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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 16

Program Memory Size 4KB (2K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 256 x 8

Voltage - Supply (Vcc/Vdd) 2V ~ 5.5V

Data Converters A/D 7x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 18-SOIC (0.295", 7.50mm Width)

Supplier Device Package 18-SOIC

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf1220t-i-so

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf1220t-i-so-4426504
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


PIC18F1220/1320
1.0 DEVICE OVERVIEW

This document contains device specific information for
the following devices:

This family offers the advantages of all PIC18 microcon-
trollers – namely, high computational performance at an
economical price – with the addition of high endurance
Enhanced Flash program memory. On top of these fea-
tures, the PIC18F1220/1320 family introduces design
enhancements that make these microcontrollers a logical
choice for many high-performance, power sensitive
applications.

1.1 New Core Features 

1.1.1 POWER MODES

All of the devices in the PIC18F1220/1320 family incor-
porate a range of features that can significantly reduce
power consumption during operation. Key items include:

• Alternate Run Modes: By clocking the controller
from the Timer1 source or the internal oscillator
block, power consumption during code execution
can be reduced by as much as 90%.

• Multiple Idle Modes: The controller can also run
with its CPU core disabled, but the peripherals are
still active. In these states, power consumption can
be reduced even further, to as little as 4% of normal
operation requirements.

• On-the-fly Mode Switching: The power managed
modes are invoked by user code during operation,
allowing the user to incorporate power-saving ideas
into their application’s software design.

• Lower Consumption in Key Modules: The power
requirements for both Timer1 and the Watchdog
Timer have been reduced by up to 80%, with typical
values of 1.1 and 2.1 A, respectively. 

1.1.2 MULTIPLE OSCILLATOR OPTIONS 
AND FEATURES

All of the devices in the PIC18F1220/1320 family offer
nine different oscillator options, allowing users a wide
range of choices in developing application hardware.
These include:

• Four Crystal modes, using crystals or ceramic
resonators.

• Two External Clock modes, offering the option of
using two pins (oscillator input and a divide-by-4
clock output), or one pin (oscillator input, with the
second pin reassigned as general I/O).

• Two External RC Oscillator modes, with the same
pin options as the External Clock modes.

• An internal oscillator block, which provides an
8 MHz clock (±2% accuracy) and an INTRC source
(approximately 31 kHz, stable over temperature and
VDD), as well as a range of six user-selectable clock
frequencies (from 125 kHz to 4 MHz) for a total of
8 clock frequencies.

Besides its availability as a clock source, the internal
oscillator block provides a stable reference source that
gives the family additional features for robust
operation:

• Fail-Safe Clock Monitor: This option constantly
monitors the main clock source against a reference
signal provided by the internal oscillator. If a clock fail-
ure occurs, the controller is switched to the internal
oscillator block, allowing for continued low-speed
operation, or a safe application shutdown.

• Two-Speed Start-up: This option allows the internal
oscillator to serve as the clock source from Power-
on Reset, or wake-up from Sleep mode, until the
primary clock source is available. This allows for
code execution during what would otherwise be the
clock start-up interval and can even allow an appli-
cation to perform routine background activities and
return to Sleep without returning to full-power
operation.

1.2 Other Special Features

• Memory Endurance: The Enhanced Flash cells for
both program memory and data EEPROM are rated
to last for many thousands of erase/write cycles –
up to 100,000 for program memory and 1,000,000
for EEPROM. Data retention without refresh is
conservatively estimated to be greater than
40 years.

• Self-programmability: These devices can write to
their own program memory spaces under internal
software control. By using a bootloader routine
located in the protected Boot Block at the top of pro-
gram memory, it becomes possible to create an
application that can update itself in the field.

• Enhanced CCP module: In PWM mode, this
module provides 1, 2 or 4 modulated outputs for
controlling half-bridge and full-bridge drivers. Other
features include auto-shutdown, for disabling PWM
outputs on interrupt or other select conditions and
auto-restart, to reactivate outputs once the condition
has cleared.

• Enhanced USART: This serial communication
module features automatic wake-up on Start bit and
automatic baud rate detection and supports RS-232,
RS-485 and LIN 1.2 protocols, making it ideally
suited for use in Local Interconnect Network (LIN)
bus applications.

• 10-bit A/D Converter: This module incorporates
programmable acquisition time, allowing for a
channel to be selected and a conversion to be
initiated without waiting for a sampling period and
thus, reduce code overhead.

• Extended Watchdog Timer (WDT): This enhanced
version incorporates a 16-bit prescaler, allowing a
time-out range from 4 ms to over two minutes that is
stable across operating voltage and temperature. 

• PIC18F1220 • PIC18F1320
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PIC18F1220/1320
3.1.2 ENTERING POWER MANAGED 
MODES

In general, entry, exit and switching between power
managed clock sources requires clock source
switching. In each case, the sequence of events is the
same. 

Any change in the power managed mode begins with
loading the OSCCON register and executing a SLEEP
instruction. The SCS1:SCS0 bits select one of three
power managed clock sources; the primary clock (as
defined in Configuration Register 1H), the secondary
clock (the Timer1 oscillator) and the internal oscillator
block (used in RC modes). Modifying the SCS bits will
have no effect until a SLEEP instruction is executed.
Entry to the power managed mode is triggered by the
execution of a SLEEP instruction. 

