

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf1220-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt	
TOSU	1220	1320	0 0000	0 0000	0 uuuu (3)
TOSH	1220	1320	0000 0000	0000 0000	uuuu uuuu ⁽³⁾
TOSL	1220	1320	0000 0000	0000 0000	uuuu uuuu ⁽³⁾
STKPTR	1220	1320	00-0 0000	00-0 0000	uu-u uuuu (3)
PCLATU	1220	1320	0 0000	0 0000	u uuuu
PCLATH	1220	1320	0000 0000	0000 0000	uuuu uuuu
PCL	1220	1320	0000 0000	0000 0000	PC + 2 ⁽²⁾
TBLPTRU	1220	1320	00 0000	00 0000	uu uuuu
TBLPTRH	1220	1320	0000 0000	0000 0000	uuuu uuuu
TBLPTRL	1220	1320	0000 0000	0000 0000	uuuu uuuu
TABLAT	1220	1320	0000 0000	0000 0000	uuuu uuuu
PRODH	1220	1320	XXXX XXXX	uuuu uuuu	uuuu uuuu
PRODL	1220	1320	XXXX XXXX	uuuu uuuu	uuuu uuuu
INTCON	1220	1320	0000 000x	0000 000u	uuuu uuuu (1)
INTCON2	1220	1320	1111 -1-1	1111 -1-1	uuuu -u-u (1)
INTCON3	1220	1320	11-0 0-00	11-0 0-00	uu-u u-uu (1)
INDF0	1220	1320	N/A	N/A	N/A
POSTINC0	1220	1320	N/A	N/A	N/A
POSTDEC0	1220	1320	N/A	N/A	N/A
PREINC0	1220	1320	N/A	N/A	N/A
PLUSW0	1220	1320	N/A	N/A	N/A
FSR0H	1220	1320	0000	0000	uuuu
FSR0L	1220	1320	XXXX XXXX	uuuu uuuu	uuuu uuuu
WREG	1220	1320	XXXX XXXX	uuuu uuuu	uuuu uuuu
INDF1	1220	1320	N/A	N/A	N/A
POSTINC1	1220	1320	N/A	N/A	N/A
POSTDEC1	1220	1320	N/A	N/A	N/A
PREINC1	1220	1320	N/A	N/A	N/A
PLUSW1	1220	1320	N/A	N/A	N/A
FSR1H	1220	1320	0000	0000	uuuu
FSR1L	1220	1320	XXXX XXXX	<u>uuuu</u> uuuu	นนนน นนนน

TABLE 4-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-2 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the Oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: Bit 5 of PORTA is enabled if $\overline{\text{MCLR}}$ is disabled.

7.0 DATA EEPROM MEMORY

The data EEPROM is readable and writable during normal operation over the entire VDD range. The data memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers (SFR).

There are four SFRs used to read and write the program and data EEPROM memory. These registers are:

- EECON1
- EECON2
- EEDATA
- EEADR

The EEPROM data memory allows byte read and write. When interfacing to the data memory block, EEDATA holds the 8-bit data for read/write and EEADR holds the address of the EEPROM location being accessed. These devices have 256 bytes of data EEPROM with an address range from 00h to FFh.

The EEPROM data memory is rated for high erase/ write cycle endurance. A byte write automatically erases the location and writes the new data (erasebefore-write). The write time is controlled by an on-chip timer. The write time will vary with voltage and temperature, as well as from chip to chip. Please refer to parameter D122 (Table 22-1 in **Section 22.0** "**Electrical Characteristics**") for exact limits.

7.1 EEADR

The address register can address 256 bytes of data EEPROM.

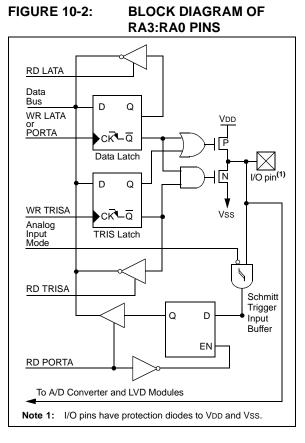
7.2 EECON1 and EECON2 Registers

EECON1 is the control register for memory accesses.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the memory write and erase sequences.

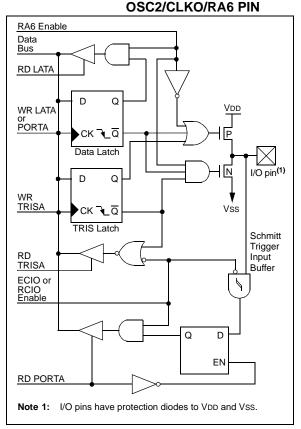
Control bit, EEPGD, determines if the access will be to program or data EEPROM memory. When clear, operations will access the data EEPROM memory. When set, program memory is accessed. Control bit, CFGS, determines if the access will be to the Configuration registers or to program memory/data EEPROM memory. When set, subsequent operations access Configuration registers. When CFGS is clear, the EEPGD bit selects either program Flash or data EEPROM memory.

