E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf1220t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Details on Individual Family Members

Devices in the PIC18F1220/1320 family are available in 18-pin, 20-pin and 28-pin packages. A block diagram for this device family is shown in Figure 1-1.

The devices are differentiated from each other only in the amount of on-chip Flash program memory (4 Kbytes for the PIC18F1220 device, 8 Kbytes for the PIC18F1320 device). These and other features are summarized in Table 1-1. A block diagram of the PIC18F1220/1320 device architecture is provided in Figure 1-1. The pinouts for this device family are listed in Table 1-2.

TABLE 1-1:DEVICE FEATURES

Features	PIC18F1220	PIC18F1320
Operating Frequency	DC – 40 MHz	DC – 40 MHz
Program Memory (Bytes)	4096	8192
Program Memory (Instructions)	2048	4096
Data Memory (Bytes)	256	256
Data EEPROM Memory (Bytes)	256	256
Interrupt Sources	15	15
I/O Ports	Ports A, B	Ports A, B
Timers	4	4
Enhanced Capture/Compare/PWM Modules	1	1
Serial Communications	Enhanced USART	Enhanced USART
10-bit Analog-to-Digital Module	7 input channels	7 input channels
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT
Programmable Low-Voltage Detect	Yes	Yes
Programmable Brown-out Reset	Yes	Yes
Instruction Set	75 Instructions	75 Instructions
Packages	18-pin SDIP 18-pin SOIC 20-pin SSOP 28-pin QFN	18-pin SDIP 18-pin SOIC 20-pin SSOP 28-pin QFN

FIGURE 4-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 4-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

5.9.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 5-1 and Table 5-2. The SFRs can be classified into two sets: those associated with the "core" function and those related to the peripheral functions. Those registers related to the "core" are described in this section, while those related to the operation of the peripheral features are described in the section of that peripheral feature.

The SFRs are typically distributed among the peripherals whose functions they control.

The unused SFR locations will be unimplemented and read as '0's.

TABLE 5-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18F1220/1320 DEVICES

Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽²⁾	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2(2)	FBEh	CCPR1L	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2(2)	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽²⁾	FBCh	_	F9Ch	—
FFBh	PCLATU	FDBh	PLUSW2 ⁽²⁾	FBBh	_	F9Bh	OSCTUNE
FFAh	PCLATH	FDAh	FSR2H	FBAh	—	F9Ah	—
FF9h	PCL	FD9h	FSR2L	FB9h	_	F99h	—
FF8h	TBLPTRU	FD8h	STATUS	FB8h	_	F98h	_
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	PWM1CON	F97h	—
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	ECCPAS	F96h	—
FF5h	TABLAT	FD5h	TOCON	FB5h	_	F95h	—
FF4h	PRODH	FD4h	—	FB4h	_	F94h	—
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	LVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	—
FF0h	INTCON3	FD0h	RCON	FB0h	SPBRGH	F90h	—
FEFh	INDF0 ⁽²⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	—
FEEh	POSTINC0(2)	FCEh	TMR1L	FAEh	RCREG	F8Eh	—
FEDh	POSTDEC0(2)	FCDh	T1CON	FADh	TXREG	F8Dh	—
FECh	PREINC0 ⁽²⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	—
FEBh	PLUSW0 ⁽²⁾	FCBh	PR2	FABh	RCSTA	F8Bh	—
FEAh	FSR0H	FCAh	T2CON	FAAh	BAUDCTL	F8Ah	LATB
FE9h	FSR0L	FC9h	—	FA9h	EEADR	F89h	LATA
FE8h	WREG	FC8h	—	FA8h	EEDATA	F88h	—
FE7h	INDF1 ⁽²⁾	FC7h	—	FA7h	EECON2	F87h	—
FE6h	POSTINC1(2)	FC6h	—	FA6h	EECON1	F86h	_
FE5h	POSTDEC1(2)	FC5h	—	FA5h	_	F85h	—
FE4h	PREINC1 ⁽²⁾	FC4h	ADRESH	FA4h	_	F84h	_
FE3h	PLUSW1 ⁽²⁾	FC3h	ADRESL	FA3h	_	F83h	_
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA

Note 1: Unimplemented registers are read as '0'.

