managed modes (PRI_RUN mode is the normal full-power execution mode; the CPU and peripherals are clocked by the primary oscillator source).

	osco	CON Bits	Module	Clocking		
Mode	IDLEN <7>	SCS1:SCS0 <1:0>	CPU	Peripherals	Available Clock and Oscillator Source	
Sleep	0	00	Off	Off	None – All clocks are disabled	
PRI_RUN	0	00	Clocked	Clocked	Primary – LP, XT, HS, HSPLL, RC, EC, INTRC ⁽¹⁾ This is the normal full-power execution mode.	
SEC_RUN	0	01	Clocked	Clocked	Secondary – Timer1 Oscillator	
RC_RUN	0	1x	Clocked	Clocked	Internal Oscillator Block ⁽¹⁾	
PRI_IDLE	1	00	Off	Clocked	Primary – LP, XT, HS, HSPLL, RC, EC	
SEC_IDLE	1	01	Off	Clocked	Secondary – Timer1 Oscillator	
RC_IDLE	1	1x	Off	Clocked	Internal Oscillator Block ⁽¹⁾	

TABLE 3-1: POWER MANAGED MODES

Note 1: Includes INTOSC and INTOSC postscaler, as well as the INTRC source.

3.4 Run Modes

If the IDLEN bit is clear when a SLEEP instruction is executed, the CPU and peripherals are both clocked from the source selected using the SCS1:SCS0 bits. While these operating modes may not afford the power conservation of Idle or Sleep modes, they do allow the device to continue executing instructions by using a lower frequency clock source. RC_RUN mode also offers the possibility of executing code at a frequency greater than the primary clock.

Wake-up from a power managed Run mode can be triggered by an interrupt, or any Reset, to return to fullpower operation. As the CPU is executing code in Run modes, several additional exits from Run modes are possible. They include exit to Sleep mode, exit to a corresponding Idle mode and exit by executing a RESET instruction. While the device is in any of the power managed Run modes, a WDT time-out will result in a WDT Reset.

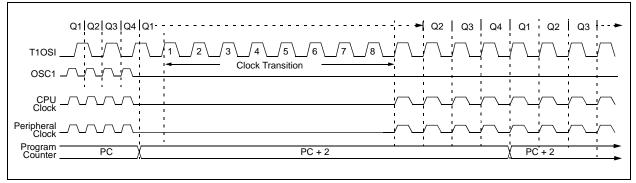
3.4.1 PRI_RUN MODE

The PRI_RUN mode is the normal full-power execution mode. If the SLEEP instruction is never executed, the microcontroller operates in this mode (a SLEEP instruction is executed to enter all other power managed modes). All other power managed modes exit to PRI_RUN mode when an interrupt or WDT time-out occur.

There is no entry to PRI_RUN mode. The OSTS bit is set. The IOFS bit may be set if the internal oscillator block is the primary clock source (see **Section 2.7.1** "Oscillator Control Register").

3.4.2 SEC_RUN MODE

The SEC_RUN mode is the compatible mode to the "clock switching" feature offered in other PIC18 devices. In this mode, the CPU and peripherals are clocked from the Timer1 oscillator. This gives users the option of lower power consumption while still using a high accuracy clock source.

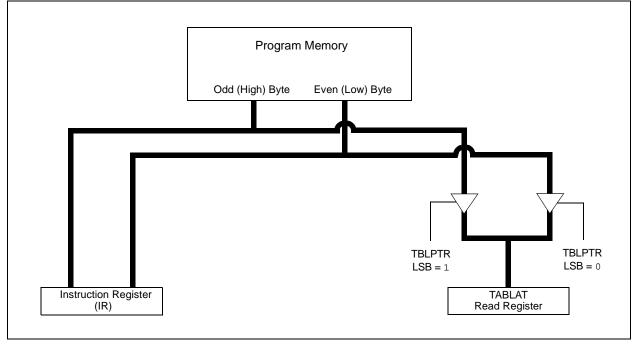

SEC_RUN mode is entered by clearing the IDLEN bit, setting SCS1:SCS0 = 01 and executing a SLEEP instruction. The system clock source is switched to the Timer1 oscillator (see Figure 3-9), the primary oscillator is shut down, the T1RUN bit (T1CON<6>) is set and the OSTS bit is cleared.

Note: The Timer1 oscillator should already be running prior to entering SEC_RUN mode. If the T1OSCEN bit is not set when the SLEEP instruction is executed, the SLEEP instruction will be ignored and entry to SEC_RUN mode will not occur. If the Timer1 oscillator is enabled, but not yet running, system clocks will be delayed until the oscillator has started; in such situations, initial oscillator operation is far from stable and unpredictable operation may result.