The WREN bit enables and disables erase and write operations. When set, erase and write operations are allowed. When clear, erase and write operations are disabled – the WR bit cannot be set while the WREN bit is clear. This mechanism helps to prevent accidental writes to memory due to errant (unexpected) code execution.


Firmware should keep the WREN bit clear at all times, except when starting erase or write operations. Once firmware has set the WR bit, the WREN bit may be cleared. Clearing the WREN bit will not affect the operation in progress.

The WRERR bit is set when a write operation is interrupted by a Reset. In these situations, the user can check the WRERR bit and rewrite the location. It is necessary to reload the data and address registers (EEDATA and EEADR), as these registers have cleared as a result of the Reset.

Control bits, RD and WR, start read and erase/write operations, respectively. These bits are set by firmware and cleared by hardware at the completion of the operation.


The RD bit cannot be set when accessing program memory (EEPGD = 1). Program memory is read using table read instructions. See **Section 6.1 "Table Reads and Table Writes"** regarding table reads.

Note: Interrupt flag bit, EEIF in the PIR2 register, is set when write is complete. It must be cleared in software.

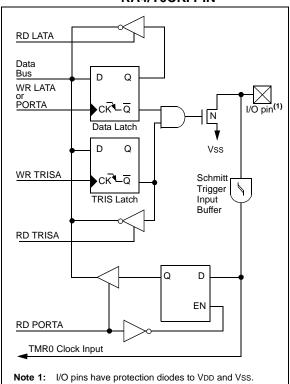


FIGURE 10-3:

BLOCK DIAGRAM OF

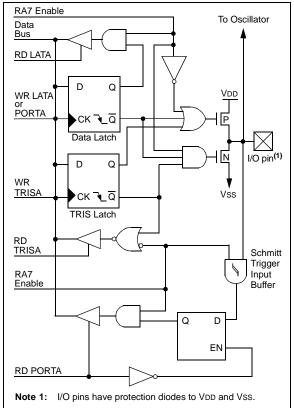


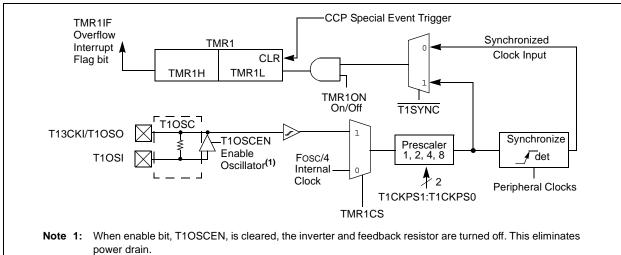
FIGURE 10-4: BLOCK DIAGRAM OF RA4/T0CKI PIN

FIGURE 10-5:

BLOCK DIAGRAM OF OSC1/CLKI/RA7 PIN

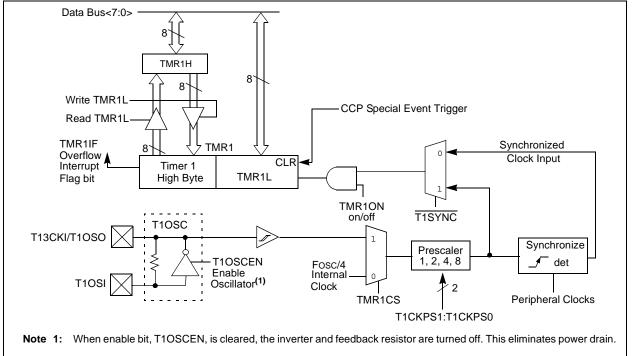
12.1 Timer1 Operation

Timer1 can operate in one of these modes:


- As a timer
- As a synchronous counter
- As an asynchronous counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

When TMR1CS = 0, Timer1 increments every instruction cycle. When TMR1CS = 1, Timer1 increments on every rising edge of the external clock input, or the Timer1 oscillator, if enabled.


When the Timer1 oscillator is enabled (T1OSCEN is set), the RB7/PGD/T1OSI/P1D/KBI3 and RB6/T1OSO/T13CKI/P1C/KBI2 pins become inputs. That is, the TRISB7:TRISB6 values are ignored and the pins read as '0'.

Timer1 also has an internal "Reset input". This Reset can be generated by the CCP module (see **Section 15.4.4 "Special Event Trigger"**).

