

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf1220-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Oscillator Configurations	10
3.0	Power Managed Modes	
4.0	Reset	
5.0	Memory Organization	39
6.0	Flash Program Memory	55
7.0	Data EEPROM Memory	64
8.0	8 x 8 Hardware Multiplier	68
9.0	Interrupts	
10.0	I/O Ports	83
11.0	Timer0 Module	95
12.0	Timer1 Module	98
13.0	Timer2 Module	104
14.0	Timer3 Module	106
15.0	Enhanced Capture/Compare/PWM (ECCP) Module	109
16.0	Enhanced Addressable Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	126
17.0	10-Bit Analog-to-Digital Converter (A/D) Module	149
18.0	Low-Voltage Detect	160
19.0	Special Features of the CPU	165
20.0	Instruction Set Summary	184
21.0	Development Support	226
22.0	Electrical Characteristics	230
23.0	DC and AC Characteristics Graphs and Tables	262
24.0	Packaging Information	280
Appe	andix A: Revision History	290
Appe	andix B: Device Differences	290
Appe	andix C: Conversion Considerations	291
Appe	andix D: Migration from Baseline to Enhanced Devices	291
Appe	endix E: Migration from Mid-Range to Enhanced Devices	292
Appe	andix F: Migration from High-End to Enhanced Devices	292
The I	Microchip Web Site	293
Custo	omer Change Notification Service	293
Custo	omer Support	293
PIC1	8F1220/1320 Product Identification System	294

	Pin Number								
Pin Name	PDIP/ Soic	SSOP	QFN	Pin Type	Buffer Type	Description			
		_	_			PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.			
RB0/AN4/INT0 RB0 AN4 INT0	8	9	9	I/O I I	TTL Analog ST	Digital I/O. Analog input 4. External interrupt 0.			
RB1/AN5/TX/CK/INT1 RB1 AN5 TX CK INT1	9	10	10	I/O I O I/O I	TTL Analog — ST ST	Digital I/O. Analog input 5. EUSART asynchronous transmit. EUSART synchronous clock (see related RX/DT). External interrupt 1.			
RB2/P1B/INT2 RB2 P1B INT2	17	19	23	I/O O I	TTL — ST	Digital I/O. Enhanced CCP1/PWM output. External interrupt 2.			
RB3/CCP1/P1A RB3 CCP1 P1A	18	20	24	I/O I/O O	TTL ST	Digital I/O. Capture 1 input/Compare 1 output/PWM 1 output. Enhanced CCP1/PWM output.			
RB4/AN6/RX/DT/KBI0 RB4 AN6 RX DT KBI0	10	11	12	I/O I I/O I	TTL Analog ST ST TTL	Digital I/O. Analog input 6. EUSART asynchronous receive. EUSART synchronous data (see related TX/CK). Interrupt-on-change pin.			
RB5/PGM/KBI1 RB5 PGM KBI1	11	12	13	I/O I/O I	TTL ST TTL	Digital I/O. Low-Voltage ICSP™ Programming enable pin. Interrupt-on-change pin.			
RB6/PGC/T1OSO/ T13CKI/P1C/KBI2 RB6 PGC T1OSO T13CKI P1C KBI2	12	13	15	I/O I/O O I O I	TTL ST — ST — TTL	Digital I/O. In-Circuit Debugger and ICSP programming clock pin. Timer1 oscillator output. Timer1/Timer3 external clock output. Enhanced CCP1/PWM output. Interrupt-on-change pin.			
RB7/PGD/T1OSI/ P1D/KBI3 RB7 PGD T1OSI P1D KBI3	13	14	16	I/O I/O I O I	TTL ST CMOS — TTL	Digital I/O. In-Circuit Debugger and ICSP programming data pin. Timer1 oscillator input. Enhanced CCP1/PWM output. Interrupt-on-change pin.			
Vss	5	5, 6	3, 5	Р	—	Ground reference for logic and I/O pins.			
Vdd	14	15, 16	17, 19	Р		Positive supply for logic and I/O pins.			
NC	—	_	18	—	_	No connect.			
egend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels O = Output P = Power									

TABLE 1-2:	PIC18F1220/1320 PINOUT I/O DESCRIPTIONS ((CONTINUED)

O = Output OD = Open-drain (no P diode to VDD)

3.4 Run Modes

If the IDLEN bit is clear when a SLEEP instruction is executed, the CPU and peripherals are both clocked from the source selected using the SCS1:SCS0 bits. While these operating modes may not afford the power conservation of Idle or Sleep modes, they do allow the device to continue executing instructions by using a lower frequency clock source. RC_RUN mode also offers the possibility of executing code at a frequency greater than the primary clock.