When a wake event occurs, the peripherals and CPU continue to be clocked from the Timer1 oscillator while the primary clock is started. When the primary clock becomes ready, a clock switchback to the primary clock occurs (see Figure 3-6). When the clock switch is complete, the T1RUN bit is cleared, the OSTS bit is set and the primary clock is providing the system clock. The IDLEN and SCS bits are not affected by the wake-up. The Timer1 oscillator continues to run.

Firmware can force an exit from SEC_RUN mode. By clearing the T1OSCEN bit (T1CON<3>), an exit from SEC_RUN back to normal full-power operation is triggered. The Timer1 oscillator will continue to run and provide the system clock, even though the T1OSCEN bit is cleared. The primary clock is started. When the primary clock becomes ready, a clock switchback to the primary clock occurs (see Figure 3-6). When the clock switch is cleared, the Timer1 oscillator is disabled, the T1RUN bit is cleared, the OSTS bit is set and the primary clock is providing the system clock. The IDLEN and SCS bits are not affected by the wake-up.

FIGURE 3-9: TIMING TRANSITION FOR ENTRY TO SEC_RUN MODE



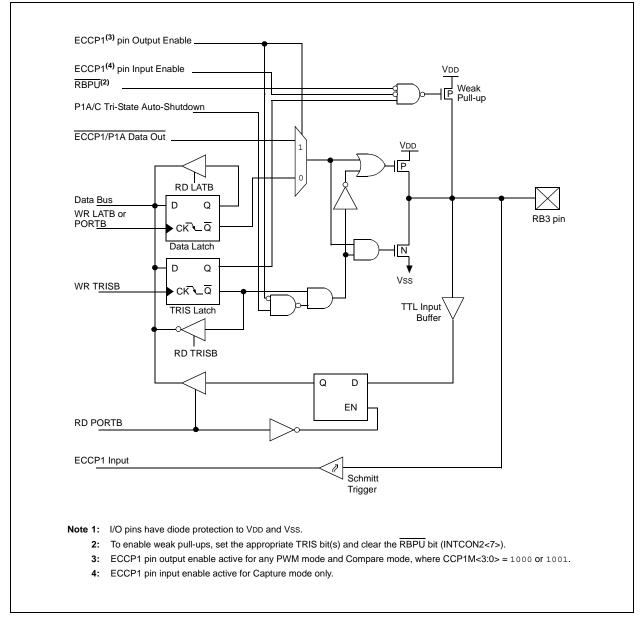
6.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and place it into data RAM. Table reads from program memory are performed one byte at a time.

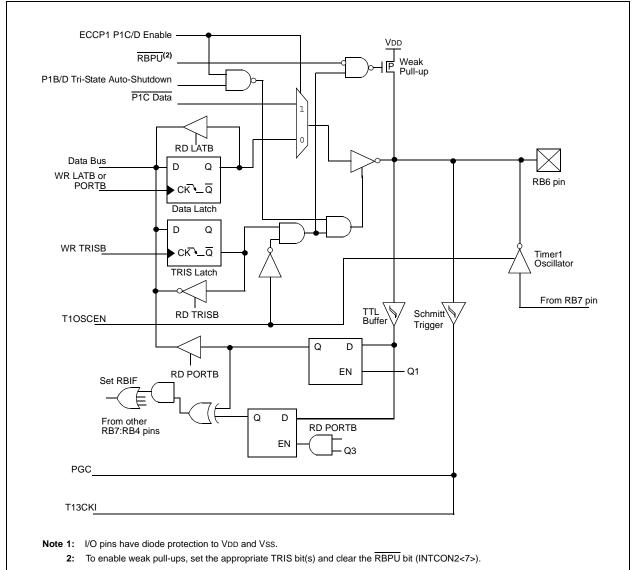
TBLPTR points to a byte address in program space. Executing a TBLRD instruction places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation. The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 6-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 6-1: READING A FLASH PROGRAM MEMORY WORD


	MOVLW	CODE_ADDR_UPPER	;	Load TBLPTR with the base
	MOVWF	TBLPTRU	;	address of the word
	MOVLW	CODE_ADDR_HIGH		
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*+	-	;	read into TABLAT and increment TBLPTR
	MOVFW	TABLAT	;	get data
	MOVWF	WORD_EVEN		
	TBLRD*+	-	;	read into TABLAT and increment TBLPTR
	MOVFW	TABLAT	;	get data
	MOVWF	WORD_ODD		