FIGURE 12-1: TIMER1 BLOCK DIAGRAM

15.0 ENHANCED CAPTURE/ COMPARE/PWM (ECCP) MODULE

The Enhanced CCP module is implemented as a standard CCP module with Enhanced PWM capabilities. These capabilities allow for two or four output channels, user-selectable polarity, dead-band control and automatic shutdown and restart and are discussed in detail in **Section 15.5 "Enhanced PWM Mode"**.

The control register for CCP1 is shown in Register 15-1.

In addition to the expanded functions of the CCP1CON register, the ECCP module has two additional registers associated with Enhanced PWM operation and auto-shutdown features:

- PWM1CON
- ECCPAS

REGISTER 15-1: CCP1CON REGISTER FOR ENHANCED CCP OPERATION

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	P1M<1:0>: PWM Output Configuration bits						
	I <u>f CCP1M<3:2> = 00, 01, 10:</u>						
	xx = P1A assigned as Capture/Compare input; P1B, P1C, P1D assigned as port pins						
	If CCP1M<3:2> = <u>11:</u>						
	00 = Single output; P1A modulated; P1B, P1C, P1D assigned as port pins						
	01 = Full-bridge output forward; P1D modulated; P1A active; P1B, P1C inactive						
	10 = Half-bridge output; P1A, P1B modulated with dead-band control; P1C, P1D assigned as						
	port pins						
	11 = Full-bridge output reverse; P1B modulated; P1C active; P1A, P1D inactive						
bit 5-4	DC1B<1:0>: PWM Duty Cycle Least Significant bits						
	Capture mode:						
	Unused.						
	Compare mode:						
	Unused.						
	PWM mode:						
	These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.						
bit 3-0	CCP1M<3:0>: ECCP1 Mode Select bits						
	0000 = Capture/Compare/PWM off (resets ECCP module)						
	0001 = Unused (reserved)						
	0010 = Compare mode, toggle output on match (ECCP1IF bit is set)						
	0011 = Unused (reserved)						
	0100 = Capture mode, every falling edge						
	0101 = Capture mode, every rising edge						
	0110 = Capture mode, every 4th rising edge						
	0111 = Capture mode, every 16th rising edge						
	1000 = Compare mode, set output on match (ECCP1IF bit is set)						
	1001 = Compare mode, clear output on match (ECCP1IF bit is set)						
	1010 = Compare mode, generate software interrupt on match (ECCP1IF bit is set,						
	ECCP1 pin returns to port pin operation)						
	1011 = Compare mode, trigger special event (ECCP1IF bit is set; ECCP resets TMR1 or						
	TMR3 and starts an A/D conversion if the A/D module is enabled)						
	1100 = PWM mode; P1A, P1C active-high; P1B, P1D active-high						
	1101 = PWM mode; P1A, P1C active-high; P1B, P1D active-low						
	1110 = PWM mode; P1A, P1C active-low; P1B, P1D active-high 1111 = PWM mode; P1A, P1C active-low; P1B, P1D active-low						
	TTTT - F VIVI HIDDE, F IA, F IC ACTIVE-IOW, F ID, F ID ACTIVE-IOW						

15.1 ECCP Outputs

The Enhanced CCP module may have up to four outputs, depending on the selected operating mode. These outputs, designated P1A through P1D, are multiplexed with I/O pins on PORTB. The pin assignments are summarized in Table 15-1.

To configure I/O pins as PWM outputs, the proper PWM mode must be selected by setting the P1Mn and CCP1Mn bits (CCP1CON<7:6> and <3:0>, respectively). The appropriate TRISB direction bits for the port pins must also be set as outputs.

ECCP Mode	CCP1CON Configuration	RB3	RB2	RB6	RB7
Compatible CCP	00xx 11xx	CCP1	RB2/INT2	RB6/PGC/T1OSO/T13CKI/KBI2	RB7/PGD/T1OSI/KBI3
Dual PWM	10xx 11xx	P1A	P1B	RB6/PGC/T1OSO/T13CKI/KBI2	RB7/PGD/T1OSI/KBI3
Quad PWM	x1xx 11xx	P1A	P1B	P1C	P1D

Legend: x = Don't care. Shaded cells indicate pin assignments not used by ECCP in a given mode.

Note 1: TRIS register values must be configured appropriately.

15.2 CCP Module

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

TABLE 15-2:CCP MODE – TIMER
RESOURCE

CCP Mode	Timer Resource
Capture Compare	Timer1 or Timer3 Timer1 or Timer3
PWM	Timer2

15.3 Capture Mode

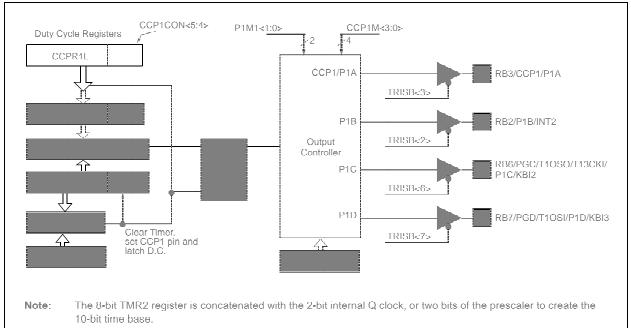
In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 or TMR3 registers when an event occurs on pin RB3/CCP1/P1A. An event is defined as one of the following:

- every falling edge
- every rising edge
- every 4th rising edge
- · every 16th rising edge

The event is selected by control bits, CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit, CCP1IF (PIR1<2>), is set; it must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new captured value.

