

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

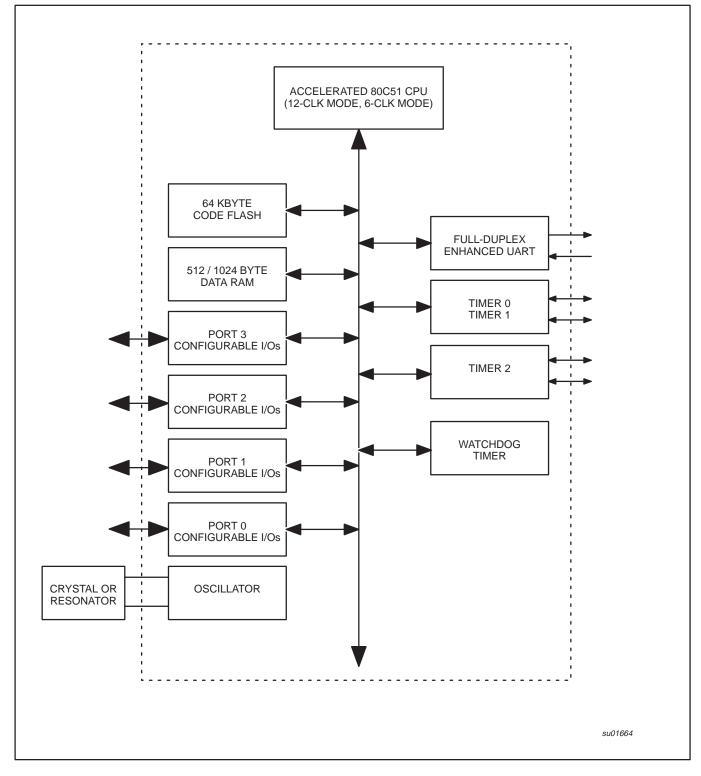
Details	
Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p89c61x2ba-00-512

Email: info@E-XFL.COM

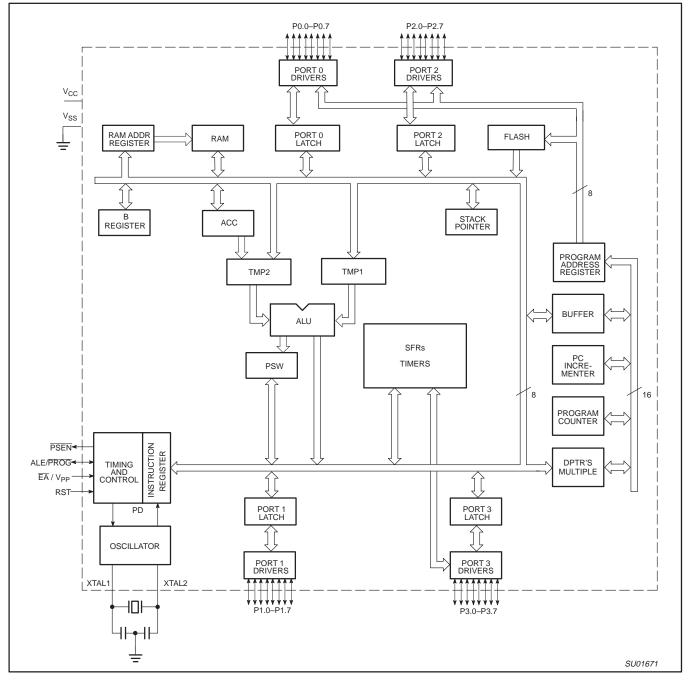
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

P89C60X2/61X2

FEATURES

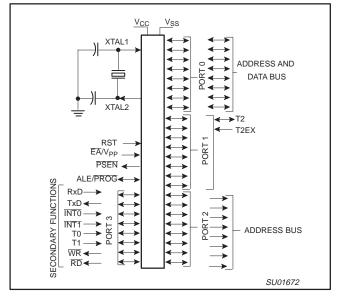

- 80C51 Central Processing Unit
- 64 kbytes Flash
- 512 bytes RAM (P89C60X2)
- 1024 bytes RAM (P89C61X2)
- Boolean processor
- Fully static operation
- In-System Programmable (ISP) Flash memory
- 12-clock operation with selectable 6-clock operation (via software or via parallel programmer)
- Memory addressing capability
 - Up to 64 kbytes ROM and 64 kbytes RAM
- Power control modes:
 - Clock can be stopped and resumed
 - Idle mode
 - Power-down mode
- Two speed ranges
 - 0 to 20 MHz with 6-clock operation
- 0 to 33 MHz with 12-clock operation