2: This is not a physical register.

6.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and erasable during normal operation over the entire VDD range.

A read from program memory is executed on one byte at a time. A write to program memory is executed on blocks of 8 bytes at a time. Program memory is erased in blocks of 64 bytes at a time. A "Bulk Erase" operation may not be issued from user code.

While writing or erasing program memory, instruction fetches cease until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP.

6.1 Table Reads and Table Writes

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:

- Table Read (TBLRD)
- Table Write (TBLWT)

Table read operations retrieve data from program memory and place it into TABLAT in the data RAM space. Figure 6-1 shows the operation of a table read with program memory and data RAM.

Table write operations store data from TABLAT in the data memory space into holding registers in program memory. The procedure to write the contents of the holding registers into program memory is detailed in **Section 6.5 "Writing to Flash Program Memory"**. Figure 6-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. A table block containing data, rather than program instructions, is not required to be word aligned. Therefore, a table block can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word aligned (TBLPTRL<0> = 0).

The EEPROM on-chip timer controls the write and erase times. The write and erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

FIGURE 6-1: TABLE READ OPERATION

9.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Request (Flag) registers (PIR1, PIR2).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>).
 - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

REGISTER 9-4: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

U-0	R/W-0/0	R-0/0	R-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	ADIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

pit	W = Writable bit	U = Unimplemented bit, read as '0'
anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
	'0' = Bit is cleared	
Unimplemen	ted: Read as '0'	
ADIF: A/D Co	onverter Interrupt Flag bit	
1 = An A/D co0 = The A/D co	onversion completed (must onversion is not complete	be cleared in software)
RCIF: EUSAF	RT Receive Interrupt Flag bit	
1 = The EUS 0 = The EUS	ART receive buffer, RCREG ART receive buffer is empty	i, is full (cleared when RCREG is read)
TXIF: EUSAR	T Transmit Interrupt Flag bit	t
1 = The EUS 0 = The EUS	ART transmit buffer, TXREC ART transmit buffer is full	b, is empty (cleared when TXREG is written)
Unimplemen	ted: Read as '0'	
CCP1IF: CCF	P1 Interrupt Flag bit	
Capture mode	<u>.</u>	
$\perp = A I M R I$ 0 = No TMR1	register capture occurred (m L register capture occurred	lust de cleared in software)
Compare mod	de:	
1 = A TMR1 0 = No TMR1	register compare match occ I register compare match oc	urred (must be cleared in software) curred
PWM mode: Unused in this	s mode.	
TMR2IF: TMF	R2 to PR2 Match Interrupt Fl	ag bit
1 = TMR2 to 0 = No TMR2	PR2 match occurred (must 2 to PR2 match occurred	be cleared in software)
TMR1IF: TMF	R1 Overflow Interrupt Flag bi	it
1 = TMR1 reg 0 = TMR1 reg	gister overflowed (must be c gister did not overflow	leared in software)
	Unimplemen ADIF: A/D CC 1 = An A/D C 0 =The A/D C 0 =The A/D C 0 =The EUS 1 = The EUS 0 = TMR1 1 = TMR2 0 = TMR1 res 0 = TMR1 res	bit W = Writable bit anged x = Bit is unknown '0' = Bit is cleared Unimplemented: Read as '0' ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed (must l) 0 =The A/D conversion is not complete RCIF: EUSART Receive Interrupt Flag bit 1 = The EUSART receive buffer, RCREG 0 = The EUSART receive buffer, RCREG 0 = The EUSART receive buffer is empty TXIF: EUSART Transmit Interrupt Flag bit 1 = The EUSART transmit buffer, TXREG 0 = The EUSART transmit buffer is full Unimplemented: Read as '0' CCP1IF: CCP1 Interrupt Flag bit Capture mode: 1 = A TMR1 register capture occurred (m 0 = No TMR1 register compare match occ 0 = No TMR2 to PR2 match occurred (must 1 = TMR2 to PR2 match occurred (must 0 = No TMR2 to PR2 match occurred 1 = TMR1 register overflowed (must be context) 0 = No TMR2 to PR2 match occurred 0 = TMR1 register overflowed (must be context)

