

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf1220-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Details on Individual Family Members

Devices in the PIC18F1220/1320 family are available in 18-pin, 20-pin and 28-pin packages. A block diagram for this device family is shown in Figure 1-1.

The devices are differentiated from each other only in the amount of on-chip Flash program memory (4 Kbytes for the PIC18F1220 device, 8 Kbytes for the PIC18F1320 device). These and other features are summarized in Table 1-1. A block diagram of the PIC18F1220/1320 device architecture is provided in Figure 1-1. The pinouts for this device family are listed in Table 1-2.

TABLE 1-1:DEVICE FEATURES

Features	PIC18F1220	PIC18F1320
Operating Frequency	DC – 40 MHz	DC – 40 MHz
Program Memory (Bytes)	4096	8192
Program Memory (Instructions)	2048	4096
Data Memory (Bytes)	256	256
Data EEPROM Memory (Bytes)	256	256
Interrupt Sources	15	15
I/O Ports	Ports A, B	Ports A, B
Timers	4	4
Enhanced Capture/Compare/PWM Modules	1	1
Serial Communications	Enhanced USART	Enhanced USART
10-bit Analog-to-Digital Module	7 input channels	7 input channels
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT
Programmable Low-Voltage Detect	Yes	Yes
Programmable Brown-out Reset	Yes	Yes
Instruction Set	75 Instructions	75 Instructions
Packages	18-pin SDIP 18-pin SOIC 20-pin SSOP 28-pin QFN	18-pin SDIP 18-pin SOIC 20-pin SSOP 28-pin QFN

TABLE 2-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal	Typical Capacitor Values Tested:		
	rieq.	C1	C2	
LP	32 kHz	33 pF	33 pF	
	200 kHz	15 pF	15 pF	
XT	1 MHz	33 pF	33 pF	
	4 MHz	27 pF	27 pF	
HS	4 MHz	27 pF	27 pF	
	8 MHz	22 pF	22 pF	
	20 MHz	15 pF	15 pF	

Capacitor values are for design guidance only.

These capacitors were tested with the crystals listed below for basic start-up and operation. **These values are not optimized.**

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following this table for additional information.

Crystals Used:		
32 kHz	4 MHz	
200 kHz	8 MHz	
1 MHz	20 MHz	

- **Note 1:** Higher capacitance increases the stability of oscillator, but also increases the start-up time.
 - 2: When operating below 3V VDD, or when using certain ceramic resonators at any voltage, it may be necessary to use the HS mode or switch to a crystal oscillator.
 - **3:** Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - 4: Rs may be required to avoid overdriving crystals with low drive level specification.
 - **5:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.

An external clock source may also be connected to the OSC1 pin in the HS mode, as shown in Figure 2-2.

FIGURE 2-2:

EXTERNAL CLOCK INPUT OPERATION (HS OSC CONFIGURATION)

2.3 HSPLL

A Phase Locked Loop (PLL) circuit is provided as an option for users who wish to use a lower frequency crystal oscillator circuit, or to clock the device up to its highest rated frequency from a crystal oscillator. This may be useful for customers who are concerned with EMI due to high-frequency crystals.

The HSPLL mode makes use of the HS mode oscillator for frequencies up to 10 MHz. A PLL then multiplies the oscillator output frequency by 4 to produce an internal clock frequency up to 40 MHz.

The PLL is enabled only when the oscillator Configuration bits are programmed for HSPLL mode. If programmed for any other mode, the PLL is not enabled.

FIGURE 2-3: PLL BLOCK DIAGRAM

FIGURE 4-7: TIME-OUT SEQUENCE ON POR W/PLL ENABLED (MCLR TIED TO VDD)

6.4 Erasing Flash Program Memory

The minimum erase block size is 32 words or 64 bytes under firmware control. Only through the use of an external programmer, or through ICSP control, can larger blocks of program memory be bulk erased. Word erase in Flash memory is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 64 bytes of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased. TBLPTR<5:0> are ignored.

The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the Flash program memory. The CFGS bit must be clear to access program Flash and data EEPROM memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation. The WR bit is set as part of the required instruction sequence (as shown in Example 6-2) and starts the actual erase operation. It is not necessary to load the TABLAT register with any data as it is ignored.