- LQFP, PLCC, and DIP packages
- Dual Data Pointers
- Three security bits
- Four interrupt priority levels
- Six interrupt sources
- Four 8-bit I/O ports
- Full-duplex enhanced UART
 - Framing error detection
 - Automatic address recognition
- Three 16-bit timers/counters T0, T1 (standard 80C51) and additional T2 (capture and compare)
- Programmable clock-out pin
- Watchdog timer
- Asynchronous port reset
- Low EMI (inhibit ALE, 6-clock mode)
- Wake-up from Power Down by an external interrupt

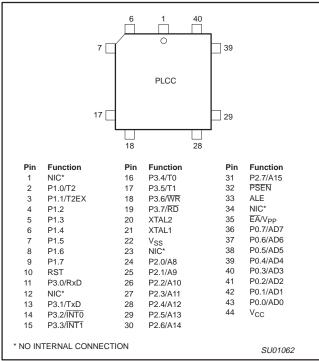

Product data

P89C60X2/61X2

BLOCK DIAGRAM 1



BLOCK DIAGRAM 2 (CPU-ORIENTED)



P89C60X2/61X2

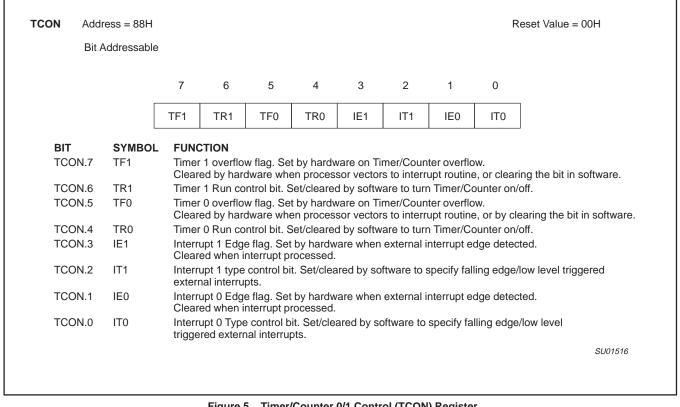
LOGIC SYMBOL

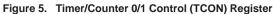
PLASTIC LEADED CHIP CARRIER PIN FUNCTIONS

PIN FUNCTIONS 34 44 Ó 33 1 🖂 LQFP 11 🖵 ____ 23 12 22 Function Pin Pin Function Pin Function P0.6/AD6 P1 5 V_{SS} NIC* 31 1 16 P1.6 P0.5/AD5 2 17 32 P0.4/AD4 3 P1.7 P2.0/A8 18 33 P0.3/AD3 P2.1/A9 34 RST 4 19 P2.2/A10 35 P0.2/AD2 P3.0/RxD 20 5 P2.3/A11 36 P0.1/AD1 NIC* 21 6 P3.1/TxD 37 P0.0/AD0 7 22 P2.4/A12 38 8 P3.2/INT0 23 P2.5/A13 V_{CC} NIC* 39 P3.3/INT1 P2.6/A14 9 24 25 P2.7/A15 40 P1.0/T2 10 P3 4/T0 P3.5/T1 PSEN 41 P1.1/T2EX 26 11 42 P1.2 12 P3.6/WR 27 ALE 43 P1.3 P3.7/RD 28 NIC* 13 44 P1.4 EA/V_{PP} XTAL2 14 29 P0.7/AD7 15 XTAL1 30 * NO INTERNAL CONNECTION SU01487