R/W-0/0	U-0	U-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0
OSCFIE	—	_	EEIE	_	LVDIE	TMR3IE	_
bit 7						1	bit (
L							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	OSCFIE: Osc	illator Fail Inte	rupt Enable b	it			
	1 = Enabled						
	0 = Disabled						
bit 6-5	Unimplemen	ted: Read as '	0'				
bit 4	EEIE: Data E	EPROM/Flash	Write Operati	on Interrupt Er	nable bit		
	1 = Enabled						
	0 = Disabled						
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	LVDIE: Low-\	/oltage Detect	Interrupt Enat	ole bit			
	1 = Enabled						
	0 = Disabled						
bit 1	TMR3IE: TMF	R3 Overflow Int	errupt Enable	bit			
	1 = Enabled						
	0 = Disabled						
bit 0	Unimplemen	ted: Read as '	0'				

REGISTER 9-7: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

15.5 Enhanced PWM Mode

The Enhanced PWM Mode provides additional PWM output options for a broader range of control applications. The module is an upwardly compatible version of the standard CCP module and offers up to four outputs, designated P1A through P1D. Users are also able to select the polarity of the signal (either active-high or active-low). The module's output mode and polarity are configured by setting the P1M1:P1M0 and CCP1M3CCP1M0 bits of the CCP1CON register (CCP1CON<7:6> and CCP1CON<3:0>, respectively).

Figure 15-3 shows a simplified block diagram of PWM operation. All control registers are double-buffered and are loaded at the beginning of a new PWM cycle (the period boundary when Timer2 resets) in order to prevent glitches on any of the outputs. The exception is the PWM Delay register, ECCP1DEL, which is loaded at either the duty cycle boundary or the boundary period (whichever comes first). Because of the buffering, the module waits until the assigned timer resets instead of starting immediately. This means that Enhanced PWM waveforms, but are instead offset by one full instruction cycle (4 Tosc).

As before, the user must manually configure the appropriate TRIS bits for output.

15.5.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the equation:

EQUATION 15-1: PWM PERIOD

 $PWM Period = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 Prescale Value)$

PWM frequency is defined as 1/[PWM period]. When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is copied from CCPR1L into CCPR1H

15.5.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The PWM duty cycle is calculated by the equation:

EQUATION 15-2: PWM DUTY CYCLE

PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 Prescale Value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not copied into CCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation. When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or two bits of the TMR2 prescaler, the CCP1 pin is cleared. The maximum PWM resolution (bits) for a given PWM frequency is given by the equation:

EQUATION 15-3: PWM RESOLUTION

PWM Resolution (max) = $\frac{\log\left(\frac{\text{Fosc}}{\text{FPWM}}\right)}{\log(2)}$

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

bits

15.5.3 PWM OUTPUT CONFIGURATIONS

The P1M1:P1M0 bits in the CCP1CON register allow one of four configurations:

- Single Output
- Half-Bridge Output
- Full-Bridge Output, Forward mode
- Full-Bridge Output, Reverse mode

The Single Output mode is the Standard PWM mode discussed in **Section 15.5 "Enhanced PWM Mode"**. The Half-Bridge and Full-Bridge Output modes are covered in detail in the sections that follow.

The general relationship of the outputs in all configurations is summarized in Figure 15-4.

TABLE 15-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	10	10	10	8	7	6.58

© 2002-2015 Microchip Technology Inc.

Note: The Timer2 postscaler (see Section 13.0 "Timer2 Module") is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

To set up an Asynchronous Transmission:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set transmit bit TX9. Can be used as address/data bit.

- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).

If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 16-2: EUSART TRANSMIT BLOCK DIAGRAM

FIGURE 16-3: ASYNCHRONOUS TRANSMISSION

16.3.2 EUSART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 16-5. The data is received on the RB4/AN6/RX/DT/KBI0 pin and drives the data recovery block. The data recovery block is actually a high-speed shifter, operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.

