

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf1320-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the following devices:

• PIC18F1220 • PIC18F1320

This family offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high endurance Enhanced Flash program memory. On top of these features, the PIC18F1220/1320 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power sensitive applications.

1.1 New Core Features

1.1.1 POWER MODES

All of the devices in the PIC18F1220/1320 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- Alternate Run Modes: By clocking the controller from the Timer1 source or the internal oscillator block, power consumption during code execution can be reduced by as much as 90%.
- **Multiple Idle Modes:** The controller can also run with its CPU core disabled, but the peripherals are still active. In these states, power consumption can be reduced even further, to as little as 4% of normal operation requirements.
- **On-the-fly Mode Switching:** The power managed modes are invoked by user code during operation, allowing the user to incorporate power-saving ideas into their application's software design.
- Lower Consumption in Key Modules: The power requirements for both Timer1 and the Watchdog Timer have been reduced by up to 80%, with typical values of 1.1 and 2.1 μ A, respectively.

1.1.2 MULTIPLE OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC18F1220/1320 family offer nine different oscillator options, allowing users a wide range of choices in developing application hardware. These include:

- Four Crystal modes, using crystals or ceramic resonators.
- Two External Clock modes, offering the option of using two pins (oscillator input and a divide-by-4 clock output), or one pin (oscillator input, with the second pin reassigned as general I/O).
- Two External RC Oscillator modes, with the same pin options as the External Clock modes.
- An internal oscillator block, which provides an 8 MHz clock (±2% accuracy) and an INTRC source (approximately 31 kHz, stable over temperature and VDD), as well as a range of six user-selectable clock frequencies (from 125 kHz to 4 MHz) for a total of 8 clock frequencies.

Besides its availability as a clock source, the internal oscillator block provides a stable reference source that gives the family additional features for robust operation:

- Fail-Safe Clock Monitor: This option constantly monitors the main clock source against a reference signal provided by the internal oscillator. If a clock failure occurs, the controller is switched to the internal oscillator block, allowing for continued low-speed operation, or a safe application shutdown.
- **Two-Speed Start-up:** This option allows the internal oscillator to serve as the clock source from Poweron Reset, or wake-up from Sleep mode, until the primary clock source is available. This allows for code execution during what would otherwise be the clock start-up interval and can even allow an application to perform routine background activities and return to Sleep without returning to full-power operation.

1.2 Other Special Features

- **Memory Endurance:** The Enhanced Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles – up to 100,000 for program memory and 1,000,000 for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years.
- Self-programmability: These devices can write to their own program memory spaces under internal software control. By using a bootloader routine located in the protected Boot Block at the top of program memory, it becomes possible to create an application that can update itself in the field.
- Enhanced CCP module: In PWM mode, this module provides 1, 2 or 4 modulated outputs for controlling half-bridge and full-bridge drivers. Other features include auto-shutdown, for disabling PWM outputs on interrupt or other select conditions and auto-restart, to reactivate outputs once the condition has cleared.
- Enhanced USART: This serial communication module features automatic wake-up on Start bit and automatic baud rate detection and supports RS-232, RS-485 and LIN 1.2 protocols, making it ideally suited for use in Local Interconnect Network (LIN) bus applications.
- **10-bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduce code overhead.
- Extended Watchdog Timer (WDT): This enhanced version incorporates a 16-bit prescaler, allowing a time-out range from 4 ms to over two minutes that is stable across operating voltage and temperature.

3.3.1 PRI_IDLE MODE

This mode is unique among the three Low-Power Idle modes, in that it does not disable the primary system clock. For timing sensitive applications, this allows for the fastest resumption of device operation with its more accurate primary clock source, since the clock source does not have to "warm up" or transition from another oscillator.

PRI_IDLE mode is entered by setting the IDLEN bit, clearing the SCS bits and executing a SLEEP instruction. Although the CPU is disabled, the peripherals continue to be clocked from the primary clock source specified in Configuration Register 1H. The OSTS bit remains set in PRI_IDLE mode (see Figure 3-3).

When a wake event occurs, the CPU is clocked from the primary clock source. A delay of approximately 10 μ s is required between the wake event and code execution starts. This is required to allow the CPU to become ready to execute instructions. After the wakeup, the OSTS bit remains set. The IDLEN and SCS bits are not affected by the wake-up (see Figure 3-4).

FIGURE 3-4: TRANSITION TIMING FOR WAKE FROM PRI_IDLE MODE

3.4 Run Modes

If the IDLEN bit is clear when a SLEEP instruction is executed, the CPU and peripherals are both clocked from the source selected using the SCS1:SCS0 bits. While these operating modes may not afford the power conservation of Idle or Sleep modes, they do allow the device to continue executing instructions by using a lower frequency clock source. RC_RUN mode also offers the possibility of executing code at a frequency greater than the primary clock.