LOW PROFILE QUAD FLAT PACK

PLASTIC DUAL IN-LINE PACKAGE PIN FUNCTIONS


T2/P1.0 1 T2EX/P1.1 2		40 V _{CC}
T2EX/P1.1 2 P1.2 3 P1.3 4 P1.4 5 P1.5 6 P1.6 7 P1.7 8 RST 9 RxD/P3.0 10 TxD/P3.1 11	DUAL IN-LINE PACKAGE	 39 P0.0/AD0 38 P0.1/AD1 37 P0.2/AD2 36 P0.3/AD3 35 P0.4/AD4 34 P0.5/AD5 33 P0.6/AD6 32 P0.7/AD7 31 EA/VpP 30 ALE/PROG
INT0/P3.2 12 INT1/P3.3 13 T0/P3.4 14 T1/P3.5 15 WR/P3.6 16 RD/P3.7 17 XTAL2 18 XTAL1 19 V _{SS} 20		 PSEN P2.7/A15 P2.6/A14 P2.5/A13 P2.4/A12 P2.3/A11 P2.2/A10 P2.1/A9 P2.0/A8
		SU01780


2003 Sep 11

P89C60X2/61X2

NOTES:

- Special Function Registers (SFRs) accesses are restricted in the following ways:
- 1. Do not attempt to access any SFR locations not defined.
- 2. Accesses to any defined SFR locations must be strictly for the functions for the SFRs.
- SFR bits labeled '-', '0' or '1' can ONLY be written and read as follows:
 '-' MUST be written with '0', but can return any value when read (even if it was written with '0'). It is a reserved bit and may be used in future derivatives.
 - '0' MUST be written with '0', and will return a '0' when read. '1' MUST be written with '1', and will return a '1' when read.
- *: SFRs are bit addressable. #: SFRs are modified from or added to the 80C51 SFRs.
- -: Reserved bits (see note above).
- ¹: Reset value depends on reset source.

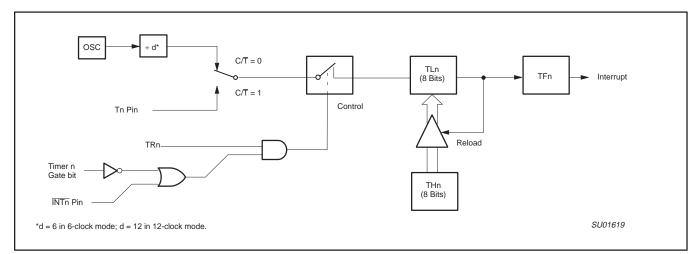


Figure 6. Timer/Counter 0/1 Mode 2: 8-Bit Auto-Reload

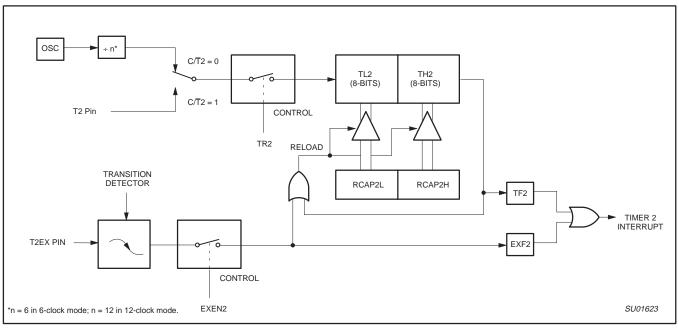


Figure 11. Timer 2 in Auto-Reload Mode (DCEN = 0)

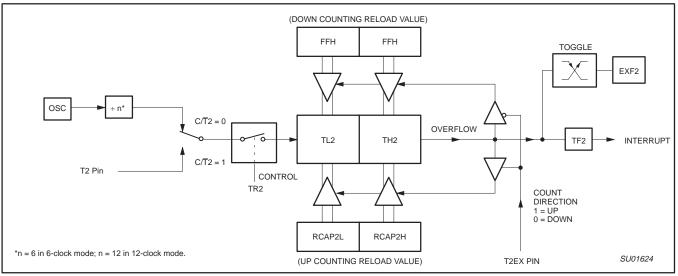


Figure 12. Timer 2 Auto Reload Mode (DCEN = 1)