Figure 3-5 shows how the system is clocked while
switching from the primary clock to the Timer1 oscilla-
tor. When the SLEEP instruction is executed, clocks to
the device are stopped at the beginning of the next
instruction cycle. Eight clock cycles from the new clock
source are counted to synchronize with the new clock
source. After eight clock pulses from the new clock
source are counted, clocks from the new clock source
resume clocking the system. The actual length of the
pause is between eight and nine clock periods from the
new clock source. This ensures that the new clock
source is stable and that its pulse width will not be less
than the shortest pulse width of the two clock sources.

Three bits indicate the current clock source: OSTS and
IOFS in the OSCCON register and T1RUN in the
T1CON register. Only one of these bits will be set while
in a power managed mode. When the OSTS bit is set,
the primary clock is providing the system clock. When
the IOFS bit is set, the INTOSC output is providing a
stable 8 MHz clock source and is providing the system
clock. When the T1RUN bit is set, the Timer1 oscillator
is providing the system clock. If none of these bits are
set, then either the INTRC clock source is clocking the
system, or the INTOSC source is not yet stable.

If the internal oscillator block is configured as the pri-
mary clock source in Configuration Register 1H, then
both the OSTS and IOFS bits may be set when in
PRI_RUN or PRI_IDLE modes. This indicates that the
primary clock (INTOSC output) is generating a stable
8 MHz output. Entering an RC power managed mode
(same frequency) would clear the OSTS bit.

3.1.3 MULTIPLE SLEEP COMMANDS

The power managed mode that is invoked with the
SLEEP instruction is determined by the settings of the
IDLEN and SCS bits at the time the instruction is exe-
cuted. If another SLEEP instruction is executed, the
device will enter the power managed mode specified by
these same bits at that time. If the bits have changed,
the device will enter the new power managed mode
specified by the new bit settings.

3.1.4 COMPARISONS BETWEEN RUN 
AND IDLE MODES

Clock source selection for the Run modes is identical to
the corresponding Idle modes. When a SLEEP instruc-
tion is executed, the SCS bits in the OSCCON register
are used to switch to a different clock source. As a
result, if there is a change of clock source at the time a
SLEEP instruction is executed, a clock switch will occur.

In Idle modes, the CPU is not clocked and is not run-
ning. In Run modes, the CPU is clocked and executing
code. This difference modifies the operation of the
WDT when it times out. In Idle modes, a WDT time-out
results in a wake from power managed modes. In Run
modes, a WDT time-out results in a WDT Reset (see
Table 3-2).

During a wake-up from an Idle mode, the CPU starts
executing code by entering the corresponding Run
mode until the primary clock becomes ready. When the
primary clock becomes ready, the clock source is auto-
matically switched to the primary clock. The IDLEN and
SCS bits are unchanged during and after the wake-up.

Figure 3-2 shows how the system is clocked during the
clock source switch. The example assumes the device
was in SEC_IDLE or SEC_RUN mode when a wake is
triggered (the primary clock was configured in HSPLL
mode).

Note 1: Caution should be used when modifying
a single IRCF bit. If VDD is less than 3V, it
is possible to select a higher clock speed
than is supported by the low VDD.
Improper device operation may result if
the VDD/FOSC specifications are violated.

2: Executing a SLEEP instruction does not
necessarily place the device into Sleep
mode; executing a SLEEP instruction is
simply a trigger to place the controller into
a power managed mode selected by the
OSCCON register, one of which is Sleep
mode.
 2002-2015 Microchip Technology Inc. DS30009605G-page 19
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3.3.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled, but the periph-
erals continue to be clocked from the internal oscillator
block using the INTOSC multiplexer. This mode allows
for controllable power conservation during Idle periods.

This mode is entered by setting the IDLEN bit, setting
SCS1 (SCS0 is ignored) and executing a SLEEP
instruction. The INTOSC multiplexer may be used to
select a higher clock frequency by modifying the IRCF
bits before executing the SLEEP instruction. When the
clock source is switched to the INTOSC multiplexer
(see Figure 3-7), the primary oscillator is shut down
and the OSTS bit is cleared.

If the IRCF bits are set to a non-zero value (thus,
enabling the INTOSC output), the IOFS bit becomes
set after the INTOSC output becomes stable, in about
1 ms. Clocks to the peripherals continue while the
INTOSC source stabilizes. If the IRCF bits were
previously at a non-zero value before the SLEEP

instruction was executed and the INTOSC source was
already stable, the IOFS bit will remain set. If the IRCF
bits are all clear, the INTOSC output is not enabled and
the IOFS bit will remain clear; there will be no indication
of the current clock source.

When a wake event occurs, the peripherals continue to
be clocked from the INTOSC multiplexer. After a 10 s
delay following the wake event, the CPU begins exe-
cuting code, being clocked by the INTOSC multiplexer.
The microcontroller operates in RC_RUN mode until
the primary clock becomes ready. When the primary
clock becomes ready, a clock switchback to the primary
clock occurs (see Figure 3-8). When the clock switch is
complete, the IOFS bit is cleared, the OSTS bit is set
and the primary clock is providing the system clock.
The IDLEN and SCS bits are not affected by the wake-
up. The INTRC source will continue to run if either the
WDT or the Fail-Safe Clock Monitor is enabled.

FIGURE 3-7: TIMING TRANSITION TO RC_IDLE MODE

FIGURE 3-8: TIMING TRANSITION FOR WAKE FROM RC_RUN MODE (RC_RUN TO PRI_RUN) 
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PIC18F1220/1320
3.4.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are
clocked from the internal oscillator block using the
INTOSC multiplexer and the primary clock is shut
down. When using the INTRC source, this mode pro-
vides the best power conservation of all the Run
modes, while still executing code. It works well for user
applications which are not highly timing sensitive, or do
not require high-speed clocks at all times.