For protection, the write initiate sequence using EECON2 must be used.

A long write is necessary for erasing the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

6.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory location is:

- 1. Load Table Pointer with address of row being erased.
- 2. Set the EECON1 register for the erase operation:
 •set EEPGD bit to point to program memory;
 •clear the CFGS bit to access program memory;
 •set WREN bit to enable writes;

•set FREE bit to enable the erase.

- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write AAh to EECON2.
- 6. Set the WR bit. This will begin the row erase cycle.
- 7. The CPU will stall for duration of the erase (about 2 ms using internal timer).
- 8. Execute a NOP.
- 9. Re-enable interrupts.

EXAMPLE 6-2: ERASING A FLASH PROGRAM MEMORY ROW

ERASE ROW	MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL	; load TBLPTR with the base ; address of the memory block
	BSF BSF BSF BCF	EECON1, EEPGD EECON1, WREN EECON1, FREE INTCON, GIE	; point to FLASH program memory ; enable write to memory ; enable Row Erase operation ; disable interrupts
Required Sequence	MOVLW MOVWF MOVLW MOVWF BSF NOP	55h EECON2 AAh EECON2 EECON1, WR	; write 55H ; write AAH ; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts

7.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). The data is available for the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation, or until it is written to by the user (during a write operation).

7.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. The sequence in Example 7-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

EXAMPLE 7-1: DATA EEPROM READ

After a write sequence has been initiated, EECON1, EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Interrupt Flag bit (EEIF) is set. The user may either enable this interrupt or poll this bit. EEIF must be cleared by software.

7.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

7.6 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, the WREN bit is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

MOVLW	DATA_EE_ADDR;	
MOVWF	EEADR ; Data Memory Address to read	
BCF	EECON1, EEPGD; Point to DATA memory	
BSF	EECON1, RD ; EEPROM Read	
MOVF	EEDATA, W ; W = EEDATA	

EXAMPLE 7-2: DATA EEPROM WRITE

	MOVLW	DATA_EE_ADDR;
	MOVWF	EEADR ; Data Memory Address to write
	MOVLW	DATA_EE_DATA;
	MOVWF	EEDATA ; Data Memory Value to write
	BCF	EECON1, EEPGD; Point to DATA memory
	BSF	EECON1, WREN; Enable writes
	BCF	INTCON, GIE; Disable Interrupts
	MOVLW	55h ;
Required	MOVWF	EECON2 ; Write 55h
Sequence	MOVLW	AAh ;
	MOVWF	EECON2 ; Write AAh
	BSF	EECON1, WR ; Set WR bit to begin write
	BSF	INTCON, GIE; Enable Interrupts
	SLEEP	; Wait for interrupt to signal write complete
	BCF	EECON1, WREN; Disable writes

R/W-0/0	U-0	U-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0
OSCFIF	—	—	EEIF	—	LVDIF	TMR3IF	—
bit 7					· · · · · · · · · · · · · · · · · · ·		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	OSCFIF: Osc	illator Fail Inter	rupt Flag bit				
	1 = System c	oscillator failed,	clock input ha	as changed to	INTOSC (must l	be cleared in s	oftware)
	0 = System c	clock operating					
bit 6-5	Unimplemen	ted: Read as '	כ'				
bit 4	EEIF: Data El	EPROM/Flash	Write Operation	on Interrupt Fla	ag bit		
	1 = The write	operation is co	omplete (must	be cleared in	software)		
	0 = The write	e operation is no	ot complete o	r has not been	started		
bit 3	Unimplemen	ted: Read as '	כ'				
bit 2	LVDIF: Low-V	/oltage Detect I	nterrupt Flag	bit			
	1 = A low-vol 0 = The device	ltage condition ce voltage is at	occurred (mu ove the Low-	st be cleared in Voltage Detect	n software) t trip point		
bit 1	TMR3IF: TMF	R3 Overflow Int	errupt Flag bi	t			
	1 = TMR3 reg	gister overflowe	ed (must be cl	eared in softw	are)		
	0 = TMR3 reg	gister did not o	verflow				
bit 0	Unimplemen	ted: Read as '	כ'				