Wake-up from a power managed Run mode can be triggered by an interrupt, or any Reset, to return to fullpower operation. As the CPU is executing code in Run modes, several additional exits from Run modes are possible. They include exit to Sleep mode, exit to a corresponding Idle mode and exit by executing a RESET instruction. While the device is in any of the power managed Run modes, a WDT time-out will result in a WDT Reset.

3.4.1 PRI_RUN MODE

The PRI_RUN mode is the normal full-power execution mode. If the SLEEP instruction is never executed, the microcontroller operates in this mode (a SLEEP instruction is executed to enter all other power managed modes). All other power managed modes exit to PRI_RUN mode when an interrupt or WDT time-out occur.

There is no entry to PRI_RUN mode. The OSTS bit is set. The IOFS bit may be set if the internal oscillator block is the primary clock source (see **Section 2.7.1** "Oscillator Control Register").

3.4.2 SEC_RUN MODE

The SEC_RUN mode is the compatible mode to the "clock switching" feature offered in other PIC18 devices. In this mode, the CPU and peripherals are clocked from the Timer1 oscillator. This gives users the option of lower power consumption while still using a high accuracy clock source.

SEC_RUN mode is entered by clearing the IDLEN bit, setting SCS1:SCS0 = 01 and executing a SLEEP instruction. The system clock source is switched to the Timer1 oscillator (see Figure 3-9), the primary oscillator is shut down, the T1RUN bit (T1CON<6>) is set and the OSTS bit is cleared.

Note: The Timer1 oscillator should already be running prior to entering SEC_RUN mode. If the T1OSCEN bit is not set when the SLEEP instruction is executed, the SLEEP instruction will be ignored and entry to SEC_RUN mode will not occur. If the Timer1 oscillator is enabled, but not yet running, system clocks will be delayed until the oscillator has started; in such situations, initial oscillator operation is far from stable and unpredictable operation may result.

When a wake event occurs, the peripherals and CPU continue to be clocked from the Timer1 oscillator while the primary clock is started. When the primary clock becomes ready, a clock switchback to the primary clock occurs (see Figure 3-6). When the clock switch is complete, the T1RUN bit is cleared, the OSTS bit is set and the primary clock is providing the system clock. The IDLEN and SCS bits are not affected by the wake-up. The Timer1 oscillator continues to run.

Firmware can force an exit from SEC_RUN mode. By clearing the T1OSCEN bit (T1CON<3>), an exit from SEC_RUN back to normal full-power operation is triggered. The Timer1 oscillator will continue to run and provide the system clock, even though the T1OSCEN bit is cleared. The primary clock is started. When the primary clock becomes ready, a clock switchback to the primary clock occurs (see Figure 3-6). When the clock switch is cleared, the Timer1 oscillator is disabled, the T1RUN bit is cleared, the OSTS bit is set and the primary clock is providing the system clock. The IDLEN and SCS bits are not affected by the wake-up.

FIGURE 3-9: TIMING TRANSITION FOR ENTRY TO SEC_RUN MODE

TABLE 4-1: TIME-OUT IN VARIOUS SITUATIONS

Oscillator	Power-up ⁽²⁾ a	Exit from	
Configuration	PWRTEN = 0	PWRTEN = 1	Low-Power Mode
HSPLL	66 ms ⁽¹⁾ + 1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾
HS, XT, LP	66 ms ⁽¹⁾ + 1024 Tosc	1024 Tosc	1024 Tosc
EC, ECIO	66 ms ⁽¹⁾	5-10 μs ⁽³⁾	5-10 μs ⁽³⁾
RC, RCIO	66 ms ⁽¹⁾	5-10 μs ⁽³⁾	5-10 μs ⁽³⁾
INTIO1, INTIO2	66 ms ⁽¹⁾	5-10 μs ⁽³⁾	5-10 μs ⁽³⁾

Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.

2: 2 ms is the nominal time required for the 4x PLL to lock.

3: The program memory bias start-up time is always invoked on POR, wake-up from Sleep, or on any exit from power managed mode that disables the CPU and instruction execution.

REGISTER 4-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0/0	U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1
IPEN	—	—	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Note: Refer to Section 5.14 "RCON Register" for bit definitions.