If the primary clock source is the internal oscillator
block (either of the INTIO1 or INTIO2 oscillators), there
are no distinguishable differences between PRI_RUN
and RC_RUN modes during execution. However, a
clock switch delay will occur during entry to and exit
from RC_RUN mode. Therefore, if the primary clock
source is the internal oscillator block, the use of
RC_RUN mode is not recommended.

This mode is entered by clearing the IDLEN bit, setting
SCS1 (SCS0 is ignored) and executing a SLEEP
instruction. The IRCF bits may select the clock
frequency before the SLEEP instruction is executed.
When the clock source is switched to the INTOSC
multiplexer (see Figure 3-10), the primary oscillator is
shut down and the OSTS bit is cleared.

The IRCF bits may be modified at any time to immedi-
ately change the system clock speed. Executing a
SLEEP instruction is not required to select a new clock
frequency from the INTOSC multiplexer.

If the IRCF bits are all clear, the INTOSC output is not
enabled and the IOFS bit will remain clear; there will be
no indication of the current clock source. The INTRC
source is providing the system clocks.

If the IRCF bits are changed from all clear (thus,
enabling the INTOSC output), the IOFS bit becomes
set after the INTOSC output becomes stable. Clocks to
the system continue while the INTOSC source
stabilizes, in approximately 1 ms.

If the IRCF bits were previously at a non-zero value
before the SLEEP instruction was executed and the
INTOSC source was already stable, the IOFS bit will
remain set. 

When a wake event occurs, the system continues to be
clocked from the INTOSC multiplexer while the primary
clock is started. When the primary clock becomes
ready, a clock switch to the primary clock occurs (see
Figure 3-8). When the clock switch is complete, the
IOFS bit is cleared, the OSTS bit is set and the primary
clock is providing the system clock. The IDLEN and
SCS bits are not affected by the wake-up. The INTRC
source will continue to run if either the WDT or the
Fail-Safe Clock Monitor is enabled.

FIGURE 3-10: TIMING TRANSITION TO RC_RUN MODE

Note: Caution should be used when modifying a
single IRCF bit. If VDD is less than 3V, it is
possible to select a higher clock speed
than is supported by the low VDD.
Improper device operation may result if
the VDD/FOSC specifications are violated.
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PIC18F1220/1320
4.0 RESET

The PIC18F1220/1320 devices differentiate between
various kinds of Reset: 

a) Power-on Reset (POR) 

b) MCLR Reset during normal operation

c) MCLR Reset during Sleep 

d) Watchdog Timer (WDT) Reset (during 
execution)

e) Programmable Brown-out Reset (BOR) 

f) RESET Instruction

g) Stack Full Reset

h) Stack Underflow Reset

Most registers are unaffected by a Reset. Their status
is unknown on POR and unchanged by all other
Resets. The other registers are forced to a “Reset
state”, depending on the type of Reset that occurred. 

Most registers are not affected by a WDT wake-up,
since this is viewed as the resumption of normal
operation. Status bits from the RCON register
(Register 5-2), RI, TO, PD, POR and BOR, are set or
cleared differently in different Reset situations, as
indicated in Table 4-2. These bits are used in software
to determine the nature of the Reset. See Table 4-3 for
a full description of the Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit
is shown in Figure 4-1.

The Enhanced MCU devices have a MCLR noise filter
in the MCLR Reset path. The filter will detect and
ignore small pulses.

The MCLR pin is not driven low by any internal Resets,
including the WDT.

The MCLR input provided by the MCLR pin can be
disabled with the MCLRE bit in Configuration
Register 3H (CONFIG3H<7>).

FIGURE 4-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT
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PIC18F1220/1320
5.12 Indirect Addressing, INDF and 
FSR Registers

Indirect addressing is a mode of addressing data mem-
ory, where the data memory address in the instruction
is not fixed. An FSR register is used as a pointer to the
data memory location that is to be read or written. Since
this pointer is in RAM, the contents can be modified by
the program. This can be useful for data tables in the
data memory and for software stacks. Figure 5-8
shows how the fetched instruction is modified prior to
being executed.

Indirect addressing is possible by using one of the
INDF registers. Any instruction, using the INDF regis-
ter, actually accesses the register pointed to by the File
Select Register, FSR. Reading the INDF register itself,
indirectly (FSR = 0), will read 00h. Writing to the INDF
register indirectly, results in a no operation (NOP). The
FSR register contains a 12-bit address, which is shown
in Figure 5-9. 

The INDFn register is not a physical register. Address-
ing INDFn actually addresses the register whose
address is contained in the FSRn register (FSRn is a
pointer). This is indirect addressing.

Example 5-5 shows a simple use of indirect addressing
to clear the RAM in Bank 1 (locations 100h-1FFh) in a
minimum number of instructions.

EXAMPLE 5-5: HOW TO CLEAR RAM 
(BANK 1) USING 
INDIRECT ADDRESSING   

There are three indirect addressing registers. To
address the entire data memory space (4096 bytes),
these registers are 12-bit wide. To store the 12 bits of
addressing information, two 8-bit registers are required:

1. FSR0: composed of FSR0H:FSR0L

2. FSR1: composed of FSR1H:FSR1L

3. FSR2: composed of FSR2H:FSR2L

In addition, there are registers INDF0, INDF1 and
INDF2, which are not physically implemented. Reading
or writing to these registers activates indirect address-
ing, with the value in the corresponding FSR register
being the address of the data. If an instruction writes a
value to INDF0, the value will be written to the address
pointed to by FSR0H:FSR0L. A read from INDF1 reads
the data from the address pointed to by
FSR1H:FSR1L. INDFn can be used in code anywhere
an operand can be used.