To set up an Asynchronous Reception:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit RCIE.
- 4. If 9-bit reception is desired, set bit RX9.
- 5. Enable the reception by setting bit CREN.
- Flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

16.3.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are required, set the RCEN bit and select the desired priority level with the RCIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCIE and GIE bits are set.
- 8. Read the RCSTA register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREG to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

FIGURE 16-5: EUSART RECEIVE BLOCK DIAGRAM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONFIG2H	—	—	—	WDTPS3	WDTPS2	WDTPS2	WDTPS0	WDTEN
RCON	IPEN	_	—	RI	TO	PD	POR	BOR
WDTCON	—	—	—	—	—	—	—	SWDTEN

 TABLE 19-2:
 SUMMARY OF WATCHDOG TIMER REGISTERS

Legend: Shaded cells are not used by the Watchdog Timer.

19.3 Two-Speed Start-up

The Two-Speed Start-up feature helps to minimize the latency period from oscillator start-up to code execution by allowing the microcontroller to use the INTRC oscillator as a clock source until the primary clock source is available. It is enabled by setting the IESO bit in Configuration Register 1H (CONFIG1H<7>).

Two-Speed Start-up is available only if the primary oscillator mode is LP, XT, HS or HSPLL (crystal-based modes). Other sources do not require an OST start-up delay; for these, Two-Speed Start-up is disabled.

When enabled, Resets and wake-ups from Sleep mode cause the device to configure itself to run from the internal oscillator block as the clock source, following the time-out of the Power-up Timer after a Power-on Reset is enabled. This allows almost immediate code execution while the primary oscillator starts and the OST is running. Once the OST times out, the device automatically switches to PRI_RUN mode.

Because the OSCCON register is cleared on Reset events, the INTOSC (or postscaler) clock source is not initially available after a Reset event; the INTRC clock is used directly at its base frequency. To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IFRC2:IFRC0, immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting IFRC2:IFRC0 prior to entering Sleep mode. In all other power managed modes, Two-Speed Start-up is not used. The device will be clocked by the currently selected clock source until the primary clock source becomes available. The setting of the IESO bit is ignored.

19.3.1 SPECIAL CONSIDERATIONS FOR USING TWO-SPEED START-UP

While using the INTRC oscillator in Two-Speed Startup, the device still obeys the normal command sequences for entering power managed modes, including serial SLEEP instructions (refer to **Section 3.1.3 "Multiple Sleep Commands"**). In practice, this means that user code can change the SCS1:SCS0 bit settings and issue SLEEP commands before the OST times out. This would allow an application to briefly wake-up, perform routine "housekeeping" tasks and return to Sleep before the device starts to operate from the primary oscillator.

User code can also check if the primary clock source is currently providing the system clocking by checking the status of the OSTS bit (OSCCON<3>). If the bit is set, the primary oscillator is providing the system clock. Otherwise, the internal oscillator block is providing the clock during wake-up from Reset or Sleep mode.

BRA	A Contraction of the second seco	Unconditi	ional Brancl	า	BSF	Bit Set f		
Synt	tax:	[<i>label</i>] B	RA n		Syntax:	[<i>label</i>] B	SF f,b[,a]	
Ope	rands:	-1024 ≤ n	≤ 1023		Operands:	$0 \le f \le 255$	5	
Ope	ration:	(PC) + 2 +	$2n \rightarrow PC$			$0 \le b \le 7$		
Statu	us Affected:	None				a ∈ [0,1]		
Enco	oding:	1101	0nnn nni	nn nnnn	Operation:	$1 \rightarrow t < b >$		
Des	cription:	Add the 2'	s compleme	nt number	Status Affected:	None		
2000		'2n' to the	PC. Since th	e PC will	Encoding:	1000	bbba fff	f ffff
have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2- cycle instruction.		Description:	Bit 'b' in re the Acces overriding then the b per the BS	gister 'f' is se s Bank will be the BSR valu ank will be se SR value.	et. If 'a' is '0', e selected, ue. If 'a' = 1, elected as			
Cual	00.	י ר			Words:	1		
	ico. Nala Activity:	2			Cycles:	1		
QC		02	03	04	Q Cycle Activity	:		
	Decode	Read literal	Process	Write to PC	Q1	Q2	Q3	Q4
		'n'	Data		Decode	Read	Process	Write
	No	No	No	No		register 'f'	Data	register 'f'
	operation	operation	operation	operation				
					Example:	BSF F	LAG_REG, 7	
<u>Exar</u>	mple:	HERE	BRA Jump		Before Instru	uction		
	Before Instru	iction			FLAG_R	EG = 0x	0A	
	PC	= ad	dress (HERE)	After Instruc	tion	0.4	
	After Instruct PC	tion = ad	dress (Jump)	FLAG_R	.eg = 0x	бA	