TABLE 4-2:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	01 1100	1	1	1	0	0	0	0
RESET Instruction	0000h	00 uuuu	0	u	u	u	u	u	u
Brown-out	0000h	01 11u-	1	1	1	u	0	u	u
MCLR during Power Managed Run modes	0000h	0u luuu	u	1	u	u	u	u	u
MCLR during Power Managed Idle modes and Sleep	0000h	0u 10uu	u	1	0	u	u	u	u
WDT Time-out during Full-Power or Power Managed Run	0000h	0u 0uuu	u	0	u	u	u	u	u
MCLR during Full-Power Execution								u	u
Stack Full Reset (STVR = 1)	0000h	0u uuuu	u	u	u	u	u	1	u
Stack Underflow Reset (STVR = 1)								u	1
Stack Underflow Error (not an actual Reset, STVR = 0)	0000h	uu uuuu	u	u	u	u	u	u	1
WDT Time-out during Power Man- aged Idle or Sleep	PC + 2	uu 00uu	u	0	0	u	u	u	u
Interrupt Exit from Power Managed modes	PC + 2	uu u0uu	u	u	0	u	u	u	u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (0x000008h or 0x000018h).

R/W-0/0	U-0	U-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0		
OSCFIE	_	_	EEIE	_	LVDIE	TMR3IE	_		
bit 7						1	bit (
L									
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	OSCFIE: Osc	illator Fail Inte	rupt Enable b	it					
	1 = Enabled								
	0 = Disabled								
bit 6-5	Unimplemen	ted: Read as '	0'						
bit 4	EEIE: Data E	EPROM/Flash	Write Operati	on Interrupt Er	nable bit				
	1 = Enabled								
	0 = Disabled								
bit 3	Unimplemen	ted: Read as '	0'						
bit 2	LVDIE: Low-\	/oltage Detect	Interrupt Enat	ole bit					
	1 = Enabled								
	0 = Disabled								
bit 1	TMR3IE: TMF	R3 Overflow Int	errupt Enable	bit					
	1 = Enabled								
	0 = Disabled								
bit 0	Unimplemen	ted: Read as '	0'						

REGISTER 9-7: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

12.2 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit, T1OSCEN (T1CON<3>). The oscillator is a low-power oscillator rated for 32 kHz crystals. It will continue to run during all power managed modes. The circuit for a typical LP oscillator is shown in Figure 12-3. Table 12-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper start-up of the Timer1 oscillator.

Note: The Timer1 oscillator shares the T1OSI and T1OSO pins with the PGD and PGC pins used for programming and debugging.
 When using the Timer1 oscillator, In-Circuit Serial Programming (ICSP) may not function correctly (high voltage or low voltage), or the In-Circuit Debugger (ICD) may not communicate with the controller. As a result of using either ICSP or ICD, the Timer1 crystal may be damaged.

If ICSP or ICD operations are required, the crystal should be disconnected from the circuit (disconnect either lead), or installed after programming. The oscillator loading capacitors may remain in-circuit during ICSP or ICD operation.

FIGURE 12-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR

TABLE 12-1:CAPACITOR SELECTION FOR
THE TIMER OSCILLATOR

Osc Type	Freq	C1	C2	
LP	32 kHz	22 pF ⁽¹⁾	22 pF ⁽¹⁾	

- Note 1: Microchip suggests this value as a starting point in validating the oscillator circuit. Oscillator operation should then be tested to ensure expected performance under all expected conditions (VDD and temperature).
 - 2: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.
 - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - **4:** Capacitor values are for design guidance only.

15.1 ECCP Outputs

The Enhanced CCP module may have up to four outputs, depending on the selected operating mode. These outputs, designated P1A through P1D, are multiplexed with I/O pins on PORTB. The pin assignments are summarized in Table 15-1.

To configure I/O pins as PWM outputs, the proper PWM mode must be selected by setting the P1Mn and CCP1Mn bits (CCP1CON<7:6> and <3:0>, respectively). The appropriate TRISB direction bits for the port pins must also be set as outputs.

TABLE 15-1:	PIN ASSIGNMENTS FOR VARIOUS ECCP MODES
-------------	--

ECCP Mode	CCP1CON Configuration	RB3	RB2	RB6	RB7
Compatible CCP	00xx 11xx	CCP1	RB2/INT2	RB6/PGC/T1OSO/T13CKI/KBI2	RB7/PGD/T1OSI/KBI3
Dual PWM	10xx 11xx	P1A	P1B	RB6/PGC/T1OSO/T13CKI/KBI2	RB7/PGD/T1OSI/KBI3
Quad PWM	x1xx 11xx	P1A	P1B	P1C	P1D

Legend: x = Don't care. Shaded cells indicate pin assignments not used by ECCP in a given mode.

Note 1: TRIS register values must be configured appropriately.