If INDF0, INDF1 or INDF2 are read indirectly via an
FSR, all ‘0’s are read (zero bit is set). Similarly, if
INDF0, INDF1 or INDF2 are written to indirectly, the
operation will be equivalent to a NOP instruction and the
Status bits are not affected.

5.12.1 INDIRECT ADDRESSING 
OPERATION

Each FSR register has an INDF register associated with
it, plus four additional register addresses. Performing an
operation using one of these five registers determines
how the FSR will be modified during indirect addressing.

When data access is performed using one of the five
INDFn locations, the address selected will configure
the FSRn register to:

• Do nothing to FSRn after an indirect access (no 
change) – INDFn

• Auto-decrement FSRn after an indirect access 
(post-decrement) – POSTDECn

• Auto-increment FSRn after an indirect access 
(post-increment) – POSTINCn

• Auto-increment FSRn before an indirect access 
(pre-increment) – PREINCn

• Use the value in the WREG register as an offset 
to FSRn. Do not modify the value of the WREG or 
the FSRn register after an indirect access (no 
change) – PLUSWn

When using the auto-increment or auto-decrement
features, the effect on the FSR is not reflected in the
Status register. For example, if the indirect address
causes the FSR to equal ‘0’, the Z bit will not be set.

Auto-incrementing or auto-decrementing an FSR affects
all 12 bits. That is, when FSRnL overflows from an
increment, FSRnH will be incremented automatically.

Adding these features allows the FSRn to be used as a
stack pointer, in addition to its uses for table operations
in data memory.

Each FSR has an address associated with it that
performs an indexed indirect access. When a data
access to this INDFn location (PLUSWn) occurs, the
FSRn is configured to add the signed value in the
WREG register and the value in FSR to form the
address before an indirect access. The FSR value is
not changed. The WREG offset range is -128 to +127. 

If an FSR register contains a value that points to one of
the INDFn, an indirect read will read 00h (zero bit is
set), while an indirect write will be equivalent to a NOP
(Status bits are not affected).

If an indirect addressing write is performed when the tar-
get address is an FSRnH or FSRnL register, the data is
written to the FSR register, but no pre- or post-increment/
decrement is performed.

LFSR   FSR0,0x100 ;   
NEXT  CLRF   POSTINC0 ; Clear INDF 

; register then 
; inc pointer 

BTFSS  FSR0H, 1 ; All done with
; Bank1? 

GOTO   NEXT ; NO, clear next 
CONTINUE ; YES, continue 
 2002-2015 Microchip Technology Inc. DS30009605G-page 51
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5.14 RCON Register

The Reset Control (RCON) register contains flag bits
that allow differentiation between the sources of a
device Reset. These flags include the TO, PD, POR,
BOR and RI bits. This register is readable and writable.

            

             

Note 1: If the BOR Configuration bit is set
(Brown-out Reset enabled), the BOR bit
is ‘1’ on a Power-on Reset. After a
Brown-out Reset has occurred, the BOR
bit will be cleared and must be set by
firmware to indicate the occurrence of the
next Brown-out Reset. 

2: It is recommended that the POR bit be
set after a Power-on Reset has been
detected, so that subsequent Power-on
Resets may be detected.

REGISTER 5-3: RCON: RESET CONTROL REGISTER

R/W-0 U-0 U-0 R/W-1 R-1 R-1 R/W-0 R/W-0

IPEN — — RI TO PD POR BOR

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7 IPEN: Interrupt Priority Enable bit 

1 = Enable priority levels on interrupts
0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)

bit 6-5 Unimplemented: Read as ‘0’

bit 4 RI: RESET Instruction Flag bit

1 = The RESET instruction was not executed (set by firmware only)
0 = The RESET instruction was executed causing a device Reset 

(must be set in software after a Brown-out Reset occurs)

bit 3 TO: Watchdog Time-out Flag bit 

1 = Set by power-up, CLRWDT instruction or SLEEP instruction 
0 = A WDT time-out occurred

bit 2 PD: Power-down Detection Flag bit 

1 = Set by power-up or by the CLRWDT instruction 
0 = Cleared by execution of the SLEEP instruction 

bit 1 POR: Power-on Reset Status bit 

1 = A Power-on Reset has not occurred (set by firmware only)
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 BOR: Brown-out Reset Status bit

1 = A Brown-out Reset has not occurred (set by firmware only)
0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs) 

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the 
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order 
bit of the source register.
DS30009605G-page 54  2002-2015 Microchip Technology Inc.
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Example 8-3 shows the sequence to do a 16 x 16
unsigned multiply. Equation 8-1 shows the algorithm
that is used. The 32-bit result is stored in four registers,
RES3:RES0.

EQUATION 8-1: 16 x 16 UNSIGNED 
MULTIPLICATION 
ALGORITHM 

EXAMPLE 8-3: 16 x 16 UNSIGNED 
MULTIPLY ROUTINE  

Example 8-4 shows the sequence to do a 16 x 16
signed multiply. Equation 8-2 shows the algorithm
used. The 32-bit result is stored in four registers,
RES3:RES0. To account for the sign bits of the argu-
ments, each argument pairs’ Most Significant bit (MSb)
is tested and the appropriate subtractions are done.