P89C60X2/61X2

S	CON	Addres	s = 98H									Reset Value = 00H
Bit Addressable		7	6	5	4	3	2	1	0	_		
				SM0	SM1	SM2	REN	TB8	RB8	ΤI	RI	
Where	e SM0,	SM1 spe	cify the serial po	ort mode	e, as foll	ows:						
SM0	SM1	Mode	Description	E	Baud Ra	ate						
0	0	0	shift register		f _{OSC} /12	2 (12-cl	ock moc	le) or f _O	_{SC} /6 (6-	clock m	ode)	
0	1	1	8-bit UART		variable	е						
1	0	2	9-bit UART		f _{OSC} /64	4 or f _{OS}	_C /32 (12	2-clock r	node) o	r f _{OSC} /3	2 or f _{OS}	_{SC} /16 (6-clock mode)
1	1	3	9-bit UART		variable	е						
SM2	acti	vated if th		data bit	(RB8) is							M2 is set to 1, then RI will not be tivated if a valid stop bit was not
REN	Ena	ables seri	al reception. Set	t by soft	ware to	enable	receptio	on. Clea	r by soft	ware to	disable	e reception.
TB8	The	9th data	bit that will be t	ransmitt	ed in M	odes 2	and 3. S	Set or cl	ear by s	oftware	as desi	ired.
RB8		/lodes 2 a 8 is not us		data bit	that wa	s receiv	ved. In N	lode 1,	it SM2=	0, RB8	is the st	top bit that was received. In Mode 0,
ті			errupt flag. Set b ny serial transmi						e in Mo	de 0, or	at the b	beginning of the stop bit in the other
RI			rrupt flag. Set by ny serial receptic							,	halfway	through the stop bit time in the othe

SU01626

Figure 14.	Serial	Port	Control	(SCON)	Register

	Baud Rate		4	SMOD	Timer 1			
Mode	12-clock mode	6-clock mode	fosc	SMOD	C/T	Mode	Reload Value	
Mode 0 Max	1.67 MHz	3.34 MHz	20 MHz	Х	Х	Х	Х	
Mode 2 Max	625 k	1250 k	20 MHz	1	X	Х	Х	
Mode 1, 3 Max	104.2 k	208.4 k	20 MHz	1	0	2	FFH	
Mode 1, 3	19.2 k	38.4 k	11.059 MHz	1	0	2	FDH	
	9.6 k	19.2 k	11.059 MHz	0	0	2	FDH	
	4.8 k	9.6 k	11.059 MHz	0	0	2	FAH	
	2.4 k	4.8 k	11.059 MHz	0	0	2	F4H	
	1.2 k	2.4 k	11.059 MHz	0	0	2	E8H	
	137.5	275	11.986 MHz	0	0	2	1DH	
	110	220	6 MHz	0	0	2	72H	
	110	220	12 MHz	0	0	1	FEEBH	

Figure 15. Timer 1 Generated Commonly Used Baud Rates

More About Mode 0

Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed at 1/12 the oscillator frequency (12-clock mode) or 1/6 the oscillator frequency (6-clock mode).

Figure 16 shows a simplified functional diagram of the serial port in Mode 0, and associated timing.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal at S6P2 also loads a 1 into the 9th position of the transmit shift register and tells the TX Control block to commence a transmission. The internal timing is such that one full machine cycle will elapse between "write to SBUF" and activation of SEND.

SEND enables the output of the shift register to the alternate output function line of P3.0 and also enable SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK is low during S3, S4, and S5 of every machine cycle, and high during S6, S1, and S2. At

S6P2 of every machine cycle in which SEND is active, the contents of the transmit shift are shifted to the right one position.

As data bits shift out to the right, zeros come in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position, is just to the left of the MSB, and all positions to the left of that contain zeros. This condition flags the TX Control block to do one last shift and then deactivate SEND and set T1. Both of these actions occur at S1P1 of the 10th machine cycle after "write to SBUF."

Reception is initiated by the condition REN = 1 and R1 = 0. At S6P2 of the next machine cycle, the RX Control unit writes the bits 1111110 to the receive shift register, and in the next clock phase activates RECEIVE.