15.2 CCP Module

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

TABLE 15-2:CCP MODE – TIMER
RESOURCE

CCP Mode	Timer Resource
Capture	Timer1 or Timer3
PWM	Timer2

15.3 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 or TMR3 registers when an event occurs on pin RB3/CCP1/P1A. An event is defined as one of the following:

- every falling edge
- every rising edge
- every 4th rising edge
- · every 16th rising edge

The event is selected by control bits, CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit, CCP1IF (PIR1<2>), is set; it must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new captured value.

15.3.1 CCP PIN CONFIGURATION

In Capture mode, the RB3/CCP1/P1A pin should be configured as an input by setting the TRISB<3> bit.

Note:	If the RB3/CCP1/P1A is configured as an
	output, a write to the port can cause a
	capture condition.

15.3.2 TIMER1/TIMER3 MODE SELECTION

The timers that are to be used with the capture feature (either Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work. The timer to be used with the CCP module is selected in the T3CON register.

15.3.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit, CCP1IE (PIE1<2>), clear while changing capture modes to avoid false interrupts and should clear the flag bit, CCP1IF, following any such change in operating mode.

16.2 EUSART Baud Rate Generator (BRG)

The BRG is a dedicated 8-bit or 16-bit generator, that supports both the Asynchronous and Synchronous modes of the EUSART. By default, the BRG operates in 8-bit mode; setting the BRG16 bit (BAUDCTL<3>) selects 16-bit mode.

The SPBRGH:SPBRG register pair controls the period of a free running timer. In Asynchronous mode, bits BRGH (TXSTA<2>) and BRG16 also control the baud rate. In Synchronous mode, bit BRGH is ignored. Table 16-1 shows the formula for computation of the baud rate for different EUSART modes which only apply in Master mode (internally generated clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRGH:SPBRG registers can be calculated using the formulas in Table 16-1. From this, the error in baud rate can be determined. An example calculation is shown in Example 16-1. Typical baud rates and error values for the various asynchronous modes are shown in Table 16-2. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG to reduce the baud rate error, or achieve a slow baud rate for a fast oscillator frequency.

Writing a new value to the SPBRGH:SPBRG registers causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

16.2.1 POWER MANAGED MODE OPERATION

The system clock is used to generate the desired baud rate; however, when a power managed mode is entered, the clock source may be operating at a different frequency than in PRI_RUN mode. In Sleep mode, no clocks are present and in PRI_IDLE mode, the primary clock source continues to provide clocks to the Baud Rate Generator; however, in other power managed modes, the clock frequency will probably change. This may require the value in SPBRG to be adjusted.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit and make sure that the receive operation is Idle before changing the system clock.

16.2.2 SAMPLING

The data on the RB4/AN6/RX/DT/KBI0 pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

Configuration Bits				Baud Pata Formula			
SYNC	BRG16	BRGH	BRG/EUSART MODE	Bauu Kale Formula			
0	0	0	8-bit/Asynchronous	Fosc/[64 (n + 1)]			
0	0	1	8-bit/Asynchronous	$E_{OSC}/[16(p+1)]$			
0	1	0	16-bit/Asynchronous	FOSC/[16 (11 + 1)]			
0	1	1	16-bit/Asynchronous				
1	0	x	8-bit/Synchronous	Fosc/[4 (n + 1)]			
1	1	х	16-bit/Synchronous				

TABLE 16-1:BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPBRGH:SPBRG register pair

EXAMPLE 16-1: CALCULATING BAUD RATE ERROR

```
For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:
Desired Baud Rate= Fosc/(64 ([SPBRGH:SPBRG] + 1))
Solving for SPBRGH:SPBRG:
     Х
          =
              ((FOSC/Desired Baud Rate)/64) - 1
              ((1600000/9600)/64) - 1
          =
              [25.042] = 25
          =
Calculated Baud Rate=16000000/(64 (25 + 1))
              9615
          =
Error
          =
              (Calculated Baud Rate - Desired Baud Rate)/Desired Baud Rate
              (9615 - 9600)/9600 = 0.16\%
          =
```


FIGURE 16-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 16-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	—	ADIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	-000 -000	-000 -000
PIE1	—	ADIE	RCIE	TXIE		CCP1IE	TMR2IE	TMR1IE	-000 -000	-000 -000
IPR1	—	ADIP	RCIP	TXIP	_	CCP1IP	TMR2IP	TMR1IP	-111 -111	-111 -111
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
TXREG	EUSART T	ransmit Regi	ster						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
BAUDCTL	—	RCIDL	_	SCKP	BRG16	-	WUE	ABDEN	-1-1 0-00	-1-1 0-00
SPBRGH Baud Rate Generator Register High Byte									0000 0000	0000 0000
SPBRG	Baud Rate	Generator R	egister Lov	v Byte					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