EQUATION 8-2: 16 x 16 SIGNED 
MULTIPLICATION 
ALGORITHM

EXAMPLE 8-4: 16 x 16 SIGNED 
MULTIPLY ROUTINE  

MOVFARG1L, W 
MULWFARG2L ; ARG1L * ARG2L -> 

; PRODH:PRODL 
MOVFFPRODH, RES1 ; 
MOVFFPRODL, RES0 ; 

; 
MOVFARG1H, W 
MULWFARG2H ; ARG1H * ARG2H -> 

; PRODH:PRODL 
MOVFFPRODH, RES3 ; 
MOVFFPRODL, RES2 ; 

; 
MOVFARG1L, W 
MULWFARG2H ; ARG1L * ARG2H -> 

; PRODH:PRODL 
MOVFPRODL, W ; 
ADDWFRES1, F ; Add cross 
MOVFPRODH, W ; products 
ADDWFCRES2, F ; 
CLRFWREG ; 
ADDWFCRES3,F ; 

; 
MOVFARG1H, W ; 
MULWFARG2L ; ARG1H * ARG2L -> 

; PRODH:PRODL 
MOVFPRODL, W ; 
ADDWFRES1, F ; Add cross 
MOVFPRODH, W ; products 
ADDWFCRES2, F ; 
CLRFWREG ; 
ADDWFCRES3, F ; 

RES3:RES0
= ARG1H:ARG1L  ARG2H:ARG2L
= (ARG1H  ARG2H  216) +

(ARG1H  ARG2L  28) +
(ARG1L  ARG2H  28) +
(ARG1L  ARG2L) 

MOVF ARG1L, W 
MULWF ARG2L ; ARG1L * ARG2L -> 

; PRODH:PRODL 
MOVFF PRODH, RES1 ; 
MOVFF PRODL, RES0 ; 

; 
MOVF ARG1H, W 
MULWF ARG2H ; ARG1H * ARG2H -> 

; PRODH:PRODL 
MOVFF PRODH, RES3 ; 
MOVFF PRODL, RES2 ; 

; 
MOVF ARG1L, W 
MULWF ARG2H ; ARG1L * ARG2H -> 

; PRODH:PRODL 
MOVF PRODL, W ; 
ADDWF RES1, F ; Add cross 
MOVF PRODH, W ; products 
ADDWFC RES2, F ; 
CLRF WREG ; 
ADDWFC RES3, F ; 

; 
MOVF ARG1H, W ; 
MULWF ARG2L ; ARG1H * ARG2L -> 

; PRODH:PRODL 
MOVF PRODL, W ; 
ADDWF RES1, F ; Add cross 
MOVF PRODH, W ; products 
ADDWFC RES2, F ; 
CLRF WREG ; 
ADDWFC RES3, F ; 

; 
BTFSS ARG2H, 7 ; ARG2H:ARG2L neg? 
BRA SIGN_ARG1 ; no, check ARG1 
MOVF ARG1L, W ; 
SUBWF RES2 ; 
MOVF ARG1H, W ; 
SUBWFB RES3 

; 
SIGN_ARG1 

BTFSS ARG1H, 7 ; ARG1H:ARG1L neg? 
BRA CONT_CODE ; no, done 
MOVF ARG2L, W ; 
SUBWF RES2 ; 
MOVF ARG2H, W ; 
SUBWFB RES3 

; 
CONT_CODE 
   : 

RES3:RES0
= ARG1H:ARG1L  ARG2H:ARG2L
= (ARG1H  ARG2H  216) +

(ARG1H  ARG2L  28) +
(ARG1L  ARG2H  28) +
(ARG1L  ARG2L) +
(-1  ARG2H<7>  ARG1H:ARG1L  216) +
(-1  ARG1H<7>  ARG2H:ARG2L  216) 
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FIGURE 15-10: PWM DIRECTION CHANGE (ACTIVE-HIGH)

FIGURE 15-11: PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE (ACTIVE-HIGH)

DC

PWM Period(1)
SIGNAL

Note 1: The direction bit in the CCP1 Control register (CCP1CON<7>) is written any time during the PWM cycle.
2: When changing directions, the P1A and P1C toggle one Timer2 count before the end of the current PWM cycle. 

The modulated P1B and P1D signals are inactive at this time.
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Note 1: tON is the turn-on delay of power switch QC and its driver.

2: tOFF is the turn-off delay of power switch QD and its driver.
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REGISTER 15-3: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM/AUTO-SHUTDOWN 

CONTROL REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 ECCPASE: ECCP Auto-Shutdown Event Status bit

0 = ECCP outputs are operating 
1 = A shutdown event has occurred; ECCP outputs are in shutdown state

bit 6 ECCPAS2: ECCP Auto-Shutdown bit 2

0 = INT0 pin has no effect 
1 = INT0 pin low causes shutdown

bit 5 ECCPAS1: ECCP Auto-Shutdown bit 1

0 = INT2 pin has no effect 
1 = INT2 pin low causes shutdown

bit 4 ECCPAS0: ECCP Auto-Shutdown bit 0

0 = INT1 pin has no effect 
1 = INT1 pin low causes shutdown

bit 3-2 PSSACn: Pins A and C Shutdown State Control bits

00 = Drive Pins A and C to ‘0’
01 = Drive Pins A and C to ‘1’
1x = Pins A and C tri-state

bit 1-0 PSSBDn: Pins B and D Shutdown State Control bits

00 = Drive Pins B and D to ‘0’
01 = Drive Pins B and D to ‘1’
1x = Pins B and D tri-state
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16.2.3 AUTO-BAUD RATE DETECT

The Enhanced USART module supports the automatic
detection and calibration of baud rate. This feature is
active only in Asynchronous mode and while the WUE
bit is clear.