Wake-up from a power managed Run mode can be triggered by an interrupt, or any Reset, to return to fullpower operation. As the CPU is executing code in Run modes, several additional exits from Run modes are possible. They include exit to Sleep mode, exit to a corresponding Idle mode and exit by executing a RESET instruction. While the device is in any of the power managed Run modes, a WDT time-out will result in a WDT Reset.

3.4.1 PRI_RUN MODE

The PRI_RUN mode is the normal full-power execution mode. If the SLEEP instruction is never executed, the microcontroller operates in this mode (a SLEEP instruction is executed to enter all other power managed modes). All other power managed modes exit to PRI_RUN mode when an interrupt or WDT time-out occur.

There is no entry to PRI_RUN mode. The OSTS bit is set. The IOFS bit may be set if the internal oscillator block is the primary clock source (see **Section 2.7.1** "Oscillator Control Register").

3.4.2 SEC_RUN MODE

The SEC_RUN mode is the compatible mode to the "clock switching" feature offered in other PIC18 devices. In this mode, the CPU and peripherals are clocked from the Timer1 oscillator. This gives users the option of lower power consumption while still using a high accuracy clock source.

SEC_RUN mode is entered by clearing the IDLEN bit, setting SCS1:SCS0 = 01 and executing a SLEEP instruction. The system clock source is switched to the Timer1 oscillator (see Figure 3-9), the primary oscillator is shut down, the T1RUN bit (T1CON<6>) is set and the OSTS bit is cleared.

Note: The Timer1 oscillator should already be running prior to entering SEC_RUN mode. If the T1OSCEN bit is not set when the SLEEP instruction is executed, the SLEEP instruction will be ignored and entry to SEC_RUN mode will not occur. If the Timer1 oscillator is enabled, but not yet running, system clocks will be delayed until the oscillator has started; in such situations, initial oscillator operation is far from stable and unpredictable operation may result.

When a wake event occurs, the peripherals and CPU continue to be clocked from the Timer1 oscillator while the primary clock is started. When the primary clock becomes ready, a clock switchback to the primary clock occurs (see Figure 3-6). When the clock switch is complete, the T1RUN bit is cleared, the OSTS bit is set and the primary clock is providing the system clock. The IDLEN and SCS bits are not affected by the wake-up. The Timer1 oscillator continues to run.

Firmware can force an exit from SEC_RUN mode. By clearing the T1OSCEN bit (T1CON<3>), an exit from SEC_RUN back to normal full-power operation is triggered. The Timer1 oscillator will continue to run and provide the system clock, even though the T1OSCEN bit is cleared. The primary clock is started. When the primary clock becomes ready, a clock switchback to the primary clock occurs (see Figure 3-6). When the clock switch is cleared, the Timer1 oscillator is disabled, the T1RUN bit is cleared, the OSTS bit is set and the primary clock is providing the system clock. The IDLEN and SCS bits are not affected by the wake-up.

FIGURE 3-9: TIMING TRANSITION FOR ENTRY TO SEC_RUN MODE

5.5 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the Program Counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 5-4.

5.6 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 5-2).

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 5-4: CLOCK/INSTRUCTION CYCLE

EXAMPLE 5-2: INSTRUCTION PIPELINE FLOW

Тсү0	TCY1	TCY2	Тсү3	TCY4	TCY5
1. MOVLW 55h Fetch 1	Execute 1		_		
2. MOVWF PORTB	Fetch 2	Execute 2			
3. BRA SUB_1		Fetch 3	Execute 3]	
4. BSF PORTA, BIT3 (Forced NOP)			Fetch 4	Flush (NOP)	
5. Instruction @ address SUB_1				Fetch SUB_1	Execute SUB_1

All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

5.14 RCON Register

The Reset Control (RCON) register contains flag bits that allow differentiation between the sources of a device Reset. These flags include the TO, PD, POR, BOR and RI bits. This register is readable and writable.

- Note 1: If the BOR Configuration bit is set (Brown-out Reset enabled), the BOR bit is '1' on a Power-on Reset. After a Brown-out Reset has occurred, the BOR bit will be cleared and must be set by firmware to indicate the occurrence of the next Brown-out Reset.
 - 2: It is recommended that the POR bit be set after a Power-on Reset has been detected, so that subsequent Power-on Resets may be detected.