15.3.1 CCP PIN CONFIGURATION

In Capture mode, the RB3/CCP1/P1A pin should be configured as an input by setting the TRISB<3> bit.


Note:	If the RB3/CCP1/P1A is configured as an
	output, a write to the port can cause a
	capture condition.

15.3.2 TIMER1/TIMER3 MODE SELECTION

The timers that are to be used with the capture feature (either Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work. The timer to be used with the CCP module is selected in the T3CON register.

15.3.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit, CCP1IE (PIE1<2>), clear while changing capture modes to avoid false interrupts and should clear the flag bit, CCP1IF, following any such change in operating mode.

FIGURE 15-3: SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE

	CCP1CON<7:6>	SIGNAL	0 Duty	PR2+1
			Cycle	– Period –
00	(Single Output)	P1A Modulated	Delay ⁽¹⁾	Delay ⁽¹⁾
		P1A Modulated		
10	(Half-Bridge)	P1B Modulated		
		P1A Active		
(Full-Bridge, ⁰¹ Forward)	P1B Inactive			
	P1C Inactive			
		P1D Modulated	İ	-ii
		P1A Inactive		
	(Full-Bridge,	P1B Modulated		
	Reverse)	P1C Active		1 1 1 1 1 1
		P1D Inactive		

15.5.7.1 Auto-Shutdown and Automatic Restart

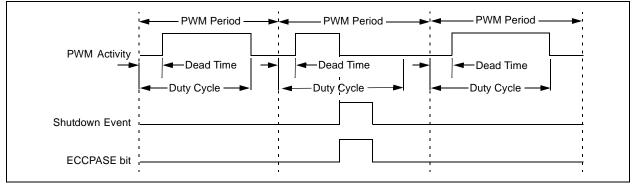
The auto-shutdown feature can be configured to allow automatic restarts of the module, following a shutdown event. This is enabled by setting the PRSEN bit of the PWM1CON register (PWM1CON<7>).

In Shutdown mode with PRSEN = 1 (Figure 15-12), the ECCPASE bit will remain set for as long as the cause of the shutdown continues. When the shutdown condition clears, the ECCPASE bit is automatically cleared. If PRSEN = 0 (Figure 15-13), once a shutdown condition occurs, the ECCPASE bit will remain set until it is cleared by firmware. Once ECCPASE is cleared, the Enhanced PWM will resume at the beginning of the next PWM period.

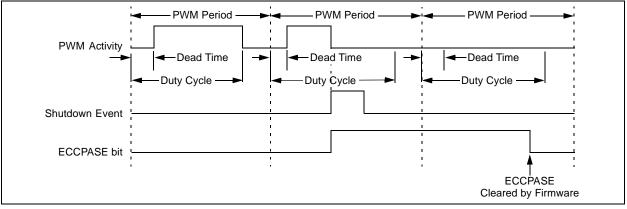
Note:	Writing to the ECCPASE bit is disabled
	while a shutdown condition is active.

Independent of the PRSEN bit setting, the ECCPASE bit cannot be cleared as long as the cause of the shutdown persists.

The Auto-Shutdown mode can be forced by writing a '1' to the ECCPASE bit.


15.5.8 START-UP CONSIDERATIONS

When the ECCP module is used in the PWM mode, the application hardware must use the proper external pullup and/or pull-down resistors on the PWM output pins. When the microcontroller is released from Reset, all of the I/O pins are in the high-impedance state. The external circuits must keep the power switch devices in the off state, until the microcontroller drives the I/O pins with the proper signal levels, or activates the PWM output(s).


The CCP1M1:CCP1M0 bits (CCP1CON<1:0>) allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pins are configured as outputs. Changing the polarity configuration while the PWM pins are configured as outputs is not recommended, since it may result in damage to the application circuits.

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pins for output at the same time as the ECCP module may cause damage to the application circuit. The ECCP module must be enabled in the proper output mode and complete a full PWM cycle, before configuring the PWM pins as outputs. The completion of a full PWM cycle is indicated by the TMR2IF bit being set as the second PWM period begins.