The automatic baud rate measurement sequence
(Figure 16-1) begins whenever a Start bit is received and
the ABDEN bit is set. The calculation is self-averaging.

In the Auto-Baud Rate Detect (ABD) mode, the clock to
the BRG is reversed. Rather than the BRG clocking the
incoming RX signal, the RX signal is timing the BRG. In
ABD mode, the internal Baud Rate Generator is used
as a counter to time the bit period of the incoming serial
byte stream.

Once the ABDEN bit is set, the state machine will clear
the BRG and look for a Start bit. The Auto-Baud Detect
must receive a byte with the value 55h (ASCII “U”,
which is also the LIN bus Sync character), in order to
calculate the proper bit rate. The measurement is taken
over both a low and a high bit time in order to minimize
any effects caused by asymmetry of the incoming sig-
nal. After a Start bit, the SPBRG begins counting up
using the preselected clock source on the first rising
edge of RX. After eight bits on the RX pin, or the fifth
rising edge, an accumulated value totaling the proper
BRG period is left in the SPBRGH:SPBRG registers.
Once the fifth edge is seen (should correspond to the
Stop bit), the ABDEN bit is automatically cleared.

While calibrating the baud rate period, the BRG
registers are clocked at 1/8th the preconfigured clock
rate. Note that the BRG clock will be configured by the
BRG16 and BRGH bits. Independent of the BRG16 bit
setting, both the SPBRG and SPBRGH will be used as
a 16-bit counter. This allows the user to verify that no
carry occurred for 8-bit modes, by checking for 00h in
the SPBRGH register. Refer to Table 16-4 for counter
clock rates to the BRG.

While the ABD sequence takes place, the EUSART
state machine is held in Idle. The RCIF interrupt is set
once the fifth rising edge on RX is detected. The value
in the RCREG needs to be read to clear the RCIF
interrupt. RCREG content should be discarded.

 

16.2.4 RECEIVING A SYNC (AUTO-BAUD 
RATE DETECT)

To receive a Sync (Auto-Baud Rate Detect):

1. Configure the EUSART for asynchronous receive.
TXEN should remain clear. SPBRGH:SPBRG
may be left as is. The controller should operate in
either PRI_RUN or PRI_IDLE.

2. Enable RXIF interrupts. Set RCIE, PEIE, GIE.

3. Enable Auto-Baud Rate Detect. Set ABDEN.

4. When the next RCIF interrupt occurs, the
received baud rate has been measured. Read
RCREG to clear RCIF and discard. Check
SPBRGH:SPBRG for a valid value. The
EUSART is ready for normal communications.
Return from the interrupt. Allow the primary
clock to run (PRI_RUN or PRI_IDLE). 

5. Process subsequent RCIF interrupts normally
as in asynchronous reception. Remain in
PRI_RUN or PRI_IDLE until communications
are complete.

TABLE 16-4: BRG COUNTER CLOCK 
RATES

Note 1: It is up to the user to determine that the
incoming character baud rate is within the
range of the selected BRG clock source.
Some combinations of oscillator
frequency and EUSART baud rates are
not possible due to bit error rates. Overall
system timing and communication baud
rates must be taken into consideration
when using the Auto-Baud Rate Detection
feature.

BRG16 BRGH BRG Counter Clock

0 0 FOSC/512

0 1 FOSC/128

1 0 FOSC/128

1 1 FOSC/32

Note:   During the ABD sequence, SPBRG and 
SPBRGH are both used as a 16-bit counter, 
independent of BRG16 setting.
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16.3.6.2 Receiving a Break Sync

To receive a Break Sync:

1. Configure the EUSART for asynchronous
transmit and receive. TXEN should remain
clear. SPBRGH:SPBRG may be left as is.

2. Enable auto-wake-up. Set WUE. 

3. Enable RXIF interrupts. Set RCIE, PEIE, GIE.

4. The controller may be placed in any power
managed mode.

5. An RCIF will be generated at the beginning of
the Break signal. When the interrupt is received,
read RCREG to clear RCIF and discard. Allow
the controller to return to PRI_RUN mode.

6. Wait for the RX line to go high at the end of the
Break signal. Wait for any of the following: WUE
to clear automatically (poll), RB4/RX to go high
(poll) or for RBIF to be set (poll or interrupt). If
RBIF is used, check to be sure that RB4/RX is
high before continuing.

7. Enable Auto-Baud Rate Detect. Set ABDEN.

8. Return from the interrupt. Allow the primary
clock to start and stabilize (PRI_RUN or PRI_I-
DLE). 

9. When the next RCIF interrupt occurs, the
received baud rate has been measured. Read
RCREG to clear RCIF and discard. Check
SPBRGH:SPBRG for a valid value. The
EUSART is ready for normal communications.
Return from the interrupt. Allow the primary
clock to run (PRI_RUN or PRI_IDLE). 

10. Process subsequent RCIF interrupts normally
as in asynchronous reception. TXEN should
now be set if transmissions are needed. TXIF
and TXIE may be set if transmit interrupts are
desired. Remain in PRI_RUN or PRI_IDLE until
communications are complete. Clear TXEN and
return to step 2.