R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0		
INT2IP	INT1IP	—	INT2IE	INT1IE	_	INT2IF	INT1IF		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	e bit	U = Unimplem	ented bit, rea	d as '0'			
u = Bit is unc	hanged	x = Bit is unl	known	•		DR/Value at all o	ther Resets		
'1' = Bit is set	t	'0' = Bit is cl	eared						
bit 7	INT2IP: INT2	2 External Inte	rrupt Priority bit	t					
	1 = High prid0 = Low prid								
bit 6	INT1IP: INT1	External Inte	rrupt Priority bit	t					
	1 = High prid0 = Low prid	,							
bit 5	Unimplemer	nted: Read as	'0'						
bit 4	INT2IE: INT2	2 External Inte	rrupt Enable bit	t					
		the INT2 extent the INT2 extent							
bit 3	INT1IE: INT1	External Inte	rrupt Enable bit	t					
		the INT1 extent the INT1 extent							
bit 2	Unimplemer	nted: Read as	'0'						
bit 1	INT2IF: INT2	2 External Inte	rrupt Flag bit						
		 1 = The INT2 external interrupt occurred (must be cleared in software) 0 = The INT2 external interrupt did not occur 							
bit 0	INT1IF: INT1 External Interrupt Flag bit								
			rrupt occurred rrupt did not oc	(must be cleare	d in software)	1			
Note: Int	terrupt flag bits a	are set when a	n interrupt						


REGISTER 9-3: INTCON3: INTERRUPT CONTROL REGISTER 3

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the Global
	Interrupt Enable bit. User software should
	ensure the appropriate interrupt flag bits
	are clear prior to enabling an interrupt.
	This feature allows for software polling.

FIGURE 10-10: BLOCK DIAGRAM OF RB3/CCP1/P1A PIN

TABLE 10-3: PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/AN4/INT0	bit 0	TTL ⁽¹⁾ /ST ⁽²⁾	Input/output port pin, analog input or external interrupt input 0.
RB1/AN5/TX/CK/INT1	bit 1	TTL ⁽¹⁾ /ST ⁽²⁾	Input/output port pin, analog input, Enhanced USART Asynchronous Transmit, Addressable USART Synchronous Clock or external interrupt input 1.
RB2/P1B/INT2	bit 2	TTL ⁽¹⁾ /ST ⁽²⁾	Input/output port pin or external interrupt input 2. Internal software programmable weak pull-up.
RB3/CCP1/P1A	bit 3	TTL ⁽¹⁾ /ST ⁽³⁾	Input/output port pin or Capture1 input/Compare1 output/ PWM output. Internal software programmable weak pull-up.
RB4/AN6/RX/DT/KBI0	bit 4	TTL ⁽¹⁾ /ST ⁽⁴⁾	Input/output port pin (with interrupt-on-change), analog input, Enhanced USART Asynchronous Receive or Addressable USART Synchronous Data.
RB5/PGM/KBI1	bit 5	TTL ⁽¹⁾ /ST ⁽⁵⁾	Input/output port pin (with interrupt-on-change). Internal software programmable weak pull-up. Low-Voltage ICSP™ enable pin.
RB6/PGC/T1OSO/T13CKI/ P1C/KBI2	bit 6	TTL ⁽¹⁾ /ST ^(5,6)	Input/output port pin (with interrupt-on-change), Timer1/ Timer3 clock input or Timer1oscillator output. Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD/T1OSI/P1D/KBI3	bit 7	TTL ⁽¹⁾ /ST ⁽⁵⁾	Input/output port pin (with interrupt-on-change) or Timer1 oscillator input. Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a TTL input when configured as a port input pin.

- **2:** This buffer is a Schmitt Trigger input when configured as the external interrupt.
- 3: This buffer is a Schmitt Trigger input when configured as the CCP1 input.
- 4: This buffer is a Schmitt Trigger input when used as EUSART receive input.
- 5: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
- 6: This buffer is a TTL input when used as the T13CKI input.

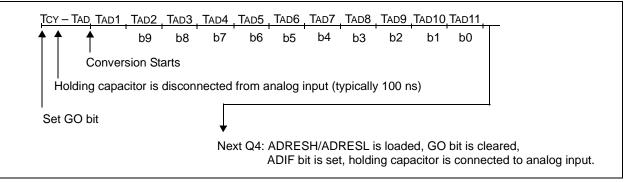
TABLE 10-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxd dddd	uuuu uuuu
LATB	LATB Data	Output Regi	ster						xxxx xxxx	uuuu uuuu
TRISB	PORTB Da	ta Direction	Register						1111 1111	1111 1111
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1	1111 -1-1
INTCON3	INT2IP	INT1IP	—	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00	11-0 0-00
ADCON1	—	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	-000 0000	-000 0000

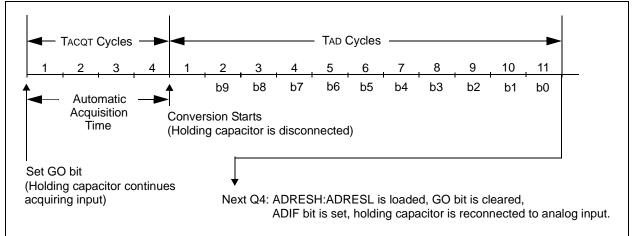
 $\label{eq:logend: Legend: Legend: u = unchanged, q = value depends on condition. Shaded cells are not used by PORTB.$

17.7 A/D Conversions

Figure 17-3 shows the operation of the A/D converter after the GO bit has been set and the ACQT2:ACQT0 bits are cleared. A conversion is started after the following instruction to allow entry into Low-Power Sleep mode before the conversion begins.