FIGURE 15-12: PWM AUTO-SHUTDOWN (PRSEN = 1, AUTO-RESTART ENABLED)

© 2002-2015 Microchip Technology Inc.

16.2.3 AUTO-BAUD RATE DETECT

The Enhanced USART module supports the automatic detection and calibration of baud rate. This feature is active only in Asynchronous mode and while the WUE bit is clear.

The automatic baud rate measurement sequence (Figure 16-1) begins whenever a Start bit is received and the ABDEN bit is set. The calculation is self-averaging.

In the Auto-Baud Rate Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. In ABD mode, the internal Baud Rate Generator is used as a counter to time the bit period of the incoming serial byte stream.

Once the ABDEN bit is set, the state machine will clear the BRG and look for a Start bit. The Auto-Baud Detect must receive a byte with the value 55h (ASCII "U", which is also the LIN bus Sync character), in order to calculate the proper bit rate. The measurement is taken over both a low and a high bit time in order to minimize any effects caused by asymmetry of the incoming signal. After a Start bit, the SPBRG begins counting up using the preselected clock source on the first rising edge of RX. After eight bits on the RX pin, or the fifth rising edge, an accumulated value totaling the proper BRG period is left in the SPBRGH:SPBRG registers. Once the fifth edge is seen (should correspond to the Stop bit), the ABDEN bit is automatically cleared.

While calibrating the baud rate period, the BRG registers are clocked at 1/8th the preconfigured clock rate. Note that the BRG clock will be configured by the BRG16 and BRGH bits. Independent of the BRG16 bit setting, both the SPBRG and SPBRGH will be used as a 16-bit counter. This allows the user to verify that no carry occurred for 8-bit modes, by checking for 00h in the SPBRGH register. Refer to Table 16-4 for counter clock rates to the BRG.

While the ABD sequence takes place, the EUSART state machine is held in Idle. The RCIF interrupt is set once the fifth rising edge on RX is detected. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded.

Note 1: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible due to bit error rates. Overall system timing and communication baud rates must be taken into consideration when using the Auto-Baud Rate Detection feature.

16.2.4 RECEIVING A SYNC (AUTO-BAUD RATE DETECT)

To receive a Sync (Auto-Baud Rate Detect):

- 1. Configure the EUSART for asynchronous receive. TXEN should remain clear. SPBRGH:SPBRG may be left as is. The controller should operate in either PRI_RUN or PRI_IDLE.
- 2. Enable RXIF interrupts. Set RCIE, PEIE, GIE.
- 3. Enable Auto-Baud Rate Detect. Set ABDEN.
- 4. When the next RCIF interrupt occurs, the received baud rate has been measured. Read RCREG to clear RCIF and discard. Check SPBRGH:SPBRG for a valid value. The EUSART is ready for normal communications. Return from the interrupt. Allow the primary clock to run (PRI_RUN or PRI_IDLE).
- Process subsequent RCIF interrupts normally as in asynchronous reception. Remain in PRI_RUN or PRI_IDLE until communications are complete.

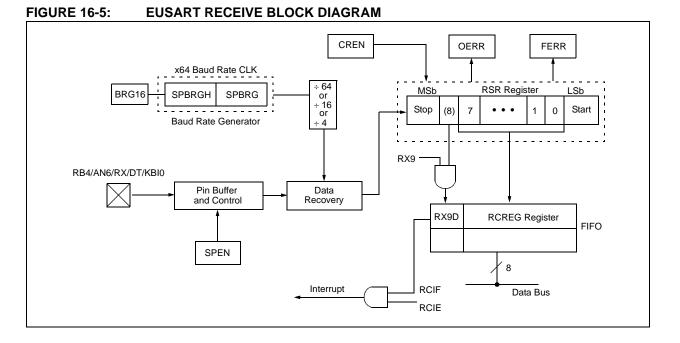
TABLE 16-4:	BRG COUNTER CLOCK
	RATES

BRG16	BRGH	BRG Counter Clock
0	0	Fosc/512
0	1	Fosc/128
1	0	Fosc/128
1	1	Fosc/32

Note: During the ABD sequence, SPBRG and SPBRGH are both used as a 16-bit counter, independent of BRG16 setting.

16.3.2 EUSART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 16-5. The data is received on the RB4/AN6/RX/DT/KBI0 pin and drives the data recovery block. The data recovery block is actually a high-speed shifter, operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.


To set up an Asynchronous Reception:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit RCIE.
- 4. If 9-bit reception is desired, set bit RX9.
- 5. Enable the reception by setting bit CREN.
- Flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

16.3.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are required, set the RCEN bit and select the desired priority level with the RCIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCIE and GIE bits are set.
- 8. Read the RCSTA register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREG to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

16.4.2 EUSART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either the Single Receive Enable bit, SREN (RCSTA<5>), or the Continuous Receive Enable bit, CREN (RCSTA<4>). Data is sampled on the RB4/AN6/RX/DT/KBI0 pin on the falling edge of the clock.