R/W-0/0) U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM	—	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7							bit 0
r							
Legend:							
R = Reada	ıble bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is :	set	'0' = Bit is cle	ared				
bit 7	ADFM: A/D F 1 = Right just 0 = Left justifi	Result Format S ified ied	Select bit				
bit 6	Unimplemen	ted: Read as '	0'				
bit 5-3	ACQT<2:0>: 000 = 0 TAD ⁽²⁾ 001 = 2 TAD 010 = 4 TAD 011 = 6 TAD 100 = 8 TAD 101 = 12 TAD 110 = 16 TAD 111 = 20 TAD	A/D Acquisition)	n Time Select	bits			
bit 2-0	ADCS<2:0>:	A/D Conversio	n Clock Selec	ct bits			
	000 = Fosc/2 001 = Fosc/2 010 = Fosc/3 011 = Frc (c 100 = Fosc/2 101 = Fosc/2 110 = Fosc/2 111 = Frc (c	2 3 32 lock derived frc 4 16 54 lock derived frc	om A/D RC os om A/D RC os	cillator) ⁽¹⁾ cillator) ⁽¹⁾			
Note 1:	If the A/D FRC cloc	ck source is sel	ected, a delay	of one Tcy (ir	struction cycle)	is added befor	e the A/D

REGISTER 17-3: ADCON2: A/D CONTROL REGISTER 2

clock starts. This allows the ${\tt SLEEP}$ instruction to be executed before starting a conversion.

18.1 Control Register

The Low-Voltage Detect Control register controls the operation of the Low-Voltage Detect circuitry.

REGISTER 18-1: LVDCON: LOW-VOLTAGE DETECT CONTROL REGISTER

U-0	U-0	R-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1
		IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6 bit 5 bit 4 bit 3-0	Unimplement IRVST: Internation 1 = Indicates range 0 = Indicates age range LVDEN: Low- 1 = Enables L 0 = Disables L LVDL<3:0>: L 1111 = Extern 1100 = 4.04V 1001 = 3.76V 1000 = 3.23V 1001 = 3.41V 1000 = 2.96V 0111 = 2.70V 0100 = 2.25V 0011 = 2.16V	ted: Read as ' al Reference V that the Low-V e and the LVD Voltage Detect VD, powers up LVD, powers du LVD, powers du LOW-Voltage Detect -000-Voltage Detect -000-Volt	o' oltage Stable /oltage Detect interrupt shou Power Enable D LVD circuit own LVD circuit own LVD circuit other is used (input)	Flag bit logic will gene logic will not ge uld not be enab le bit uit bits ⁽¹⁾ ut comes from	rate the interrup enerate the inter oled the LVDIN pin)	ot flag at the spo rupt flag at the	ecified voltage specified volt-
	0100 = 2.25V 0011 = 2.16V 0010 = 1.99V 0001 = Reser	-2.86V /-2.75V /-2.53V rved rved					

Note 1: LVDL<3:0> modes, which result in a trip point below the valid operating voltage of the device, are not tested.

19.5 Program Verification and Code Protection

The overall structure of the code protection on the PIC18 Flash devices differs significantly from other PIC devices.

The user program memory is divided into three blocks. One of these is a boot block of 512 bytes. The remainder of the memory is divided into two blocks on binary boundaries. Each of the three blocks has three protection bits associated with them. They are:

- Code-Protect bit (CPn)
- Write-Protect bit (WRTn)
- External Block Table Read bit (EBTRn)

Figure 19-5 shows the program memory organization for 4 and 8-Kbyte devices and the specific code protection bit associated with each block. The actual locations of the bits are summarized in Table 19-3.

FIGURE 19-5: CODE-PROTECTED PROGRAM MEMORY FOR PIC18F1220/1320

Block Code		MEMORY S		Block Code	
Protection Controlled By:	Address Range	4 Kbytes (PIC18F1220)	8 Kbytes (PIC18F1320)	Address Range	Protection Controlled By:
CPB, WRTB, EBTRB	000000h 0001FFh	Boot Block	Boot Block	000000h 0001FFh	CPB, WRTB, EBTRB
CP0, WRT0, EBTR0	000200h 0007FFh	Block 0	Block 0	000200h	CP0, WRT0, EBTR0
CP1, WRT1, EBTR1	000800h 000FFFh	Block 1		000FFFh	
	001000h			001000h	
			Block 1		CP1, WRT1, EBTR1
(Unimplemented Memory Space)		Unimplemented Read '0's		001FFFh 002000h	
			Unimplemented Read '0's		(Unimplemented Memory Space)
	1FFFFFh			1FFFFFh	

TABLE 19-3: SUMMARY OF CODE PROTECTION REGISTERS

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
300008h	CONFIG5L	_	—	_	—	—	_	CP1	CP0
300009h	CONFIG5H	CPD	CPB	_	—	—	-	—	—
30000Ah	CONFIG6L	—	—	_	—	—	_	WRT1	WRT0
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	—	—		—	_
30000Ch	CONFIG7L	—	—	—	—	—	—	EBTR1	EBTR0
30000Dh	CONFIG7H	_	EBTRB	_	_	_			_

Legend: Shaded cells are unimplemented.