Figure 17-4 shows the operation of the A/D converter after the GO bit has been set and the ACQT2:ACQT0 bits are set to '010' and selecting a 4 TAD acquisition time before the conversion starts.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/ D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers).


After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

FIGURE 17-3: A/D CONVERSION TAD CYCLES (Acqt<2:0> = 000, Tacq = 0)

FIGURE 17-4: A/D CONVERSION TAD CYCLES (Acqt<2:0> = 010, Tacq = 4 TaD)

U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	
_	—	_	_	BORV1	BORV0	BOR ⁽¹⁾	PWRTEN ⁽¹⁾	
bit 7							bit 0	
Legend:								
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BOI	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared	P = Program	mable bit			
bit 7-4	Unimplement	ted: Read as '	כ'					
bit 3-2	BORV<1:0>:	Brown-out Res	et Voltage bit	S				
	11 = Reserve							
	10 = VBOR se 01 = VBOR se							
	01 = VBOR Se 00 = VBOR Se							
bit 1	BOR: Brown-	out Reset Enat	ole bit ⁽¹⁾					
	1 = Brown-out Reset enabled							
	0 = Brown-out Reset disabled							
bit 0	PWRTEN: Po	wer-up Timer B	Enable bit ⁽¹⁾					
	1 = PWRT disabled							
	0 = PWRT en	abled						

REGISTER 19-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

Note 1: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

R/P-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
MCLRE	—	—	—	—	—	—	—	
bit 7							bit 0	
Legend:	Legend:							
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared	P = Programmable bit				

REGISTER 19-4: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)

bit 7	MCLRE: MCLR Pin Enable bit
	$1 = \overline{MCLR}$ pin enabled, RA5 input pin disabled
	0 = RA5 input pin enabled, MCLR disabled
bit 6-0	Unimplemented: Read as '0'

REGISTER 19-5: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)

R/P-1	U-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1
DEBUG	—	—	_		LVP		STVR
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	P = Programmable bit

bit 7	DEBUG : Background Debugger Enable bit (see note)			
	 1 = Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins 0 = Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug 			
bit 6-3	Unimplemented: Read as '0'			
bit 2	LVP: Low-Voltage ICSP Enable bit			
	1 = Low-Voltage ICSP enabled 0 = Low-Voltage ICSP disabled			
bit 1	Unimplemented: Read as '0'			
bit 0	STVR: Stack Full/Underflow Reset Enable bit			
	1 = Stack full/underflow will cause Reset0 = Stack full/underflow will not cause Reset			

Note: The Timer1 oscillator shares the T1OSI and T1OSO pins with the PGD and PGC pins used for programming and debugging.

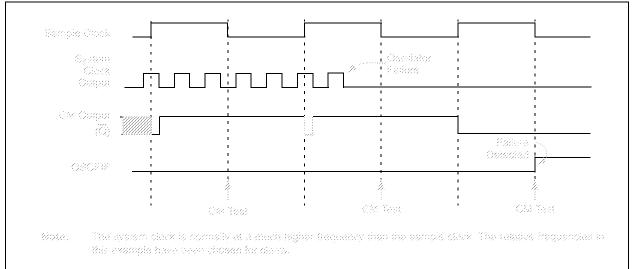
When using the Timer1 oscillator, In-Circuit Serial Programming (ICSP) may not function correctly (high voltage or low voltage), or the In-Circuit Debugger (ICD) may not communicate with the controller. As a result of using either ICSP or ICD, the Timer1 crystal may be damaged.

If ICSP or ICD operations are required, the crystal should be disconnected from the circuit (disconnect either lead) or installed after programming. The oscillator loading capacitors may remain in-circuit during ICSP or ICD operation.

19.4.2 EXITING FAIL-SAFE OPERATION

The Fail-Safe condition is terminated by either a device Reset, or by entering a power managed mode. On Reset, the controller starts the primary clock source specified in Configuration Register 1H (with any required start-up delays that are required for the oscillator mode, such as OST or PLL timer). The INTOSC multiplexer provides the system clock until the primary clock source becomes ready (similar to a Two-Speed Start-up). The clock system source is then switched to the primary clock (indicated by the OSTS bit in the OSCCON register becoming set). The Fail-Safe Clock Monitor then resumes monitoring the peripheral clock.