If enable bit, SREN, is set, only a single word is received. If enable bit, CREN, is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.

- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, set enable bit RCIE.
- 5. If 9-bit reception is desired, set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- 7. Interrupt flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if the enable bit, RCIE, was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

RB4/AN6/RX/ DT/KBI0 pin		<u> </u>	bit 0	\sim	bit 1	\times	bit 2	\sim	bit 3	\sim	bit 4	\sim	bit 5	\searrow	bit 6	\sim	bit 7		
RB1/AN5/TX/ CK/INT1 pin (SCKP = 0)		·/													; ;		<u>.</u>	1 1 1 1	
RB1/AN5/TX/ CK/INT1 pin (SCKP = 1)		1 <u>1</u> 1													; 			1 1 1	
Write to bit SREN		1 1 1 1	1 1 1	1 		י י י			1 1 1				1 1 1		• • •		1 1 1		
SREN bit		:				ı			L								<u>.</u>	i	
CREN bit	'0'		, ,						I										"(
RCIF bit (Interrupt)	. <u> </u>	1 1 1	1 1 1 1	· ·		, , , ,			1 1 1		1 1 1 1		1 1 1 1		, , ,		1 1 1 1	;	
Read RXREG		1 1				, ,			•						;		, ,	:	

FIGURE 16-12: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

20.0 INSTRUCTION SET SUMMARY

The PIC18 instruction set adds many enhancements to the previous PIC instruction sets, while maintaining an easy migration from these PIC instruction sets.

Most instructions are a single program memory word (16 bits), but there are three instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal operations
- Control operations

The PIC18 instruction set summary in Table 20-1 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 20-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction.

The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All **bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located.

The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for three double-word instructions. These three instructions were made double-word instructions so that all the required information is available in these 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP.

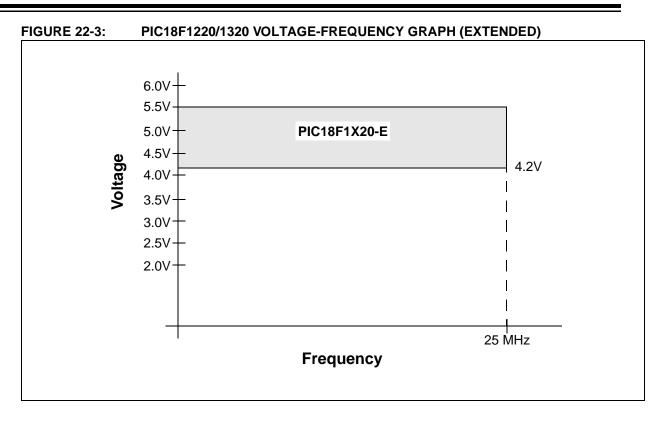
The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 20-1 shows the general formats that the instructions can have.

All examples use the format 'nnh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

The Instruction Set Summary, shown in Table 20-1, lists the instructions recognized by the Microchip Assembler (MPASMTM). **Section 20.2** "Instruction **Set**" provides a description of each instruction.


20.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a "BCF PORTB, 1" instruction will read PORTB, clear bit 1 of the data, then write the result back to PORTB. The read operation would have the unintended result that any condition that sets the RBIF flag would be cleared. The R-M-W operation may also copy the level of an input pin to its corresponding output latch.

CLRF	Clear f	CLRWDT	Clear Watchdog Timer				
Syntax:	[label]CLRF f[,a]	Syntax:	[label] CLRWDT				
Operands:	$0 \leq f \leq 255$	Operands:	None				
	a ∈ [0,1]	Operation:	000h \rightarrow WDT,				
Operation:	$\begin{array}{l} 000h \rightarrow f \\ 1 \rightarrow Z \end{array}$		$000h \rightarrow WDT$ postscaler, 1 $\rightarrow TO$,				
Status Affected:	Z		$1 \rightarrow \overline{PD}$				
Encoding:		Status Affected:	TO, PD				
Description:	Clears the contents of the specified	Encoding:	0000 0000 0000 0100				
Decemption	register. If 'a' is '0', the Access	Description:	CLRWDT instruction resets the				
	Bank will be selected, overriding		Watchdog Timer. It also resets the				
	the BSR value. If 'a' = 1, then the bank will be selected as per the		postscaler of the WDT. Status bits, TO and PD, are set.				
	BSR value (default).	Words:	1				
Words:	1	Cycles:	1				
Cycles:	1	Q Cycle Activity					
Q Cycle Activity	:	Q1	Q2 Q3 Q4				
Q1	Q2 Q3 Q4	Decode	No Process No				
Decode	Read Process Write register 'f' Data register 'f'		operation Data operation				
		Example:	CLRWDT				
Example:	CLRF FLAG_REG	Before Instru					
Before Instru	uction	WDT Co					
FLAG_R		After Instruc	tion				
After Instruc		WDT Co WDT Po					
FLAG_R	EG = 0x00	TO	= 1				
		PD	= 1				