REGISTER 9-5: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

9.3 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Enable registers (PIE1, PIE2). When IPEN = 0, the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 9-6: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE
bit 7							bit 0

Legend:

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	Unimplemented: Read as '0'
bit 6	ADIE: A/D Converter Interrupt Enable bit
	1 = Enables the A/D interrupt0 = Disables the A/D interrupt
bit 5	RCIE: EUSART Receive Interrupt Enable bit
	1 = Enables the EUSART receive interrupt0 = Disables the EUSART receive interrupt
bit 4	TXIE: EUSART Transmit Interrupt Enable bit
	 1 = Enables the EUSART transmit interrupt 0 = Disables the EUSART transmit interrupt
	•
bit 3	Unimplemented: Read as '0'
bit 3 bit 2	Unimplemented: Read as '0' CCP1IE: CCP1 Interrupt Enable bit
bit 3 bit 2	Unimplemented: Read as '0' CCP1IE: CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt
bit 3 bit 2	Unimplemented: Read as '0' CCP1IE: CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt
bit 3 bit 2 bit 1	Unimplemented: Read as '0' CCP1IE: CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
bit 3 bit 2 bit 1	Unimplemented: Read as '0' CCP1IE: CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt
bit 3 bit 2 bit 1 bit 0	Unimplemented: Read as '0' CCP1IE: CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt TMR1IE: TMR1 Overflow Interrupt Enable bit

FIGURE 10-9: BLOCK DIAGRAM OF RB2/P1B/INT2 PIN

11.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing the T0CS bit. In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the T0CS bit. In Counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit (T0SE). Clearing the T0SE bit selects the rising edge.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

11.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not readable or writable.

The PSA and T0PS2:T0PS0 bits determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, x, ..., etc.) will clear the prescaler count.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

11.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution).

11.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF bit. The interrupt can be masked by clearing the TMR0IE bit. The TMR0IF bit must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from Low-Power Sleep mode, since the timer requires clock cycles even when T0CS is set.

11.4 16-Bit Mode Timer Reads and Writes

TMR0H is not the high byte of the timer/counter in 16-bit mode, but is actually a buffered version of the high byte of Timer0 (refer to Figure 11-2). The high byte of the Timer0 counter/timer is not directly readable nor writable. TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0, without having to verify that the read of the high and low byte were valid due to a rollover between successive reads of the high and low byte.

A write to the high byte of Timer0 must also take place through the TMR0H Buffer register. Timer0 high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

TABLE 11-1:	REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
TMR0L	Timer0 Modu	ule Low Byte F		xxxx xxxx	uuuu uuuu					
TMR0H	Timer0 Module High Byte Register									0000 0000
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	x000 000x	0000 000u
T0CON	TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	1111 1111
TRISA	RA7 ⁽¹⁾	RA6 ⁽¹⁾		PORTA D	ata Directi	ion Registe	11-1 1111	11-1 1111		

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

Note 1: RA6 and RA7 are enabled as I/O pins, depending on the oscillator mode selected in Configuration Word 1H.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	x000 000x	0000 000u
PIR1	—	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	-000 -000	-000 -000
PIE1	—	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	-000 -000	-000 -000
IPR1	—	ADIP	RCIP	TXIP	_	CCP1IP	TMR2IP	TMR1IP	-111 -111	-111 -111
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	x000 000x
RCREG	EUSART R	eceive Regis	ter						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
BAUDCTL	—	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	-1-1 0-00	-1-1 0-00
SPBRGH	Baud Rate	Generator R		0000 0000	0000 0000					
SPBRG	Baud Rate	Generator R	egister Low	Byte					0000 0000	0000 0000