FIGURE 16-9: SEND BREAK CHARACTER SEQUENCE

Write to TXREG

BRG Output
(Shift Clock)

Start Bit Bit 0 Bit 1 Bit 11 Stop Bit

Break

TXIF bit

TX (pin)

TRMT bit

SENDB

Dummy Write 
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FIGURE 16-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)       

TABLE 16-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION       

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on 

POR, BOR

Value on 
all other 
Resets

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 0000 000x 0000 000u

PIR1 — ADIF RCIF TXIF — CCP1IF TMR2IF TMR1IF -000 -000 -000 -000

PIE1 — ADIE RCIE TXIE — CCP1IE TMR2IE TMR1IE -000 -000 -000 -000

IPR1 — ADIP RCIP TXIP — CCP1IP TMR2IP TMR1IP -111 -111 -111 -111

RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 0000 -00x 0000 -00x

TXREG EUSART Transmit Register 0000 0000 0000 0000

TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 0000 0010 0000 0010

BAUDCTL — RCIDL — SCKP BRG16 — WUE ABDEN -1-1 0-00 -1-1 0-00

SPBRGH Baud Rate Generator Register High Byte 0000 0000 0000 0000

SPBRG Baud Rate Generator Register Low Byte 0000 0000 0000 0000

Legend: x = unknown, – = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.

RB4/AN6/RX/DT/KBI0 pin

RB1/AN5/TX/CK/INT1 pin

Write to
TXREG reg

TXIF bit

TRMT bit

bit 0 bit 1 bit 2 bit 6 bit 7

TXEN bit
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REGISTER 19-8: CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah) 

U-0 U-0 U-0 U-0 U-0 U-0 R/P-1 R/P-1

— — — — — — WRT1 WRT0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared P = Programmable bit

bit 7-2 Unimplemented: Read as ‘0’ 

bit 1 WRT1: Write Protection bit (PIC18F1320)

1 = Block 1 (001000-001FFFh) not write-protected 
0 = Block 1 (001000-001FFFh) write-protected

bit 0 WRT0: Write Protection bit (PIC18F1320)

1 = Block 0 (00200-000FFFh) not write-protected 
0 = Block 0 (00200-000FFFh) write-protected 

bit 1 WRT1: Write Protection bit (PIC18F1220)

1 = Block 1 (000800-000FFFh) not write-protected 
0 = Block 1 (000800-000FFFh) write-protected

bit 0 WRT0: Write Protection bit (PIC18F1220)

1 = Block 0 (000200-0007FFh) not write-protected 
0 = Block 0 (000200-0007FFh) write-protected 

REGISTER 19-9: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)

R/P-1 R/P-1 R-1 U-0 U-0 U-0 U-0 U-0

WRTD WRTB WRTC(1) — — — — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared P = Programmable bit

bit 7 WRTD: Data EEPROM Write Protection bit

1 = Data EEPROM not write-protected
0 = Data EEPROM write-protected

bit 6 WRTB: Boot Block Write Protection bit

1 = Boot Block (000000-0001FFh) not write-protected
0 = Boot Block (000000-0001FFh) write-protected

bit 5 WRTC: Configuration Register Write Protection bit(1)

1 = Configuration registers (300000-3000FFh) not write-protected
0 = Configuration registers (300000-3000FFh) write-protected

bit 4-0 Unimplemented: Read as ‘0’

Note 1: This bit is read-only in normal execution mode; it can be written only in Program mode.
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20.2 Instruction Set    

            

         

            

ADDLW ADD literal to W

Syntax: [ label ]  ADDLW     k

Operands: 0  k  255

Operation: (W) + k  W

Status Affected: N, OV, C, DC, Z

Encoding: 0000 1111 kkkk kkkk

Description: The contents of W are added to the 
8-bit literal ‘k’ and the result is 
placed in W.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

literal ‘k’
Process 

Data
Write to W

Example: ADDLW 0x15

Before Instruction

W  = 0x10

After Instruction

W = 0x25

ADDWF ADD W to f

Syntax: [ label ] ADDWF      f [,d [,a]]

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (W) + (f)  dest

Status Affected: N, OV, C, DC, Z

Encoding: 0010 01da ffff ffff

Description: Add W to register ‘f’. If ‘d’ is ‘0’, the 
result is stored in W. If ‘d’ is ‘1’, the 
result is stored back in register ‘f’ 
(default). If ‘a’ is ‘0’, the Access 
Bank will be selected. If ‘a’ is ‘1’, 
the BSR is used. 

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register ‘f’
Process 

Data
Write to

destination

Example: ADDWF REG, W

Before Instruction

W = 0x17
REG = 0xC2

After Instruction

W = 0xD9
REG = 0xC2
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DECFSZ Decrement f, skip if 0

Syntax: [ label ]   DECFSZ   f [,d [,a]]

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) – 1  dest,
skip if result = 0

Status Affected: None

Encoding: 0010 11da ffff ffff

Description: The contents of register ‘f’ are 
decremented. If ‘d’ is ‘0’, the result 
is placed in W. If ‘d’ is ‘1’, the result 
is placed back in register ‘f’ 
(default).
If the result is ‘0’, the next instruc-
tion, which is already fetched, is 
discarded and a NOP is executed 
instead, making it a 2-cycle instruc-
tion. If ‘a’ is ‘0’, the Access Bank 
will be selected, overriding the 
BSR value. If ‘a’ = 1, then the bank 
will be selected as per the BSR 
value (default).