REGISTER 5-3: RCON: RESET CONTROL REGISTER

R/W-0	U-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	—	_	RI	TO	PD	POR	BOR
bit 7	·						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Value de	pends on condition	tion	
bit 7	IPEN: Interru	pt Priority Enat	ole bit				
	1 = Enable p	riority levels or	n interrupts				
	0 = Disable p	oriority levels o	n interrupts (F	IC16CXXX Co	mpatibility mod	e)	
Dit 6-5	Unimplemen	ted: Read as	0,				
bit 4	RI: RESET Ins	struction Flag b	bit				
	1 = The RES	ET instruction v	was not execu	ited (set by firm	ware only)		
	0 = The RES	ET INSTRUCTION V set in software	vas executed	causing a devi	ce Reset curs)		
bit 3	TO: Watchdo	a Time-out Fla	a bit				
	1 = Set by po	ower-up, CLRW	DT instruction	or SLEEP instr	uction		
	0 = A WDT ti	me-out occurre	ed				
bit 2	PD: Power-de	own Detection	Flag bit				
	1 = Set by po	ower-up or by t	he CLRWDT in	struction			
	0 = Cleared	by execution of	f the SLEEP in	struction			
bit 1	POR: Power-	on Reset Statu	ıs bit				
	1 = A Power	-on Reset has	not occurred ((set by firmware	e only)	Deset see	
	0 = A Power	-on Reset occu	irrea (must be	set in software	e aπer a Power-	on Reset occur	rs)
bit 0	BOR: Brown-	out Reset Stat	us bit	<i>, .</i>			
	1 = A Brown	-out Reset has	not occurred	(set by firmwar	e only) o offor o Brown	out Posot occ	ure)
				e set in sonwal			ui <i>5)</i>
Note 1: For	Borrow, the po	larity is reverse	ed. A subtract	ion is executed	by adding the	two's compleme	ent of the

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0				
EEPGD	CFGS		FREE	WRERR ⁽¹⁾	WREN	WR	RD				
bit 7		·					bit 0				
Legend:											
R = Reada	ible bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'					
S = Bit car	n only be set	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets				
'1' = Bit is	set	'0' = Bit is cleared HC = Bit is cleared by hardware									
bit 7	EEPGD: Flas 1 = Access p 0 = Access d	h Program or E program Flash r lata EEPROM I	Data EEPRO nemory nemory	M Memory Sele	ct bit						
bit 6	CFGS: Flash 1 = Accesses 0 = Accesses	Program/Data s Configuration s Flash Program	EEPROM or , User ID and m or data EE	Configuration S Device ID Reg PROM Memory	elect bit isters						
bit 5	Unimplemen	ted: Read as '	כ'								
bit 4	FREE: Flash	Row Erase En	able bit								
	1 = Erase the (cleared) 0 = Perform	e program men by completion o write only	nory row add of erase oper	ressed by TBLP ation – TBLPTR	TR on the next <5:0> are igno	WR command pred)					
bit 3	WRERR: EEF	ROM Error Flag bit ⁽¹⁾									
	1 = A write o 0 = The write	peration was prematurely terminated (any Reset during self-timed programming) e operation completed normally									
bit 2	WREN: Progr	ram/Erase Ena	ble bit								
	1 = Allows pr 0 = Inhibits p	rogram/erase c rogramming/er	ycles asing of prog	ram Flash and o	data EEPROM						
bit 1	WR: Write Co	ontrol bit									
	 1 = Initiates a (The ope bit can or 0 = Write cyc 	a data EEPRON eration is self-tin nly be set (not o cle completed	I erase/write med and the cleared) in sc	cycle or a progra bit is cleared by oftware.)	am memory era hardware ond	ase cycle or writ e write is comp	e cycle. blete. The WR				
bit 0	RD: Read Co	ntrol bit									
	1 = Initiates a (Read tal software. 0 = Read cor	a memory read kes one cycle. . RD bit cannot mpleted	RD is cleare be set when	ed in hardware. EEPGD = 1.)	The RD bit car	n only be set (r	not cleared) in				
Note 1:	When a WRERR c tracing of the error	occurs, the EEF	GD and CFC	GS bits are not c	leared. This al	lows					

REGISTER 6-1: EECON1: EEPROM CONTROL 1 REGISTER

6.4 Erasing Flash Program Memory

The minimum erase block size is 32 words or 64 bytes under firmware control. Only through the use of an external programmer, or through ICSP control, can larger blocks of program memory be bulk erased. Word erase in Flash memory is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 64 bytes of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased. TBLPTR<5:0> are ignored.

The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the Flash program memory. The CFGS bit must be clear to access program Flash and data EEPROM memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation. The WR bit is set as part of the required instruction sequence (as shown in Example 6-2) and starts the actual erase operation. It is not necessary to load the TABLAT register with any data as it is ignored.

For protection, the write initiate sequence using EECON2 must be used.

A long write is necessary for erasing the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

6.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory location is:

- 1. Load Table Pointer with address of row being erased.
- 2. Set the EECON1 register for the erase operation:
 •set EEPGD bit to point to program memory;
 •clear the CFGS bit to access program memory;
 •set WREN bit to enable writes;

•set FREE bit to enable the erase.

- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write AAh to EECON2.
- 6. Set the WR bit. This will begin the row erase cycle.
- 7. The CPU will stall for duration of the erase (about 2 ms using internal timer).
- 8. Execute a NOP.
- 9. Re-enable interrupts.

EXAMPLE 6-2: ERASING A FLASH PROGRAM MEMORY ROW

ERASE ROW	MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL	; load TBLPTR with the base ; address of the memory block
	BSF BSF BSF BCF	EECON1, EEPGD EECON1, WREN EECON1, FREE INTCON, GIE	; point to FLASH program memory ; enable write to memory ; enable Row Erase operation ; disable interrupts
Required Sequence	MOVLW MOVWF MOVLW MOVWF BSF NOP	55h EECON2 AAh EECON2 EECON1, WR	; write 55H ; write AAH ; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts

15.3.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared; therefore, the first capture may be from a non-zero prescaler. Example 15-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 15-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	; Turn CCP module off
MOVLW	NEW_CAPT_PS	; Load WREG with the
		; new prescaler mode
		; value and CCP ON
MOVWF	CCP1CON	; Load CCP1CON with
		; this value

FIGURE 15-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

15.4 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against either the TMR1 register pair value, or the TMR3 register pair value. When a match occurs, the RB3/CCP1/P1A pin:

- Is driven high
- Is driven low
- Toggles output (high-to-low or low-to-high)
- Remains unchanged (interrupt only)

The action on the pin is based on the value of control bits, CCP1M3:CCP1M0. At the same time, interrupt flag bit, CCP1IF, is set.

15.4.1 CCP PIN CONFIGURATION

The user must configure the RB3/CCP1/P1A pin as an output by clearing the TRISB<3> bit.

Note: Clearing the CCP1CON register will force the RB3/CCP1/P1A compare output latch to the default low level. This is not the PORTB I/O data latch.

15.4.2 TIMER1/TIMER3 MODE SELECTION

Timer1 and/or Timer3 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

15.4.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen, the RB3/ CCP1/P1A pin is not affected. CCP1IF is set and an interrupt is generated (if enabled).

15.4.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated, which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special event trigger also sets the GO/DONE bit (ADCON0<1>). This starts a conversion of the currently selected A/D channel if the A/D is on.

FIGURE 15-9: EXAMPLE OF FULL-BRIDGE APPLICATION

15.5.5.1 Direction Change in Full-Bridge Mode

In the Full-Bridge Output mode, the P1M1 bit in the CCP1CON register allows the user to control the Forward/Reverse direction. When the application firmware changes this direction control bit, the module will assume the new direction on the next PWM cycle.

Just before the end of the current PWM period, the modulated outputs (P1B and P1D) are placed in their inactive state, while the unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction. This occurs in a time interval of (4 Tosc * (Timer2 Prescale Value) before the next PWM period begins. The Timer2 prescaler will be either 1,4 or 16, depending on the value of the T2CKPS bit (T2CON<1:0>). During the interval from the switch of the unmodulated outputs to the beginning of the next period, the modulated outputs (P1B and P1D) remain inactive. This relationship is shown in Figure 15-10.

Note that in the Full-Bridge Output mode, the ECCP module does not provide any dead-band delay. In general, since only one output is modulated at all times, dead-band delay is not required. However, there is a situation where a dead-band delay might be required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.

Figure 15-11 shows an example where the PWM direction changes from forward to reverse, at a near 100% duty cycle. At time t1, the output P1A and P1D become inactive, while output P1C becomes active. In this example, since the turn-off time of the power devices is longer than the turn-on time, a shoot-through current may flow through power devices QC and QD (see Figure 15-9) for the duration of 't'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, one of the following requirements must be met:

- 1. Reduce PWM for a PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

16.2 EUSART Baud Rate Generator (BRG)

The BRG is a dedicated 8-bit or 16-bit generator, that supports both the Asynchronous and Synchronous modes of the EUSART. By default, the BRG operates in 8-bit mode; setting the BRG16 bit (BAUDCTL<3>) selects 16-bit mode.

The SPBRGH:SPBRG register pair controls the period of a free running timer. In Asynchronous mode, bits BRGH (TXSTA<2>) and BRG16 also control the baud rate. In Synchronous mode, bit BRGH is ignored. Table 16-1 shows the formula for computation of the baud rate for different EUSART modes which only apply in Master mode (internally generated clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRGH:SPBRG registers can be calculated using the formulas in Table 16-1. From this, the error in baud rate can be determined. An example calculation is shown in Example 16-1. Typical baud rates and error values for the various asynchronous modes are shown in Table 16-2. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG to reduce the baud rate error, or achieve a slow baud rate for a fast oscillator frequency.