XOR	WF	Exclusive	Exclusive OR W with f							
Synt	ax:	[label]	XORWF	f [,	,d [,a]]]				
Opei	rands:	$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$								
Oper	ration:	(W) .XOR	(W) .XOR. (f) \rightarrow dest							
Statu	is Affected:	N, Z	N, Z							
Enco	oding:	0001	10da	fff	f	ffff				
Desc	cription:	with regis is stored I (default). Bank will the BSR v bank will	Exclusive OR the contents of W with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in the register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).							
Word	ds:	1	1							
Cycl	es:	1	1							
QC	ycle Activity:									
	Q1	Q2	Q3	5	Q4					
	Decode	Read register 'f'		ocess Write to Data destination						
<u>Exar</u>	nple:	XORWF	REG							
	Before Instru REG W	= 0xAF = 0xB5								
	After Instruct REG W	tion = 0x1A = 0xB5								

22.2 DC Characteristics: Power-Down and Supply Current PIC18F1220/1320 (Industrial) PIC18LF1220/1320 (Industrial) (Continued)

PIC18LF (Indus	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
PIC18F1: (Indu:		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended								
Param No.	Device	Тур.	Max.	Units	Conditions					
	Supply Current (IDD) ^(2,3)									
	PIC18LF1220/1320	9.2	15	μA	-10°C	VDD = 2.0V				
		9.6	15	μA	+25°C					
		12.7	18	μA	+70°C					
	PIC18LF1220/1320	22	30	μA	-10°C		Fosc = 32 kHz ⁽⁴⁾			
		21	30	μA	+25°C	VDD = 3.0V	(SEC_IDLE mode,			
		20	35	μA	+70°C		Timer1 as clock)			
	All devices	50	80	μΑ	-10°C					
		45	80	μA	+25°C	VDD = 5.0V				
		45	80	μA	+70°C					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

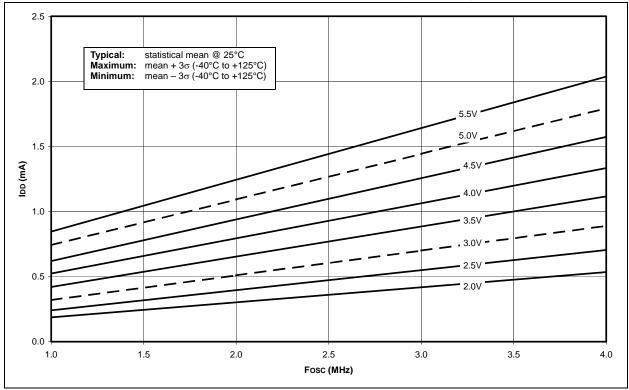
MCLR = VDD; WDT enabled/disabled as specified.

- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

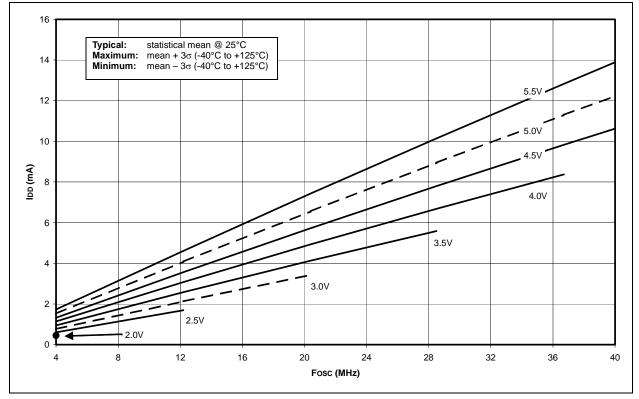
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
125	TdtV2ckl	<u>SYNC RCV (MASTER & SLAVE)</u> Data Hold before CK↓ (DT hold time)	10		ns	
126	TckL2dtl	Data Hold after $CK \downarrow$ (DT hold time)	15		ns	