TABLE 16-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

17.8 Use of the CCP1 Trigger

An A/D conversion can be started by the "special event trigger" of the CCP1 module. This requires that the CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D acquisition and conversion and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal

software overhead (moving ADRESH/ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user, or an appropriate TACQ time selected before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 0000	0000 0000
PIR1	_	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	-000 -000	-000 -000
PIE1	_	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	-000 -000	-000 -000
IPR1	_	ADIP	RCIP	TXIP	_	CCP1IP	TMR2IP	TMR1IP	-111 -111	-111 -111
PIR2	OSCFIF	_	—	EEIF	_	LVDIF	TMR3IF	_	00 -00-	00 -00-
PIE2	OSCFIE	_	—	EEIE		LVDIE	TMR3IE	_	00 -00-	00 -00-
IPR2	OSCFIP	—	—	EEIP	—	LVDIP	TMR3IP	_	11 -11-	11 -11-
ADRESH	A/D Result	Register Hi	gh Byte						xxxx xxxx	uuuu uuuu
ADRESL	A/D Result	Register Lo	w Byte						xxxx xxxx	uuuu uuuu
ADCON0	VCFG1	VCFG0	_	CHS2	CHS1	CHS0	GO/DONE	ADON	00-0 0000	00-0 0000
ADCON1	_	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	-000 0000	-000 0000
ADCON2	ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	0-00 0000	0-00 0000
PORTA	RA7 ⁽³⁾	RA6 ⁽²⁾	RA5 ⁽¹⁾	RA4	RA3	RA2	RA1	RA0	qq0x 0000	uu0u 0000
TRISA	TRISA7 ⁽³⁾	TRISA6 ⁽²⁾	_	PORTA Dat	a Directior	n Register			qq-1 1111	11-1 1111
PORTB	Read POR	ГВ pins, Wri	te LATB La	tch					xxxx xxxx	uuuu uuuu
TRISB	PORTB Dat	ta Direction	Register						1111 1111	1111 1111
LATB	PORTB Ou	tput Data La	itch						xxxx xxxx	uuuu uuuu

TABLE 17-2: SUMMARY OF A/D REGISTERS

 $\label{eq:legend: x = unknown, u = unchanged, q = depends on CONFIG1H<3:0>, - = unimplemented, read as `0'. Shaded cells are not used for A/D conversion.$

Note 1: RA5 port bit is available only as an input pin when the MCLRE bit in the Configuration register is '0'.

2: RA6 and TRISA6 are available only when the primary oscillator mode selection offers RA6 as a port pin; otherwise, RA6 always reads '0', TRISA6 always reads '1' and writes to both are ignored (see CONFIG1H<3:0>).

3: RA7 and TRISA7 are available only when the internal RC oscillator is configured as the primary oscillator in CON-FIG1H<3:0>; otherwise, RA7 always reads '0', TRISA7 always reads '1' and writes to both are ignored.

18.2.1 REFERENCE VOLTAGE SET POINT

The internal reference voltage of the LVD module may be used by other internal circuitry (the programmable Brown-out Reset). If these circuits are disabled (lower current consumption), the reference voltage circuit requires a time to become stable before a low-voltage condition can be reliably detected. This time is invariant of system clock speed. This start-up time is specified in electrical specification parameter 36. The low-voltage interrupt flag will not be enabled until a stable reference voltage is reached. Refer to the waveform in Figure 18-4.

18.2.2 CURRENT CONSUMPTION

When the module is enabled, the LVD comparator and voltage divider are enabled and will consume static current. The voltage divider can be tapped from multiple places in the resistor array. Total current consumption, when enabled, is specified in electrical specification parameter D022B.

18.3 Operation During Sleep

When enabled, the LVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the LVDIF bit will be set and the device will wakeup from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

18.4 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the LVD module to be turned off.

R/P-1	R/P-1	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1			
IESO	FSCM	_	_	FOSC3	FOSC2	FOSC1	FOSC0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared	P = Program	mable bit					
bit 7	IESO: Interna	al External Swite	chover bit							
	1 = Internal External Switchover mode enabled									
	0 = Internal External Switchover mode disabled									
bit 6	FSCM: Fail-S	afe Clock Moni	tor Enable bi	t						
	1 = Fail-Safe	Clock Monitor	enabled							
	0 = Fail-Safe	Clock Monitor	disabled							
bit 5-4	Unimplemen	ted: Read as ')'							
bit 3-0	FOSC<3:0>:	Oscillator Sele	ction bits							
	11xx = Extern	nal RC oscillato	or, CLKO fund	tion on RA6						
	1001 = Intern	al RC oscillato	r, CLKO funct	ion on RA6 an	d port function c	on RA7				
	1000 = Intern	al RC oscillato	r, port functio	n on RA6 and p	port function on	RA7				
	0111 = Exteri	nal RC oscillato	or, port functio	on on RA6						
	0110 = HS os	scillator, PLL er	habled (clock	frequency = 4	x FOSC1)					
	0101 = EC OS	scillator, port ful	function on RA							
	0100 = EC 0	scillator								
	0001 = XT os	scillator								
	0000 = LP os	cillator								