COMF	Complem	nent f					
Syntax:	[label] (COMF	f [,d [,a]]			
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operation:	$(\overline{f}) \rightarrow dest$:					
Status Affected:	N, Z						
Encoding:	0001	11da	ffff	ffff			
	compleme result is si (default). Bank will the BSR v bank will b BSR value	ented. If tored in tored ba If 'a' is '(be selec value. If coe selec e (defau	'd' is '0', W. If 'd' i nck in reg 0', the Ac cted, ove 'a' = 1, th ted as po It).	the is '1', the jister 'f' ccess rriding nen the er the			
Words:	1						
Cycles:	1	1					
Q Cycle Activity:							
Q1	Q2	Q	3	Q4			
Decode	Read register 'f'	Proce Dat	ess N a de	Write to estination			
Example:	COMF	REG,	W				
Before Instru REG After Instruct REG W	iction = 0x13 ion = 0x13 = 0xEC						

CPF	SEQ	Compare f with W, skip if f = W						
Synt	ax:	[label]	CPFSEQ) f[,a]				
Oper	rands:	0 ≤ f ≤ 25 a ∈ [0,1]	5					
Oper	ration:	(f) – (W), skip if (f) : (unsigned	= (W) I compar	ison)				
Statu	is Affected:	None						
Enco	oding:	0110	001a	ffff	ffff			
Desc	cription: ds:	Compare: memory li of W by p subtraction if 'f' = W, instruction is execute 2-cycle in Access B overriding then the b per the B 1	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If 'f' = W, then the fetched instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).					
Cycle	<u>oc</u> .	1(2)	1(2)					
QC	vcle Activity:	Note: 3 by	cycles if / a 2-wor	skip and d instruc	followed tion.			
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Proce Data	ss a oj	No peration			
lf sk	ip:							
г	Q1	Q2	Q3		Q4			
	No	No	No	ion	No			
lf sk	in and follow	ved by 2-wor	d instruc	tion	peration			
11 51	p and lonow Q1	Q2	Q3		Q4			
	No	No	No		No			
	operation	operation	operat	ion o	peration			
	No	No	No		No			
	operation	operation	operat	ion o	peration			
<u>Exar</u>	nple:	HERE NEQUAL EQUAL	CPFSEQ : :	REG				
	Before Instru	iction						
	PC Addre	ess = HI	ERE					
	W REG	= ? = ?						
	After Instruct	ion .						
	If REG	= W	;					
	PC If REG	= Ao ≠ ₩	ddress (I	EQUAL)				
	PC	= A0	, ddress (1	NEQUAL)				

MULLW	Multiply Literal with	w	MULWF	Multiply V	V with f	
Syntax:	[label] MULLW	<	Syntax:	[label]	MULWF f	[,a]
Operands:	$0 \leq k \leq 255$		Operands:	$0 \le f \le 255$	5	
Operation:	(W) x k \rightarrow PRODH:P	RODL		a ∈ [0,1]		
Status Affected:	None		Operation:	(W) x (f) –	→ PRODH:PI	RODL
Encoding:	0000 1101 k	kkk kkkk	Status Affected:	None		
Description:	An unsigned multiplic	ation is	Encoding:	0000	001a fff	f ffff
	carried out between th of W and the 8-bit lite 16-bit result is placed PRODH:PRODL regis PRODH contains the W is unchanged. None of the Status fla affected. Note that neither Ove Carry is possible in th tion. A Zero result is p not detected.	ne contents ral 'k'. The in the ster pair. high byte. ngs are rflow nor his opera- bossible but	Description:	An unsign carried ou of W and t 'f'. The 16 the PROD pair. PROD byte. Both W ar None of th affected. Note that Carry is po	ed multiplica t between the he register fi -bit result is s OH:PRODL re DH contains and 'f' are unc he Status flag neither Overl ossible in this	tion is e contents le location stored in egister the high hanged. gs are flow nor s opera-
Words:	1			tion. A Zei	ro result is po	ossible,
Cvcles:	1			but not de	tected. If 'a' i	is '0', the
Q Cvcle Activity:				overriding	the BSR val	ue. If
Q1	Q2 Q3	Q4		'a' = 1, the	en the bank v	will be
Decode	Read Process literal 'k' Data	Write registers PRODH: PRODL	Words:	selected a (default). 1	is per the BS	R value
			O Cycle Activity:	1		
Example:	MULLW 0xC4		Q Oycle Adimity.	Q2	Q3	Q4
Before Instru W PRODH PRODL After Instruct	ction = 0xE2 = ? = ?		Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL
PRODH PRODL	= 0xE2 $= 0xAD$ $= 0x08$		Example:	MULWF 1	REG	
			Before Instru	iction		
			W REG PRODH PRODL	= 0x0 = 0x1 = ? = ?	C4 B5	
			After Instruct	tion		
			W REG PRODH PRODL	= 0xi $= 0xi$ $= 0xi$ $= 0xi$	C4 B5 8A 94	