Writing a new value to the SPBRGH:SPBRG registers causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

16.2.1 POWER MANAGED MODE OPERATION

The system clock is used to generate the desired baud rate; however, when a power managed mode is entered, the clock source may be operating at a different frequency than in PRI_RUN mode. In Sleep mode, no clocks are present and in PRI_IDLE mode, the primary clock source continues to provide clocks to the Baud Rate Generator; however, in other power managed modes, the clock frequency will probably change. This may require the value in SPBRG to be adjusted.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit and make sure that the receive operation is Idle before changing the system clock.

16.2.2 SAMPLING

The data on the RB4/AN6/RX/DT/KBI0 pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

C	onfiguration B	its		Baud Pate Formula				
SYNC	BRG16	BRGH	BRG/EUSART Mode	Bauu Kale Formula				
0	0	0	8-bit/Asynchronous	Fosc/[64 (n + 1)]				
0	0	1	8-bit/Asynchronous	$E_{OSC}/[16(p+1)]$				
0	1	0	16-bit/Asynchronous	FOSC/[16 (11 + 1)]				
0	1	1	16-bit/Asynchronous					
1	0	x	8-bit/Synchronous	Fosc/[4 (n + 1)]				
1	1	х	16-bit/Synchronous					

TABLE 16-1:BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPBRGH:SPBRG register pair

EXAMPLE 16-1: CALCULATING BAUD RATE ERROR

```
For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:
Desired Baud Rate= Fosc/(64 ([SPBRGH:SPBRG] + 1))
Solving for SPBRGH:SPBRG:
     Х
          =
              ((FOSC/Desired Baud Rate)/64) - 1
              ((1600000/9600)/64) - 1
          =
              [25.042] = 25
          =
Calculated Baud Rate=16000000/(64 (25 + 1))
              9615
          =
Error
          =
              (Calculated Baud Rate - Desired Baud Rate)/Desired Baud Rate
              (9615 - 9600)/9600 = 0.16\%
          =
```

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 -010	0000 -010
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
BAUDCTL	_	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	-1-1 0-00	-1-1 0-00
SPBRGH	Baud Rate	Generato		0000 0000	0000 0000					
SPBRG	Baud Rate	Generato	0000 0000	0000 0000						

REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR TABLE 16-2.

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

TABLE 16-3: **BAUD RATES FOR ASYNCHRONOUS MODES**

	SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc	= 40.000) MHz	Fosc	= 20.000	0 MHz	Foso	= 10.000	MHz	Fos	c = 8.000	MHz
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	_	_	_		_	_	_	_	_	_	_	
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1201	-0.16	103
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2403	-0.16	51
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9615	-0.16	12
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	_	_	_
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	_	_	_
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	_	_	_
			S	YNC = 0, B	BRGH = (, BRG16 =	0					
BAUD	Fos	c = 4.000	MHz	Fosc = 2.000 MHz			Fosc = 1.000 MHz					
(K)	Actual	%	SPBRG	Actual		SDBBC	Astual					
	(K)	Error	value (decimal)	Rate (K)	% Error	value (decimal)	Rate (K)	% Error	value (decimal)			
0.3	(K) 0.300	0.16	value (decimal) 207	Rate (K) 300	% Error -0.16	value (decimal)	Actual Rate (K) 300	% Error -0.16	value (decimal)			
0.3 1.2	(K) 0.300 1.202	0.16 0.16	value (decimal) 207 51	Rate (K) 300 1201	% Error -0.16 -0.16	value (decimal) 103 25	Actual Rate (K) 300 1201	% Error -0.16 -0.16	sparse value (decimal) 51 12			
0.3 1.2 2.4	(K) 0.300 1.202 2.404	0.16 0.16 0.16	value (decimal) 207 51 25	Rate (K) 300 1201 2403	% Error -0.16 -0.16 -0.16	value (decimal) 103 25 12	Actual Rate (K) 300 1201 —	% Error -0.16 -0.16	sparse value (decimal) 51 12 —			
0.3 1.2 2.4 9.6	(K) 0.300 1.202 2.404 8.929	0.16 0.16 0.16 -6.99	value (decimal) 207 51 25 6	Rate (K) 300 1201 2403 —	% Error -0.16 -0.16 -0.16 -0.16	value (decimal) 103 25 12 	Actual Rate (K) 300 1201 —	% Error -0.16 -0.16 —	sparse value (decimal) 51 12 			
0.3 1.2 2.4 9.6 19.2	(K) 0.300 1.202 2.404 8.929 20.833	0.16 0.16 0.16 -6.99 8.51	value (decimal) 207 51 25 6 2	Rate (K) 300 1201 2403 — —	% Error -0.16 -0.16 -0.16 	value (decimal) 103 25 12 	Actual Rate (K) 300 1201 — — —	% Error -0.16 -0.16 — —	51 12 			
0.3 1.2 2.4 9.6 19.2 57.6	Kate (K) 0.300 1.202 2.404 8.929 20.833 62.500	Error 0.16 0.16 0.16 -6.99 8.51 8.51	value (decimal) 207 51 25 6 2 2 0	Rate (K) 300 1201 2403 — — —	% Error -0.16 -0.16 -0.16 	value (decimal) 103 25 12 	Actual Rate (K) 300 1201 — — — — —	% Error -0.16 -0.16 	51 (decimal) 51 12 			