The primary clock source may never become ready during start-up. In this case, operation is clocked by the INTOSC multiplexer. The OSCCON register will remain in its Reset state until a power managed mode is entered.


Entering a power managed mode by loading the OSCCON register and executing a SLEEP instruction will clear the Fail-Safe condition. When the Fail-Safe condition is cleared, the clock monitor will resume monitoring the peripheral clock.

19.4.3 FSCM INTERRUPTS IN POWER MANAGED MODES

As previously mentioned, entering a power managed mode clears the Fail-Safe condition. By entering a power managed mode, the clock multiplexer selects the clock source selected by the OSCCON register. Fail-Safe monitoring of the power managed clock source resumes in the power managed mode.

If an oscillator failure occurs during power managed operation, the subsequent events depend on whether or not the oscillator failure interrupt is enabled. If enabled (OSCFIF = 1), code execution will be clocked by the INTOSC multiplexer. An automatic transition back to the failed clock source will not occur.

If the interrupt is disabled, the device will not exit the power managed mode on oscillator failure. Instead, the device will continue to operate as before, but clocked by the INTOSC multiplexer. While in Idle mode, subsequent interrupts will cause the CPU to begin executing instructions while being clocked by the INTOSC multiplexer. The device will not transition to a different clock source until the Fail-Safe condition is cleared.

FIGURE 19-4: FSCM TIMING DIAGRAM

20.2 **Instruction Set**

W = 0x25

ADD	DLW	ADD literal to W				
Synt	tax:	[label] A	[<i>label</i>] ADDLW k			
Ope	rands:	$0 \le k \le 25$	5			
Operation:		(W) + k →	• W			
State	us Affected:	N, OV, C,	DC, Z			
Enc	oding:	0000	1111	kkk	k	kkkk
Description:		The conte 8-bit litera placed in	l 'k' and			
Wor	ds:	1				
Cycl	les:	1	1			
QC	Cycle Activity:					
	Q1	Q2	Q3	3		Q4
	Decode	Read literal 'k'	Proce Dat		Wi	ite to W
Example:		ADDLW (0x15			
	Before Instru	iction				
	W =	0x10				
	After Instruct	ion				

Cycl	es:	1
QC	ycle Activity:	
	Q1	
	Decode	
		reg
<u>Exar</u>	nple:	AI
	Defere Instru	otio

ADDWF	ADD W to	o f	
Syntax:	[<i>label</i>] Al	DDWF f[,	d [,a]]
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5	
Operation:	(W) + (f) -	→ dest	
Status Affected:	N, OV, C,	DC, Z	
Encoding:	0010	01da ffi	ff ffff
	result is st (default).	tored in W. If tored back in If 'a' is '0', the be selected. s used.	register 'f' Access
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write to destination
Example:	ADDWF	REG, W	
Before Instru			
W	= 0x17		

W	=	0x17
REG	=	0xC2
After Instruc	ction	

W	=	0xD9
REG	=	0xC2

ANDWF AND W with f						
Syntax:	[label] A	[<i>label</i>] ANDWF f[,d[,a]]				
Operands:	$0 \le f \le 255$	5				
	u ∈ [0,1] a ∈ [0,1]	d ∈ [0,1] a ∈ [0,1]				
Operation:	(W) .AND.	(f) \rightarrow de	est			
Status Affected:	N, Z					
Encoding:	0001	01da	ffff	ffff		
Description:	The conter register 'f'. stored in V stored bac If 'a' is '0', selected. I not be over	If 'd' is ' V. If 'd' is k in regi the Acco f 'a' is '1	0', the res '1', the ster 'f' (d ess Ban ', the BS	esult is result is default). k will be SR will		
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Proces Data		Vrite to stination		
Example:	ANDWF	REG, W	I			
Before Instru	ction					
W REG	= 0x17 = 0xC2					
After Instruct	ion					
W REG	= 0x02 = 0xC2					