REGISTER 19-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1			
	_	_	_	BORV1	BORV0	BOR ⁽¹⁾	PWRTEN ⁽¹⁾			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit U				U = Unimpler	mented bit, read	as '0'				
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at a			R/Value at all o	other Resets					
'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared P = Programmable bit									
bit 7-4	Unimplemented: Read as '0'									
bit 3-2	BORV<1:0>:	Brown-out Res	et Voltage bit	S						
	11 = Reserve	d								
	10 = VBOR se	t to 2.7V								
	01 = VBOR Se 00 = VBOR Se	t to 4.5V								
bit 1	BOR: Brown-	out Reset Enat	ole bit ⁽¹⁾							
	1 = Brown-out	t Reset enable	d							
	0 = Brown-out	t Reset disable	d							
bit 0	PWRTEN: Po	wer-up Timer I	Enable bit ⁽¹⁾							
	1 = PWRT dis	abled								
	0 = PWRT en	abled								

REGISTER 19-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

Note 1: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

REGISTER 19-10:	CONFIG7L: CONFIGURATION	I REGISTER 7 LOW	(BYTE ADDRESS 30000Ch)
-----------------	-------------------------	------------------	------------------------

U-0	U-0	U-0	U-0	U-0	U-0	R/P-1	R/P-1	
	—	—	—	—	—	EBTR1	EBTR0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read			as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Rese				
'1' = Bit is set		'0' = Bit is clea	ared	P = Program	mable bit			
bit 7-2	Unimplemen	ted: Read as '	0'					
bit 1	EBTR1: Table	e Read Protect	ion bit (PIC18	F1320)				
	1 = Block 1 (0	01000-001FFF	h) not protect	ed from table	reads executed	in other blocks		
	0 = Block 1(0)	01000-001FFF	h) protected f	from table read	ds executed in o	ther blocks		
bit 0	EBTR0: Table	e Read Protect	ion bit (PIC18	F1320)				
	1 = Block 0 (0)	0200-000FFFI	n) not protecte	d from table re	eads executed in	other blocks		
	0 = Block 0 (0	0200-000FFFI	n) protected fr	om table reads	s executed in oth	ner blocks		
bit 1	EBTR1: Table	e Read Protect	ion bit (PIC18	F1220)				
	1 = Block 1(0)	000800-000FFF	h) not protect	ted from table	reads executed	in other blocks		
	0 = Block 1 (0)	00800-000FFF	n) protected f	rom table read	as executed in o	ther blocks		
bit 0	EBTR0: Table	e Read Protect	ion bit (PIC18	F1220)				
	1 = Block 0 (0)00200-0007FF	h) not protect	ed from table	reads executed	in other blocks		

REGISTER 19-11: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)

0 = Block 0 (000200-0007FFh) protected from table reads executed in other blocks

U-0	R/P-1	U-0	U-0	U-0	U-0	U-0	U-0
—	EBTRB	—	—	—	—	_	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	P = Programmable bit

bit 7 Unimplemented: Read as '0'

bit 6	EBTRB: Boot Block Table Read Protection bit
	1 = Boot Block (000000-0001FFh) not protected from table reads executed in other blocks
	0 = Boot Block (000000-0001FFh) protected from table reads executed in other blocks
bit 5-0	Unimplemented: Read as '0'

19.5 Program Verification and Code Protection

The overall structure of the code protection on the PIC18 Flash devices differs significantly from other PIC devices.