9.615

19.231

62.500

125.000

0.16

0.16

8.51

8.51

25

12

3

1

9615

—

_

-0.16

_

9.6

19.2

57.6

115.2

					SYNC	= 0, BRGH	H = 1, BRG	616 = 0					
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Foso	: = 10.00	0 MHz	Fos	Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
2.4	—	—	—	_	—	—	2.441	1.73	255	2403	-0.16	207	
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9615	-0.16	51	
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19230	-0.16	25	
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55555	3.55	8	
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4		—	—	
			S	YNC = 0, E	BRGH = 1	L, BRG16 =	: 0						
BAUD	Fos	c = 4.000	MHz	Fosc = 2.000 MHz			Fos	c = 1.000	MHz				
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)				
0.3	_	_	_	_	_	_	300	-0.16	207				
1.2	1.202	0.16	207	1201	-0.16	103	1201	-0.16	51				
2.4	2.404	0.16	103	2403	-0.16	51	2403	-0.16	25				

12

_

_

_

_

_

—

_

—

TABLE 16-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

BAUD RATE (K)	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
	Actual Rate (K)	% Error	SPBRG value (decimal)									
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	300	-0.04	1665
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1201	-0.16	415
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2403	-0.16	207
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_
			S	YNC = 0, E	BRGH = (, BRG16 =	1					
BAUD	Fost	c = 4.000	MHz	Fosc = 2.000 MHz			Fosc = 1.000 MHz					
RAIE	Actual		CDDDC	Actual		SDDDC	Actual		SDDDC			

BAUD	Fosc = 4.000 MHz		MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.04	832	300	-0.16	415	300	-0.16	207	
1.2	1.202	0.16	207	1201	-0.16	103	1201	-0.16	51	
2.4	2.404	0.16	103	2403	-0.16	51	2403	-0.16	25	
9.6	9.615	0.16	25	9615	-0.16	12	_	_	—	
19.2	19.231	0.16	12	—	—	—	—	—	—	
57.6	62.500	8.51	3	—	_	_	_	_	_	
115.2	125.000	8.51	1	_	_	_	_	_		

16.3.5 BREAK CHARACTER SEQUENCE

The Enhanced USART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. The Break character transmit consists of a Start bit, followed by twelve '0' bits and a Stop bit. The Frame Break character is sent whenever the SENDB and TXEN bits (TXSTA<3> and TXSTA<5>) are set while the Transmit Shift register is loaded with data. Note that the value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

Note that the data value written to the TXREG for the Break character is ignored. The write simply serves the purpose of initiating the proper sequence.

The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 16-9 for the timing of the Break character sequence.

16.3.5.1 Transmitting A Break Signal

The Enhanced USART module has the capability of sending the Break signal that is required by the LIN bus standard. The Break signal consists of a Start bit, followed by twelve '0' bits and a Stop bit. The Break signal is sent whenever the SENDB (TXSTA<3>) and TXEN (TXSTA<5>) bits are set and TXREG is loaded with data. The data written to TXREG will be ignored and all '0's will be transmitted.

SENDB is automatically cleared by hardware when the Break signal has been sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission.

To send a Break Signal:

- Configure the EUSART for asynchronous transmissions (steps 1-5). Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH (see Section 16.2 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit TXIE.

- 4. If 9-bit transmission is desired, set transmit bit TX9. Can be used as address/data bit.
- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. Set the SENDB bit.
- 7. Load a byte into TXREG. This triggers sending a Break signal. The Break signal is complete when TRMT is set. SENDB will also be cleared.

See Figure 16-9 for the timing of the Break signal sequence.

16.3.6 RECEIVING A BREAK CHARACTER

The Enhanced USART module can receive a Break character in two ways.

The first method forces configuration of the baud rate at a frequency of 9/13 the typical speed. This allows for the Stop bit transition to be at the correct sampling location (12 bits for Break versus Start bit and eight data bits for typical data).

The second method uses the auto-wake-up feature described in **Section 16.3.4 "Auto-Wake-up on Sync Break Character"**. By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Rate Detect feature. For both methods, the user can set the ABD bit before placing the EUSART in its Sleep mode.