^{© 2002-2015} Microchip Technology Inc.

INCFSZ		Inc	creme	nt f, skip	o if 0				
Syntax:		[<i>l</i> a	abel]	INCFSZ	<u>′</u> f[,	d [,a	a]]		
Operands:		0 ⊴ d ∉ a ∉	≤ f ≤ 25 ≘ [0,1] ≘ [0,1]	5					
Operation:		(f) ski	+ 1 \rightarrow ip if res	dest, sult = 0					
Status Affe	cted:	No	None						
Encoding:			0011	11da	fff	f	ffff		
Description	:	Th inc is (is ((de tio dis ins tio wil va	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruc- tion, which is already fetched, is discarded and a NOP is executed instead, making it a 2-cycle instruc- tion. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will						
		(de	efault).	eu as pe		001	Value		
Words:		1							
Cycles: Q Cycle A	ctivity:	1(2 Nc	2) o te: 3 o by	cycles if s a 2-word	skip a d insti	ind f ructi	ollowed on.		
Q	1		Q2	Q3	3		Q4		
Dece	ode	F	Read	Proce	ess a	V dev	Vrite to stination		
If skip:		icg		Dui	u	uci	Stindton		
Q	1		Q2	Q3	3		Q4		
N	C		No	No) tian	~	No		
If skip and	follow	ed b	v 2-wo	rd instru	ction.	ομ	beration		
Q R	1		Q2	Q3	3		Q4		
N	С		No	No)		No		
opera	ation	ope	eration	opera	tion	ор	peration		
opera	o ation	ODe	NO eration	NO opera	tion	op	No		
opore		opt	Jiadon	oporu		9	oration		
Example:		HE NZ ZE	RE ERO RO	INCFSZ : :	CN	Т			
Before PC	Instru ;	iction =	Addres	SS (HERE	:)				
After Ir CN If (PC If (PC	NT NT CNT CNT	tion = = ≠ =	CNT + 0; Addres 0; Addres	1 SS (ZERO SS (NZER) .0)				

INFSNZ		Inc	crement	f, skip	if no	ot 0	
Syntax:		[<i>la</i>	abel] I	NFSNZ	ſ[,	d [,a]]	
Operands	5:	0 <u>≤</u> d ∉ a ∉	≤ f ≤ 255 ≡ [0,1] ≡ [0,1]				
Operatior	ו:	(f) sk	+ 1 \rightarrow d ip if resu	est , I lt ≠ 0			
Status Af	fected:	No	one				
Encoding	:		0100	10da	fff	f	ffff
Descriptio	on:	Th inc is (de If t ins fet ex cy Ac rid	e conter cremente placed ir placed b efault). he resul struction ched, is ecuted in cle instru- ccess Ba ing the E e bank w	hts of re ed. If 'd' www. If 'd' wack in i t is not , which discarc nstead, uction. I nk will I 3SR val valib e se	egiste is '0' d' is '2 regist '0', th is alr ded an maki f 'a' is be se ue. If electe	r 'f' ar , the r 1', the er 'f' ne nex eady nd a N ing it a s '0', t lecteo 'a' = 1 d as p	result result tt TOP is a 2- the d, over- 1, then per the
		BS	SR value	(defau	π).		
words:		1	-				
Cycles.		Nc	2) ote: 3 c by a	ycles if a 2-wor	skip a d inst	and fo tructio	llowed
Q Cycle	Activity						
	Q1		Q2	Q3	3	C) 4
De	ecode	F req	Read ister 'f'	Proce Dat	ess a	Wri desti	te to nation
If skip:		- 3					
	Q1		Q2	Q3	3	C) 4
	No		No	No	1	١	٧o
оре	eration	ope	eration	opera	tion	ope	ration
If skip ar	nd follow	ved b	y 2-word	d instruc	ction:		
	Q1	r –	Q2	Q3	3	C	24
00	No	000	No	No	tion	1	NO ration
ope	No	ope	No	Upera No	lion	oper	
ope	eration	оре	eration	opera	tion	oper	ration
Example:		HE ZE NZ	RE I RO ERO	NFSNZ	REG		
Befo	re Instru	uctior	n				
-	PC	=	Address	(HERE)		
After	PC Instruc	= tion	Address	(HERE)		
After	PC Instruc REG If REG	= tion = ≠	Address REG + 1 0;	(HERE)		
After	PC Instruc REG If REG PC	= tion = ≠ =	Address REG + 1 0; Address	(HERE	.0)		