The user program memory is divided into three blocks. One of these is a boot block of 512 bytes. The remainder of the memory is divided into two blocks on binary boundaries. Each of the three blocks has three protection bits associated with them. They are:

- Code-Protect bit (CPn)
- Write-Protect bit (WRTn)
- External Block Table Read bit (EBTRn)

Figure 19-5 shows the program memory organization for 4 and 8-Kbyte devices and the specific code protection bit associated with each block. The actual locations of the bits are summarized in Table 19-3.

FIGURE 19-5: CODE-PROTECTED PROGRAM MEMORY FOR PIC18F1220/1320

Block Code		MEMORY S		Block Code	
Protection Controlled By:	Address Range	4 Kbytes (PIC18F1220)	8 Kbytes (PIC18F1320)	Address Range	Protection Controlled By:
CPB, WRTB, EBTRB	000000h 0001FFh	Boot Block	Boot Block	000000h 0001FFh	CPB, WRTB, EBTRB
CP0, WRT0, EBTR0	000200h 0007FFh	Block 0	000200h Block 0		CP0, WRT0, EBTR0
CP1, WRT1, EBTR1	000800h 000FFFh	Block 1		000FFFh	
	001000h			001000h	
			Block 1		CP1, WRT1, EBTR1
(Unimplemented Memory Space)		Unimplemented Read '0's		001FFFh 002000h	
			Unimplemented Read '0's		(Unimplemented Memory Space)
	1FFFFFh			1FFFFFh	

TABLE 19-3: SUMMARY OF CODE PROTECTION REGISTERS

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
300008h	CONFIG5L	_	—	_	—	—	_	CP1	CP0
300009h	CONFIG5H	CPD	CPB	_	—	—	-	—	—
30000Ah	CONFIG6L	—	—	_	—	—	_	WRT1	WRT0
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	—	—		—	_
30000Ch	CONFIG7L	—	—	—	—	—	—	EBTR1	EBTR0
30000Dh	CONFIG7H	_	EBTRB	_	_	_			_

Legend: Shaded cells are unimplemented.

^{© 2002-2015} Microchip Technology Inc.

RRNCF	Rotate Right f (no carry)	SETF	Set f
Syntax:	[<i>label</i>] RRNCF f[,d[,a]]	Syntax:	[<i>label</i>]SETF f[,a]
Operands:	$0 \le f \le 255$	Operands:	$0 \le f \le 255$
	d ∈ [0,1]		a ∈ [0,1]
	a ∈ [0,1]	Operation:	$FFh \rightarrow f$
Operation:	$(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow dest < 7 >$	Status Affected:	None
Status Affected:	$(1<0>) \rightarrow 0051<7>$	Encoding:	0110 100a ffff ffff
Status Allecteu.		Description:	The contents of the specified
			register are set to FFh. If 'a' is '0',
Description:	The contents of register T are		the Access Bank will be selected,
	'0', the result is placed in W. If 'd' is		'1'. then the bank will be selected
	'1', the result is placed back in		as per the BSR value (default).
	register 'f' (default). If 'a' is '0', the	Words:	1
	overriding the BSR value. If 'a' is	Cycles:	1
	'1', then the bank will be selected	Q Cycle Activity:	
	as per the BSR value (default).	Q1	Q2 Q3 Q4
	register f	Decode	Read Process Write
Words:	1		Tegister i Data Tegister i
Cycles:	1	Example:	SETF REG
Q Cycle Activity		Before Instru	uction
Q1	Q2 Q3 Q4	REG	= 0x5A
Decode	Read Process Write to	After Instruct	tion
	register 'f' Data destination	REG	= 0xFF
Everage 4			
Example 1:	RENCE REG, 1, 0		
Before Instru REG	JCTION = 1101 0111		
After Instruc	tion		
REG	= 1110 1011		
Example 2:	RRNCF REG, W		
Before Instru	uction		
W REG	= ? = 1101 0111		
After Instruc	tion		
W	= 1110 1011		
REG	= 1101 0111		

FIGURE 23-33: △IPD A/D, -40°C TO +125°C SLEEP MODE, A/D ENABLED (NOT CONVERTING)

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

01/27/15