NEG	F	Negate f							
Synt	ax:	[label]	NEGF	f [,a]					
Ope	rands:	0 ≤ f ≤ 25 a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$						
Oper	ration:	$(\overline{f}) + 1 \rightarrow 0$	f						
Statu	us Affected:	N, OV, C,	DC, Z						
Enco	oding:	0110	110a	ffff	ffff				
Desc	cription:	Location ' complement the data n '0', the Ad selected, If 'a' = 1, selected a	t' is neg ent. The nemory ccess Ba overridir then the as per th	ated usir result is location ' ank will b ng the BS bank wil bank wil	ng two's placed in f'. If 'a' is e SR value. I be alue.				
Word	ds:	1	1						
Cycl	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q	3	Q4				
	Decode	Read register 'f'	ReadProcessWriteregister 'f'Dataregister 'f'						
<u>Exar</u>	Example: NEGF REG, 1								
	REG = 0011 1010 [0x3A]								

NOF	•	No Opera	No Operation							
Synt	ax:	[label]	NOP							
Ope	rands:	None	None							
Ope	ration:	No opera	No operation							
Statu	us Affected:	None								
Encoding:		0000	0000	000	00	0000				
		1111	xxxx	XXX	x	xxxx				
Desc	cription:	No opera	No operation.							
Wor	ds:	1								
Cycles:		1								
QC	ycle Activity:									
	Q1	Q2	Q3		Q4					
	Decode	No	No	No		No				
		operation	operation operation operation							

Example:

None.

After Instruction

REG = 1100 0110 [0xC6]

22.2 DC Characteristics: Power-Down and Supply Current PIC18F1220/1320 (Industrial) PIC18LF1220/1320 (Industrial) (Continued)

PIC18LF (Indu	Standa Operati	i rd Oper ing temp	ating Co erature	onditions (unless -40°C \leq TA	s otherwise stated \leq +85°C for indust	l) rial				
PIC18F1: (Indu	Standa Operati	i rd Oper ing temp	erating Co	ponditions (unless -40°C \leq TA -40°C \leq TA	s otherwise stated $\Delta \le +85^{\circ}$ C for indust $\Delta \le +125^{\circ}$ C for exter	l) rial nded				
Param No.	Device	Тур.	Max.	Units		Conditions				
	Supply Current (IDD) ^(2,3)									
	PIC18LF1220/1320	35	50	μA	-40°C					
		35	50	μA	+25°C	VDD = 2.0V				
		35	60	μA	+85°C					
	PIC18LF1220/1320	55	80	μΑ	-40°C					
		50	80	μΑ	+25°C	VDD = 3.0V	Fosc = 1 MHz			
		60	100	μΑ	+85°C		EC oscillator)			
	All devices	105	150	μΑ	-40°C		,			
		110	150	μΑ	+25°C					
		115	150	μΑ	+85°C	VDD = 0.0V				
	Extended devices	125	300	μA	+125°C					
	PIC18LF1220/1320	135	180	μΑ	-40°C					
		140	180	μΑ	+25°C	VDD = 2.0V				
		140	180	μΑ	+85°C					
	PIC18LF1220/1320	215	280	μΑ	-40°C					
		225	280	μΑ	+25°C	VDD = 3.0V	FOSC = 4 MHZ			
		230	280	μΑ	+85°C		EC oscillator)			
	All devices	410	525	μΑ	-40°C					
		420	525	μΑ	+25°C	$V_{DD} = 5.0V$				
		430	525	μΑ	+85°C	VDD = 0.0V				
	Extended devices	450	800	μΑ	+125°C					
	Extended devices	2.2	3.0	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz			
		2.7	3.5	mA	+125°C	VDD = 5.0V	(PRI_IDLE mode, EC oscillator)			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k Ω .