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register ‘f’
Process 

Data
Write to 

destination

If skip:

Q1 Q2 Q3 Q4
No 

operation
No 

operation
No 

operation
No 

operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No 

operation
No 

operation
No 

operation
No 

operation

No 
operation

No 
operation

No 
operation

No 
operation

Example: HERE      DECFSZ   CNT
          GOTO     LOOP
CONTINUE  

Before Instruction
PC = Address (HERE)

After Instruction
CNT = CNT – 1
If CNT = 0;

PC = Address (CONTINUE)
If CNT  0;

PC = Address (HERE + 2)

DCFSNZ Decrement f, skip if not 0

Syntax: [ label ]   DCFSNZ    f [,d [,a]]

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) – 1  dest,
skip if result  0

Status Affected: None

Encoding: 0100 11da ffff ffff

Description: The contents of register ‘f’ are 
decremented. If ‘d’ is ‘0’, the result 
is placed in W. If ‘d’ is ‘1’, the result 
is placed back in register ‘f’ 
(default).
If the result is not ‘0’, the next 
instruction, which is already 
fetched, is discarded and a NOP is 
executed instead, making it a 2-
cycle instruction. If ‘a’ is ‘0’, the 
Access Bank will be selected, 
overriding the BSR value. If ‘a’ = 1, 
then the bank will be selected as 
per the BSR value (default).

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register ‘f’
Process 

Data
Write to 

destination

If skip:

Q1 Q2 Q3 Q4
No 

operation
No 

operation
No 

operation
No 

operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No 

operation
No 

operation
No 

operation
No 

operation

No 
operation

No 
operation

No 
operation

No 
operation

Example: HERE    DCFSNZ TEMP
ZERO    : 
NZERO   : 

Before Instruction
TEMP = ?

After Instruction
TEMP = TEMP – 1,
If TEMP = 0;

PC = Address (ZERO)
If TEMP  0;

PC = Address (NZERO)
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21.0 DEVELOPMENT SUPPORT

The PIC® microcontrollers (MCU) and dsPIC® digital
signal controllers (DSC) are supported with a full range
of software and hardware development tools:

• Integrated Development Environment

- MPLAB® X IDE Software

• Compilers/Assemblers/Linkers

- MPLAB XC Compiler 

- MPASMTM Assembler

- MPLINKTM Object Linker/
MPLIBTM Object Librarian

- MPLAB Assembler/Linker/Librarian for
Various Device Families

• Simulators

- MPLAB X SIM Software Simulator

• Emulators

- MPLAB REAL ICE™ In-Circuit Emulator

• In-Circuit Debuggers/Programmers

- MPLAB ICD 3

- PICkit™ 3 

• Device Programmers

- MPLAB PM3 Device Programmer

• Low-Cost Demonstration/Development Boards, 
Evaluation Kits and Starter Kits

• Third-party development tools

21.1 MPLAB X Integrated Development 
Environment Software

The MPLAB X IDE is a single, unified graphical user
interface for Microchip and third-party software, and
hardware development tool that runs on Windows®,
Linux and Mac OS® X. Based on the NetBeans IDE,
MPLAB X IDE is an entirely new IDE with a host of free
software components and plug-ins for high-
performance application development and debugging.
Moving between tools and upgrading from software
simulators to hardware debugging and programming
tools is simple with the seamless user interface.

With complete project management, visual call graphs,
a configurable watch window and a feature-rich editor
that includes code completion and context menus,
MPLAB X IDE is flexible and friendly enough for new
users. With the ability to support multiple tools on
multiple projects with simultaneous debugging, MPLAB
X IDE is also suitable for the needs of experienced
users.

Feature-Rich Editor:

• Color syntax highlighting

• Smart code completion makes suggestions and 
provides hints as you type

• Automatic code formatting based on user-defined 
rules

• Live parsing

User-Friendly, Customizable Interface:

• Fully customizable interface: toolbars, toolbar 
buttons, windows, window placement, etc.

• Call graph window

Project-Based Workspaces:

• Multiple projects

• Multiple tools

• Multiple configurations

• Simultaneous debugging sessions

File History and Bug Tracking:

• Local file history feature

• Built-in support for Bugzilla issue tracker
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FIGURE 23-27: VOL vs. IOL OVER TEMPERATURE (-40°C TO +125°C), VDD = 5.0V

FIGURE 23-28: IPD TIMER1 OSCILLATOR, -10°C TO +70°C SLEEP MODE, 
TMR1 COUNTER DISABLED
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FIGURE 23-31: IPD LVD vs. VDD SLEEP MODE, LVDL3:LVDL0 = 0001 (2V)

FIGURE 23-32: IPD BOR vs. VDD, -40°C TO +125°C SLEEP MODE, 
BORV1:BORV0 = 11 (2V)
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24.0 PACKAGING INFORMATION

24.1 Package Marking Information 

18-Lead PDIP

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

YYWWNNN

Example

PIC18F1320-I/P
0710017

18-Lead SOIC

XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX

YYWWNNN

Example

PIC18F1220-
E/SO

0710017

20-Lead SSOP

XXXXXXXXXXX
XXXXXXXXXXX

YYWWNNN

Example

PIC18F1220-
E/SS

0710017

28-Lead QFN

XXXXXXXX
XXXXXXXX
YYWWNNN

Example

18F1320
-I/ML
0710017

Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
  Pb-free JEDEC designator for Matte Tin (Sn)
* This package is Pb-free. The Pb-free JEDEC designator (     )

can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.

3e

3e

3e

3e

3e

3e
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