Suntava		[label] D	[/abe/] BC n			
Syntax:			[<i>label</i>] BC n			
Operands:		-128 ≤ n ≤	$-128 \le n \le 127$			
Operation:			if Carry bit is '1' (PC) + 2 + 2n \rightarrow PC			
Status Affected:		None				
Encoding	g:	1110	0010 nni	nn nnnn		
Description:		program w The 2's co added to t have incre instruction PC + 2 + 2	y bit is '1', th vill branch. mplement nu he PC. Since mented to fe , the new ad n. This instru nstruction.	umber '2n' e the PC wi etch the new dress will b		
Words:		1				
Words:		1				
Words: Cycles:		1(2)				
Cycles:	e Activity:	1(2)				
Cycles: Q Cycle	•	1(2)	Q3	Q4		
Cycles: Q Cycle If Jump	:	1(2)	Q3 Process Data			
Cycles: Q Cycle If Jump	: Q1	1(2) Q2 Read literal	Process	Q4 Write to P0 No		
Cycles: Q Cycle If Jump	: Q1 Decode	1(2) Q2 Read literal 'n'	Process Data	Write to PO		
Cycles: Q Cycle If Jump	Q1 Decode No Deration	1(2) Q2 Read literal 'n' No	Process Data No	Write to PO		
Cycles: Q Cycle If Jump	Q1 Decode No Deration	1(2) Q2 Read literal 'n' No	Process Data No	Write to PO		
Cycles: Q Cycle If Jump	Calleration	1(2) Q2 Read literal 'n' No operation	Process Data No operation	Write to PO No operation Q4 No		
Cycles: Q Cycle If Jump	Q1 Decode No peration Imp: Q1	1(2) Q2 Read literal 'n' No operation Q2 Read literal	Process Data No operation Q3 Process	Write to PO No operation Q4		
Cycles: Q Cycle If Jump	Q1 Decode No Decation Imp: Q1 Decode	1(2) Q2 Read literal 'n' No operation Q2 Read literal	Process Data No operation Q3 Process	Write to PO No operation Q4 No		

fter Instruction		
If Carry	=	1;
PC	=	address (JUMP)
If Carry	=	0;
PC	=	address (HERE + 2)

RCA	LL	Relative (Relative Call			
Synt	ax:	[<i>label</i>] R	[<i>label</i>] RCALL n			
Ope	rands:	-1024 ≤ n	$-1024 \le n \le 1023$			
Ope	ration:	. ,	$(PC) + 2 \rightarrow TOS,$ (PC) + 2 + 2n \rightarrow PC			
Statu	us Affected:	None				
Enco	oding:	1101	1nnn nn	nn nnnn		
Dest	cription:	from the c return add onto the s compleme Since the to fetch the address w	Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction.			
Wor	ds:	1	1			
Cycl	es:	2	2			
QC	ycle Activity:					
	Q1	Q2	Q3	Q4		
	Decode	Read literal 'n'	Process Data	Write to PC		

RES	ET	Reset				
Synt	ax:	[label]	RESET			
Ope	rands:	None				
Operation:			Reset all registers and flags that are affected by a MCLR Reset.			
State	us Affected:	All				
Encoding:		0000	0000	1111	1111	
Description:		This instruet				
Wor	ds:	1				
Cycl	es:	1				
Q Cycle Activity:						
	Q1	Q2	Q3		Q4	
	Decode	Start	No		No	
		Reset	operat	ion o	peration	

Example: RESET

After Instruction	
Registers =	Reset Value
Flags* =	Reset Value

Example: HERE RCALL Jump

Push PC to stack

No

operation

No

operation

No

operation

Before Instruction

No

operation

PC = Address (HERE) After Instruction PC = Address (Jump) TOS = Address (HERE + 2)

RLNCF	Rotate Lo	Rotate Left f (no carry)			
Syntax:	[label]	[label] RLNCF f [,d [,a]]			
Operands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]				
Operation:		$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow dest < 0 >$			
Status Affected:	N, Z	N, Z			
Encoding:	0100	0100 01da ffff ffff			
Description:	rotated or the result the result 'f' (defaul Bank will the BSR bank will	The contents of register 'f' are rotated one bit to the left. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).			
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		Q4	
Decode	Read register 'f'	Process Data		rite to stination	
Example:	RLNCF	REG			
Before Instruction REG = 1010 1011					
After Instruction REG = 0101 0111					

RRCF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRCF f[,d[,a]]
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$
Operation:	$(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow C,$ $(C) \rightarrow dest < 7 >$
Status Affected:	C, N, Z
Encoding:	0011 00da ffff ffff
	rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).
	C register f
Words:	C ← register f ←
Words: Cycles:	
	1 1
Cycles:	1 1
Cycles: Q Cycle Activity:	1 1
Cycles: Q Cycle Activity: Q1	1 1 1 Q2 Q3 Q4 Read Process Write to
Cycles: Q Cycle Activity: Q1 Decode	1 1 Q2 Q3 Q4 Read Process register 'f' Data RRCF REG , W

SLEEP	Enter Sle	ep mode		
Syntax:	[label]	SLEEP		
Operands:	None	None		
Operation:		$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ postscaler,} \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$		
Status Affected:	TO, PD			
Encoding:	0000	0000 0000 0000 0011		
Description:	is cleared (TO) is se and its po The proce	The Power-down Status bit (PD) is cleared. The Time-out status bit (TO) is set. The Watchdog Timer and its postscaler are cleared. The processor is put into Sleep mode with the oscillator stopped.		
Words:	1			
Cycles:	1			
Q Cycle Activity	:			
Q1	Q2	Q3	Q4	
Decode	No operation	Process Data	Go to Sleep	
Example:	SLEEP			
Before Instru TO = PD = After Instruc TO = PD =	? ?			
† If WDT causes wake-up, this bit is cleared.				