TABLE 22-12: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

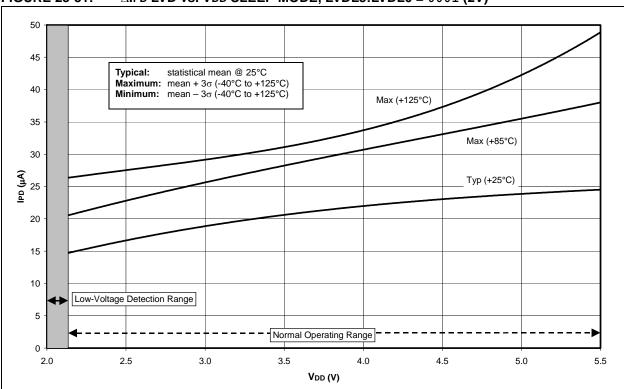
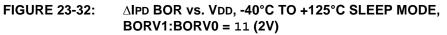
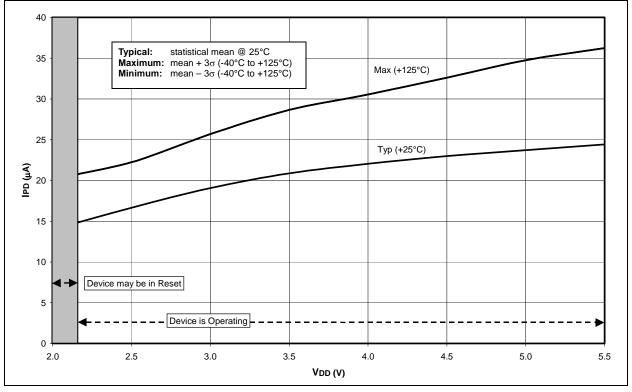
TABLE 22-13: A/D CONVERTER CHARACTERISTICS: PIC18F1220/1320 (INDUSTRIAL) PIC18LF1220/1320 (INDUSTRIAL)

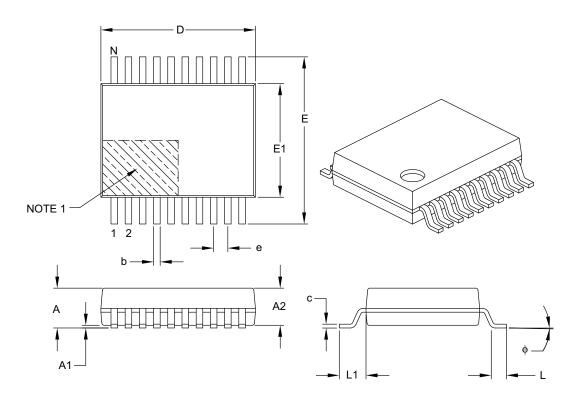

Param No.	Symbol	Charact	eristic	Min.	Тур.	Max.	Units	Conditions
A01	NR	Resolution	—	_	10	bit	$\Delta VREF \ge 3.0V$	
A03	EIL	Integral Linearity	Error	—	_	<±1	LSb	$\Delta VREF \ge 3.0V$
A04	Edl	Differential Linea	rity Error	—	_	<±1	LSb	$\Delta VREF \ge 3.0V$
A06	EOFF	Offset Error		_		<±1	LSb	$\Delta \text{VREF} \geq 3.0 \text{V}$
A07	Egn	Gain Error		_		<±1	LSb	$\Delta VREF \ge 3.0V$
A10	_	Monotonicity	gu	arantee	d ⁽²⁾	_		
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)		3	_	AVDD – AVSS	V	For 10-bit resolution
A21	Vrefh	Reference Voltage High		AVss + 3.0V	_	AVDD + 0.3V	V	For 10-bit resolution
A22	Vrefl	Reference Voltage Low		AVss-0.3V		AVDD - 3.0V	V	For 10-bit resolution
A25	Vain	Analog Input Vol	tage	VREFL	_	Vrefh	V	
A28	AVdd	Analog Supply V	oltage	Vdd - 0.3	_	VDD + 0.3	V	
A29	AVss	Analog Supply V	oltage	Vss – 0.3	_	Vss + 0.3	V	
A30	ZAIN	Recommended I Analog Voltage S		—	_	2.5	kΩ	
A40	IAD	A/D Conversion	PIC18F1X20		180	—	μΑ	Average current
		Current (VDD)	PIC18LF1X20	—	90	_	μΑ	consumption when A/D is on (Note 1)
A50	IREF	VREF Input Current (Note 3)				±5 ±150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current specification includes any such leakage from the A/D module.


2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: VREFH current is from RA3/AN3/VREF+ pin or AVDD, whichever is selected as the VREFH source. VREFL current is from RA2/AN2/VREF- pin or AVss, whichever is selected as the VREFL source.


FIGURE 23-31: △IPD LVD vs. VDD SLEEP MODE, LVDL3:LVDL0 = 0001 (2V)

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dim	ension Limits	MIN	NOM	MAX		
Number of Pins	N		20			
Pitch	е		0.65 BSC			
Overall Height	А	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	6.90	7.20	7.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	С	0.09	-	0.25		
Foot Angle	φ	0°	4°	8°		
Lead Width	b	0.22	_	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B