4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

22.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 22-3 apply to all timing specifications unless otherwise noted. Figure 22-5 specifies the load conditions for the timing specifications.

TABLE 22-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Con	ditions (unless otherwise stated)					
	Operating temperature	-40°C \leq TA \leq +85°C for industrial					
		-40°C \leq TA \leq +125°C for extended					
AC CHARACTERISTICS	Operating voltage VDD range as described in DC spec Section 22.1 and						
	Section 22.3.						
	LF parts operate for indust	trial temperatures only.					

FIGURE 22-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TADLE 22-3.									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
F10	Fosc	Oscillator Frequency Range	4	—	10	MHz	HS and HSPLL mode only		
F11	Fsys	On-Chip VCO System Frequency	16	—	40	MHz	HSPLL mode only		
F12	TPLL	PLL Start-up Time (Lock Time)	—	—	2	ms	HSPLL mode only		
F13	ΔCLK	CLKO Stability (Jitter)	-2	_	+2	%	HSPLL mode only		

TABLE 22-5: PLL CLOCK TIMING SPECIFICATIONS, HS/HSPLL MODE (VDD = 4.2V TO 5.5V)

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 22-6: INTERNAL RC ACCURACY: PIC18F1220/1320 (INDUSTRIAL) PIC18LF1220/1320 (INDUSTRIAL)

PIC18LF [,] (Indus	1220/1320 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F1220/1320 (Industrial)		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param Device		Min.	Тур.	Max.	Units	Conditions			
	INTOSC Accuracy @ Freq	= 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz ⁽¹⁾							
	PIC18LF1220/1320	-2	+/-1	2	%	+25°C	VDD = 2.7-3.3V		
		-5	—	5	%	-10°C to +85°C	VDD = 2.7-3.3V		
		-10	_	10	%	-40°C to +85°C	VDD = 2.7-3.3V		
	PIC18F1220/	-2	+/-1	2	%	+25°C	VDD = 4.5-5.5V		
	1320PIC18F1220/1320	-5	—	5	%	-10°C to +85°C	VDD = 4.5-5.5V		
			_	10	%	-40°C to +85°C	VDD = 4.5-5.5V		
	INTRC Accuracy @ Freq =	: 31 kHz ⁽²⁾							
	PIC18LF1220/1320	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 2.7-3.3V		
	PIC18F1220/ 1320PIC18F1220/1320	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 4.5-5.5V		

Legend: Shading of rows is to assist in readability of the table.

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature and VDD drift.

2: INTRC frequency after calibration.

3: Change of INTRC frequency as VDD changes.

TABLE 22-8:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	—	—	μS	
31	Twdt	Watchdog Timer Time-out Period (No postscaler)	3.48	4.00	4.71	ms	
32	Tost	Oscillation Start-up Timer Period	1024 Tosc		1024 Tosc	_	Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	—	65.5	132	ms	
34	Tıoz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	2	—	μS	
35	TBOR	Brown-out Reset Pulse Width	200		—	μS	$VDD \le BVDD$ (see D005)
36	TIVRST	Time for Internal Reference Voltage to become stable	—	20	50	μS	
37	Tlvd	Low-Voltage Detect Pulse Width	200	_	—	μS	$VDD \leq VLVD$

FIGURE 22-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

FIGURE 23-17: TYPICAL AND MAXIMUM IPD vs. VDD (-40°C TO +125°C), 31.25 kHz RC_RUN MODE, ALL PERIPHERALS DISABLED

FIGURE 23-18: TYPICAL IPD vs. VDD (+25°C), 125 kHz TO 8 MHz RC_IDLE MODE, ALL PERIPHERALS DISABLED

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch		0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A