SUBFWB	S	Subtrac	t f from V	V wi	th borrow
Syntax:	[label]	SUBFWE	3 f	[,d [,a]]
Operands:	d	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$			
Operation:	('	$(W)-(f)-(\overline{C})\to dest$			
Status Affected:	Ν	N, OV, C, DC, Z			
Encoding:		0101 01da ffff ffff			f ffff
Description:	(n s '(s lf	Subtract register 'f' and Carry flag (borrow) from W (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).			
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1		Q2	Q3		Q4
Decode		Read ister 'f'	Proces Data	S	Write to destination
Example 1: Before Instru REG W C After Instruct REG	ictior = = =	UBFWB 0x03 0x02 0x01 0xFF	REG		
W C Z	= = =	0x02 0x00 0x00			
N Example 2:	= s	= 0x01 ; result is negative SUBFWB REG, 0, 0			gative
Before Instru REG W C After Instruct REG W C Z N Example 3:	= = = = = = = =	2 5 1 2 3 1 0 0	; result	•	ositive
•	Example 3: SUBFWB REG, 1, 0				
Before Instru REG W C After Instruct REG W	= = =	1 2 0 0 2			
C Z N	= = =	2 1 1 0	; result	is ze	ro

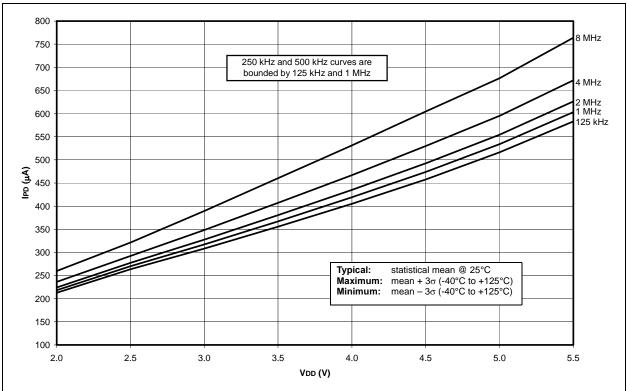
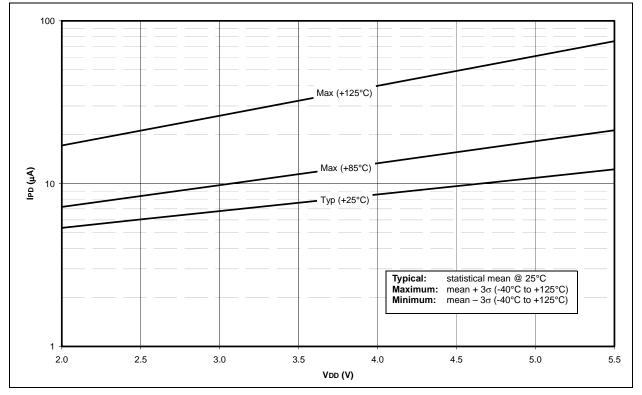