IORLW Inclusive OR literal with W						
Synt	ax:	[label]	IORLW	k		
Ope	rands:	$0 \le k \le 25$	55			
Ope	ration:	(W) .OR.	$k \rightarrow W$			
Statu	us Affected:	N, Z				
Enco	oding:	0000	1001	kkk	k	kkkk
Des	cription:	The conte the 8-bit I placed in	ents of W iteral 'k'. W.	/ are (The r	OR'é resu	ed with It is
Wor	ds:	1				
Cycl	es:	1				
QC	cycle Activity:					
	Q1	Q2	Q3	3		Q4
	Decode	Read literal 'k'	Proce Dat	ess a	Wr	ite to W
<u>Exar</u>	<u>mple</u> :	IORLW	0x35			
	Before Instru	ction				
	W	= 0x9A				
	After Instruct	ion				
	W	= 0xBF				

IOR	IORWF Inclusive OR W with f							
Synt	ax:	[label]	IORWF	f [,d [,a	a]]			
Ope	rands:	$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$	5					
Ope	ration:	(W) .OR. (f) \rightarrow dest						
State	us Affected:	N, Z						
Enco	oding:	0001	00da	ffff	ffff			
Desi		 inclusive OR W with register 1. If 'd' is '0', the result is placed in W. 'd' is '1', the result is placed back is register 'f' (default). If 'a' is '0', the Access Bank will be selected, over riding the BSR value. If 'a' = 1, the the bank will be selected as per the BSR value (default). 						
Wor	ds:	1						
Cycl	es:	1						
QC	cycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Proces Data	ss V de	Vrite to stination			
<u>Exa</u>	<u>mple</u> :	IORWF RE	ESULT, W					

Before Instruction RESULT = 0x13 W = 0x91

After Instruction $\begin{array}{rcl} \mathsf{RESULT} &= & 0x13 \\ \mathsf{W} &= & 0x93 \end{array}$

 $\ensuremath{\textcircled{}^{\circ}}$ 2002-2015 Microchip Technology Inc.

SUB	LW	Sul	Subtract W from literal						
Syntax:		[<i>la</i> .	[label] SUBLW k						
Ope	rands:	0 ≤	0 ≤ k ≤ 255						
Ope	ration:	k –	$k-(W)\toW$						
Statu	us Affected:	N, (N, OV, C, DC, Z						
Enco	oding:	0	0000 1000 kkkk kkkk						
Description:		W i liter in V	W is subtracted from the 8-bit literal 'k'. The result is placed in W.						
Word	ds:	1	1						
Cycl	es:	1	1						
QC	ycle Activity:								
i	Q1	Q	2	Q3			Q4		
	Decode	Re: litera	ad al 'k'	Proce Data	icess lata		rite to W		
<u>Exar</u>	<u>mple 1:</u>	SUE	SLW ()x02					
	Before Instru	iction							
	W C	= 1 = ?							
	After Instruction W = 1 C = 1; result is positive Z = 0 N = 0								
Exar	<u>nple 2</u> :	SUE	SLW (x02					
Before Instruction W = 2 C = ?									
	After Instruct	tion							
	W C Z N	= 0 = 1 = 1 = 0	; re	esult is ze	ero				
Example 3: SUBLW 0x02									
Before Instruction									
	W C	= 3 = ?							
After Instruction									
	W C Z N	= F = 0 = 0 = 1	F;(2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	2's compl esult is ne	emen egativ	t) e			

SUBWF	S	Subtract W from f						
Syntax:	[/	[label] SUBWF f [,d [,a]]						
Operands:	0 d a	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Operation:	(f)) – (W)	\rightarrow dest					
Status Affected:	Ν	N, OV, C, DC, Z						
Encoding:		0101 11da ffff ffff						
Description:	ion: Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default)							
Words:	1	·		. ,				
Cycles:	1							
Q Cycle Activity:								
Q1	(Q2	Q3	Q4				
Decode	R regi	lead ister 'f'	Process Data	Write to destination				
Example 1: SUBWF REG								
Before Instruction $\begin{array}{rcl} REG &=& 3\\ W &=& 2\\ C &=& ?\\ \end{array}$ After Instruction $\begin{array}{rcl} REG &=& 1\\ W &=& 2\\ C &=& 1\\ W &=& 2\\ C &=& 1\\ Z &=& 0\\ \end{array}$; result is positive								
Example 2:	N = U Example 2: SIIBWE PEG W							
Before Instruction $\begin{array}{rcl} REG &=& 2\\ W &=& 2\\ C &=& ?\\ \end{array}$ After Instruction $\begin{array}{rcl} REG &=& 2\\ W &=& 0\\ \end{array}$								
Z N	= =	1 0	, 10001110 2010	,				
Example 3: SUBWF REG								
Before Instru REG W C After Instruct	iction = = = tion	0x01 0x02 ?						
REG W C Z N	= = =	0xFFh 0x02 0x00 0x00 0x00 0x01	;(2's complem ;result is nega	ient) itive				