16.3.6.1 Transmitting a Break Sync

The following sequence will send a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to set up the Break character.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.
- After the Break has been sent, the SENDB bit is reset by hardware. The Sync character now transmits in the preconfigured mode. When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

BTFSC	Bit Test Fil	le, Skip if	Clear			
Syntax:	[<i>label</i>] BT	FSC f,b[,a]			
Operands:	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$					
Operation:	skip if (f 	>) = 0				
Status Affected:	d: None					
Encoding:	Encoding: 1011 bbba ffff ffff					
Description:	If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).					
Words:	1					
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction.						
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read	Process		No		
lf skin:	register i	Dala	ot			
01	02	03		Q4		
No	No	No		No		
operation	operation	operation	n op	peration		
If skip and follow	ed by 2-word	instruction	n:			
Q1	Q2	Q3		Q4		
No	No	No		No		
operation	operation	operation	n op	peration		
No	No	No		No		
operation	operation	operation	n of	beration		
Example: HERE BTFSC FLAG, 1 FALSE : TRUE :						
Betore Instru	ction		1)			
PC Aftor Instruct	= add	IESS (HERE	;)			
After Instruction If FLAG<1> = 0; PC = address (TRUE) If FLAG<1> = 1; PC = address (FALSE)						

BTF	SS	Bit Test F	ile, Skip i	if Set				
Synt	ax:	[<i>label</i>] B	TFSS f,b	[,a]				
Ope	rands:	0 ≤ f ≤ 255 0 ≤ b < 7 a ∈ [0,1]						
Ope	ration:	skip if (f) = 1						
Statu	us Affected:	None						
Enco	oding:	1010 bbba ffff ffff						
Desc	cription:	If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected						
Word	de.	as per une	DOR Val	ie (ueiat	<i>nt)</i> .			
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction.								
	Q1	Q2	Q3		Q4			
	Decode	register 'f'	Data	SS 0	peration			
lf sk	kip:							
	Q1	Q2	Q3		Q4			
	No	No	No		No			
lfek	operation	operation	operati	on on	peration			
11 56		02	03	011.	04			
	No	No	No		No			
	operation	operation	operati	on o	peration			
	No operation	No operation	No operati	on o	No peration			
Example: HERE BTFSS FLAG, 1 FALSE : TRUE : Before Instruction PC = address (HERE)								
	۲ Atter Instructi	ion 1> - 0 [.]						
	If FLAG<1> = 0; PC = address (FALSE) If FLAG<1> = 1; PC = address (TRUE)							

RCA	LL	Relative (Call						
Synt	ax:	[<i>label</i>] R	[<i>label</i>] RCALL n						
Ope	rands:	-1024 ≤ n	$-1024 \le n \le 1023$						
Ope	ration:	$(PC) + 2 \rightarrow TOS,$ (PC) + 2 + 2n \rightarrow PC							
Statu	us Affected:	None							
Enco	oding:	1101	1nnn n	nnn	nnnn				
Desi		from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction.							
Wor	ds:	1							
Cycl	es:	2							
QC	ycle Activity:	:							
	Q1	Q2	Q3		Q4				
	Decode	Read literal	Process Data	Wr	ite to PC				

RES	ET	Reset						
Synt	ax:	[label]	[label] RESET					
Ope	rands:	None						
Ope	ration:	Reset all registers and flags that are affected by a $\overline{\text{MCLR}}$ Reset.						
Statu	us Affected:	All						
Enco	coding: 0000 0000 1111			1111				
Des	cription:	n: This instruction provides a way to execute a MCLR Reset in software						
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3	3		Q4		
	Decode	Start	No)		No		
		Reset	opera	tion	op	peration		

Example: RESET

After Instruction	
Registers =	Reset Value
Flags* =	Reset Value

Example: HERE RCALL Jump

Push PC to stack

No

operation

No

operation

No

operation

Before Instruction

No

operation

PC = Address (HERE) After Instruction PC = Address (Jump) TOS = Address (HERE + 2)

RET	URN	Return fr	om Sub	routii	ne			
Synt	ax:	[label]	RETURI	N [s]				
Ope	rands:	$s \in [0,1]$	s ∈ [0,1]					
Ope	ration:	$(TOS) \rightarrow PC,$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow Status,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged						
Statu	us Affected:	None						
Enco	oding:	0000 0000 0001 001s						
Desc	cription:	Return from subroutine. The stack is popped and the top of the stack is loaded into the program counter. If 's'= 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corre- sponding registers, W, Status and BSR. If 's' = 0, no update of these registers occurs (default).						
Wore	ds:	1						
Cycl	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	No	Proce	ess	Pop PC			
		operation	Data	a	from stack			
	No	No	No		No			
	operation	operation	operat	ion	operation			