FIGURE 23-19: MAXIMUM IPD vs. VDD (-40°C TO +125°C), 125 kHz TO 8 MHz RC_IDLE MODE, ALL PERIPHERALS DISABLED

FIGURE 23-20: TYPICAL AND MAXIMUM IPD vs. VDD (-40°C TO +125°C), 31.25 kHz RC_IDLE MODE, ALL PERIPHERALS DISABLED

FIGURE 23-21: IPD SEC_RUN MODE, -10°C TO +70°C, 32.768 kHz XTAL, 2 x 22 pF, ALL PERIPHERALS DISABLED

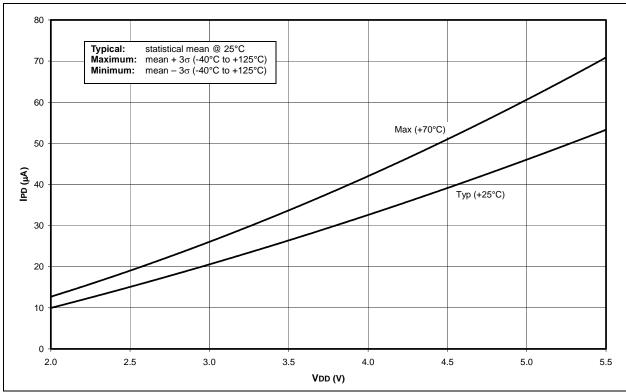
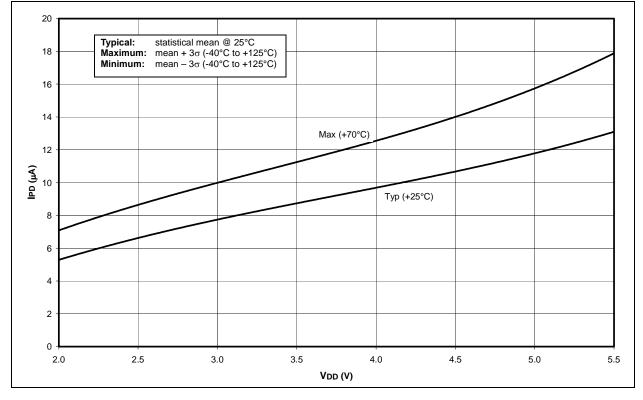
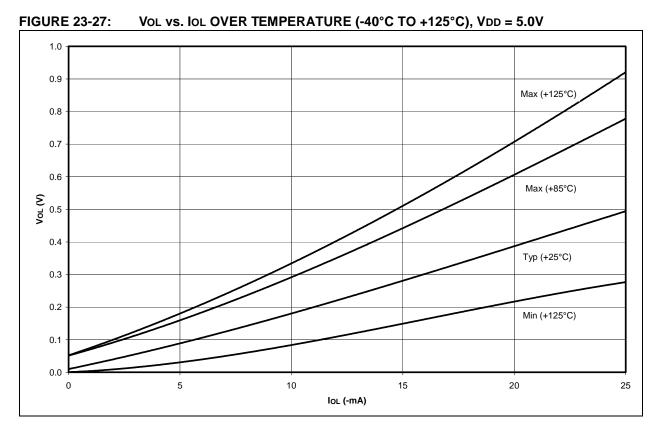
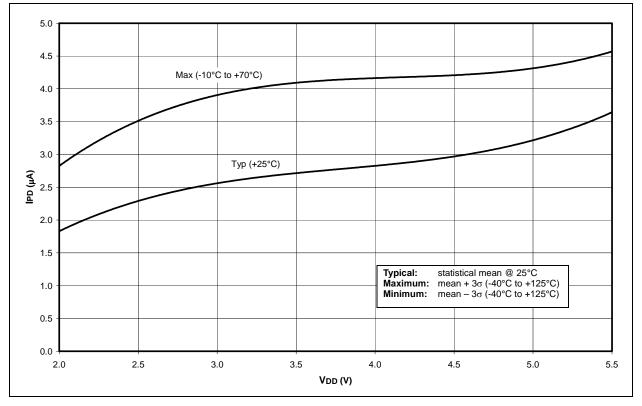





FIGURE 23-22: IPD SEC_IDLE MODE, -10°C TO +70°C, 32.768 kHz, 2 x 22 pF, ALL PERIPHERALS DISABLED

FIGURE 23-28: AIPD TIMER1 OSCILLATOR, -10°C TO +70°C SLEEP MODE, TMR1 COUNTER DISABLED

© 2002-2015 Microchip Technology Inc.

APPENDIX A: REVISION HISTORY

Revision A (August 2002)

Original data sheet for PIC18F1220/1320 devices.

Revision B (November 2002)

This revision includes significant changes to Section 2.0, Section 3.0 and Section 19.0, as well as updates to the Electrical Specifications in Section 22.0 and includes minor corrections to the data sheet text.

Revision C (May 2004)

This revision includes updates to the Electrical Specifications in **Section 22.0**, the DC and AC Characteristics Graphs and Tables in **Section 23.0** and includes minor corrections to the data sheet text.

Revision D (October 2006)

This revision includes updates to the packaging diagrams.

Revision E (January 2007)

This revision includes updates to the packaging diagrams.

Revision F (February 2007)

This revision includes updates to the packaging diagrams.

TABLE B-1: DEVICE DIFFERENCES

Features	PIC18F1220	PIC18F1320
Program Memory (Bytes)	4096	8192
Program Memory (Instructions)	2048	4096
Interrupt Sources	15	15
I/O Ports	Ports A, B	Ports A, B
Enhanced Capture/Compare/PWM Modules	1	1
10-bit Analog-to-Digital Module	7 input channels	7 input channels
Packages	18-pin SDIP 18-pin SOIC 20-pin SSOP 28-pin QFN	18-pin SDIP 18-pin SOIC 20-pin SSOP 28-pin QFN

Revision G (April 2015)

Added Section 22.5: High Temperature Operation in the Electrical Specifications section.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.