21.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

21.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

21.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

21.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

21.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

22.2 DC Characteristics: Power-Down and Supply Current PIC18F1220/1320 (Industrial) PIC18LF1220/1320 (Industrial) (Continued)

PIC18LF1220/1320 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC18F1220/1320 (Industrial, Extended)										
Param No.	Device	Тур.	Max.	Units	Conditions					
	Supply Current (IDD) ^(2,3))								
	PIC18LF1220/1320	140	220	μA	-40°C					
		145	220	μΑ	+25°C	VDD = 2.0V	Fosc = 1 MHz (RC_RUN mode, Internal oscillator source)			
		155	220	μA	+85°C					
	PIC18LF1220/1320	215	330	μΑ	-40°C					
		225	330	μΑ	+25°C	VDD = 3.0V				
		235	330	μA	+85°C					
	All devices	385	550	μΑ	-40°C					
		390	550	μΑ	+25°C					
		405	550	μΑ	+85°C	VDD = 3.0V				
	Extended devices	410	650	μΑ	+125°C					
	PIC18LF1220/1320	410	600	μΑ	-40°C		Fosc = 4 MHz (RC_RUN mode, Internal oscillator source)			
		425	600	μΑ	+25°C	VDD = 2.0V				
		435	600	μΑ	+85°C					
	PIC18LF1220/1320	650	900	μΑ	-40°C					
		670	900	μΑ	+25°C	VDD = 3.0V VDD = 5.0V				
		680	900	μΑ	+85°C					
	All devices	1.2	1.8	mA	-40°C		, · · · · · · · · · · · · · · · · · · ·			
		1.2	1.8	mA	+25°C					
		1.2	1.8	mA	+85°C					
	Extended devices	1.2	1.8	mA	+125°C					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- 3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k Ω .
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

22.3 DC Characteristics: PIC18F1220/1320 (Industrial) PIC18LF1220/1320 (Industrial)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Max.	Units	Conditions	
	VIL	Input Low Voltage					
		I/O ports:					
D030		with TTL buffer	Vss	0.15 Vdd	V	Vdd < 4.5V	
D030A			—	0.8	V	$4.5V \le V \text{DD} \le 5.5V$	
D031		with Schmitt Trigger buffer	Vss	0.2 Vdd	V		
D032		MCLR	Vss	0.2 Vdd	V		
D032A		OSC1 (in XT, HS and LP modes) and T1OSI	Vss	0.3 Vdd	V		
D033		OSC1 (in RC and EC mode) ⁽¹⁾	Vss	0.2 Vdd	V		
	Vih	Input High Voltage					
		I/O ports:					
D040		with TTL buffer	0.25 VDD + 0.8V	Vdd	V	Vdd < 4.5V	
D040A			2.0	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D041		with Schmitt Trigger buffer	0.8 Vdd	Vdd	V		
D042		MCLR, OSC1 (EC mode)	0.8 Vdd	Vdd	V		
D042A		OSC1 (in XT, HS and LP modes) and T1OSI	1.6 Vdd	Vdd	V		
D043		OSC1 (RC mode) ⁽¹⁾	0.9 Vdd	Vdd	V		
	lı∟	Input Leakage Current ^(2,3)					
D060		I/O ports	—	±1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in at high-impedance} \end{split}$	
D061		MCLR	—	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
D063		OSC1	—	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
	IPU	Weak Pull-up Current					
D070	IPURB	PORTB weak pull-up current	50	400	μA	VDD = 5V, VPIN = VSS	

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the $PIC^{\mathbb{R}}$ device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Parameter is characterized but not tested.

24.2 Package Details

The following sections give the technical details of the packages.

18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES				
Dimensior	Dimension Limits			MAX	
Number of Pins	N	18			
Pitch	е	.100 BSC			
Top to Seating Plane	Α	-	-	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.300	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.880	.900	.920	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.014	
Upper Lead Width	b1	.045	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	_	_	.430	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-007B

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-051C Sheet 1 of 2