Evomplo	זא כיד זיייייד כי
Example.	REIURN

After Interrupt PC = TOS

RLCF	Rotate Lo	eft f throug	h Carry				
Syntax:	[label]	RLCF f[,	d [,a]]				
Operands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	5					
Operation:	$(f < n >) \rightarrow$ $(f < 7 >) \rightarrow$ $(C) \rightarrow de$	$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow C,$ $(C) \rightarrow dest < 0 >$					
Status Affected:	C, N, Z						
Encoding:	0011	01da f	fff ffff				
	the Carry is placed is stored (default). Bank will the BSR bank will BSR valu	flag. If 'd' is in W. If 'd' is back in regis If 'a' is '0', th be selected value. If 'a' = be selected e (default).	f				
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	Write to destination				
Example:	RLCF	REG, W	I				
Before Instru	ction						

Delote motion								
REG C	=	1110 0	0110					
•		0						
After Instruc	After Instruction							
REG	=	1110	0110					
W	=	1100	1100					
С	=	1						

RRNCF	Rotate Right f (no carry)	SETF	Set f			
Syntax:	[label] RRNCF f [,d [,a]]	Syntax:	[label]SETF f[,a]			
Operands:	$0 \le f \le 255$	Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$			
	d ∈ [0,1]					
	a ∈ [0,1]	Operation:	$FFh \rightarrow f$			
Operation:	$(f < n >) \rightarrow dest < n - 1 >,$	Status Affected:	None			
Status Affected:		Encoding:	0110 100a ffff ffff			
Status Allecteu.		Description:	The contents of the specified			
			register are set to FFh. If 'a' is '0',			
Description:	The contents of register T are		the Access Bank will be selecte			
	'0', the result is placed in W. If 'd' is		'1', then the bank will be selected			
	'1', the result is placed back in		as per the BSR value (default).			
	register 'f' (default). If 'a' is '0', the	Words:	1			
	overriding the BSR value. If 'a' is	Cycles:	1			
	'1', then the bank will be selected	Q Cycle Activity:				
	as per the BSR value (default).	Q1	Q2 Q3 Q4			
	register f	Decode	Read Process Write			
Words:	1					
Cycles:	1	Example:	SETF REG			
Q Cycle Activity		Before Instru	uction			
Q1	Q2 Q3 Q4	REG	= 0x5A			
Decode	Read Process Write to	After Instruct	tion			
	register 'f' Data destination	REG	= 0xFF			
Everage 4						
Example 1:	RENCE REG, 1, 0					
Before Instru REG	JCtion = 1101 0111					
After Instruc	tion					
REG	= 1110 1011					
Example 2:	RRNCF REG, W					
Before Instru	uction					
W REG	= ?					
After Instruc	tion					
W	= 1110 1011					
REG	= 1101 0111					

21.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

21.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

21.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

21.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

21.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.	Sym.	Characteristic	Min.	Min. Typ† Max. Units			Conditions
		Internal Program Memory Programming Specifications ⁽¹⁾					
D110	Vpp	Voltage on MCLR/VPP pin	9.00	—	13.25	V	(Note 2)
D112	IPP	Current into MCLR/VPP pin	—	—	5	μA	
D113	IDDP	Supply Current during Programming	—	—	10	mA	
		Data EEPROM Memory					
D120	ED	Byte Endurance	100K	1M	—	E/W	-40°C to +85°C
D121	Vdrw	VDD for Read/Write	VMIN	—	5.5	V	Using EECON to read/write VMIN = Minimum operating voltage
D122	TDEW	Erase/Write Cycle Time	—	4	—	ms	
D123	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated
D124	TREF	Number of Total Erase/Write Cycles before Refresh ⁽³⁾	1M	10M	—	E/W	-40°C to +85°C
		Program Flash Memory					
D130	Eр	Cell Endurance	10K	100K	—	E/W	-40°C to +85°C
D131	Vpr	VDD for Read	VMIN	_	5.5	V	Vмın = Minimum operating voltage
D132	VIE	VDD for Block Erase	4.5	—	5.5	V	Using ICSP port
D132A	Viw	VDD for Externally Timed Erase or Write	4.5	—	5.5	V	Using ICSP port
D132B	Vpew	VDD for Self-Timed Write	Vmin	—	5.5	V	VMIN = Minimum operating voltage
D133	TIE	ICSP™ Block Erase Cycle Time	—	4	—	ms	VDD > 4.5V
D133A	Tiw	ICSP Erase or Write Cycle Time (externally timed)	1	—	—	ms	Vdd > 4.5V
D133A	Tiw	Self-Timed Write Cycle Time	—	2	—	ms	
D134	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated

TABLE 22-1: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

2: The pin may be kept in this range at times other than programming, but it is not recommended.

3: Refer to **Section 7.8 "Using the Data EEPROM"** for a more detailed discussion on data EEPROM endurance.