RECEIVE enable SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK makes transitions at S3P1 and S6P1 of every machine cycle. At S6P2 of every machine cycle in which RECEIVE is active, the contents of the receive shift register are

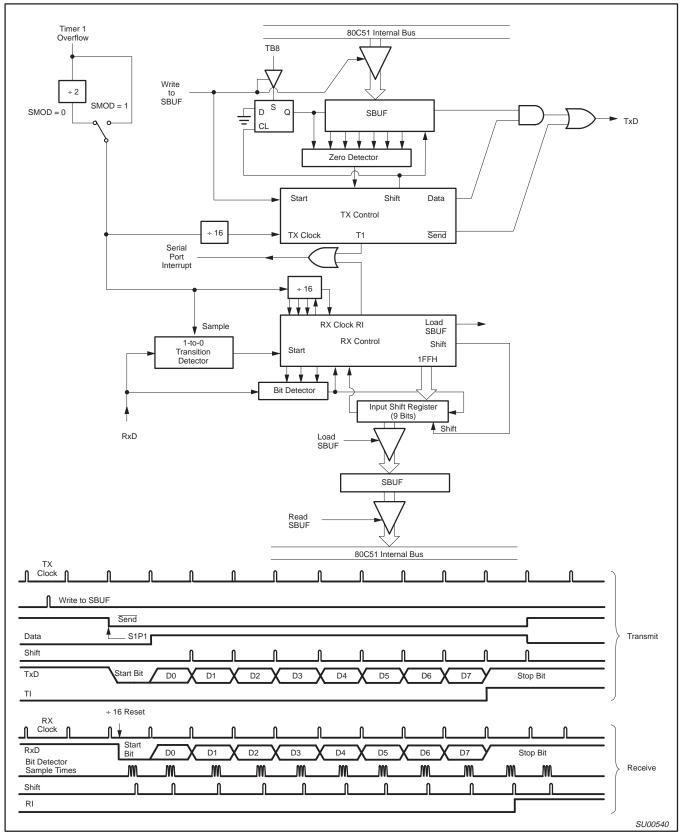


Figure 17. Serial Port Mode 1

Product data

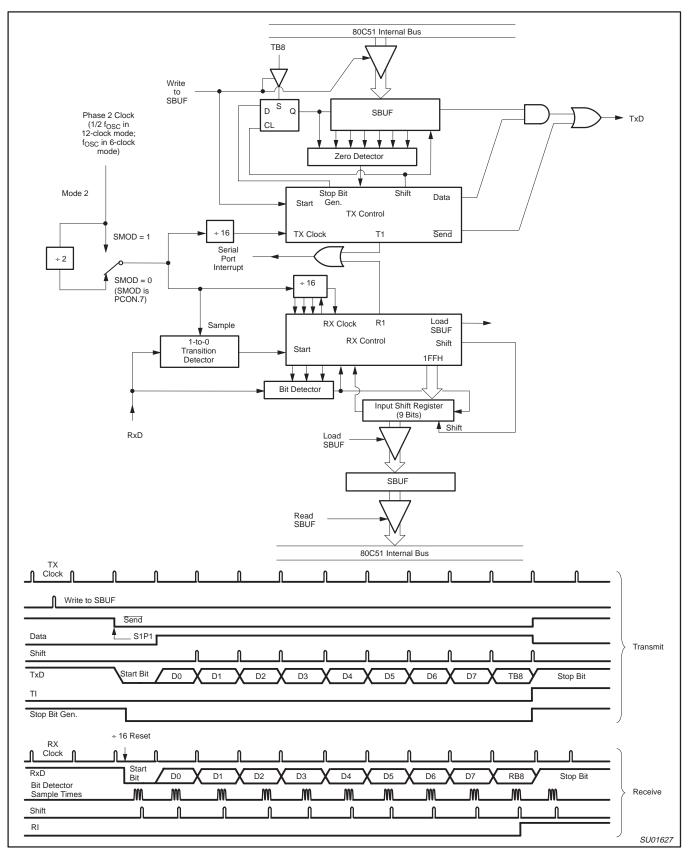


Figure 18. Serial Port Mode 2

Product data

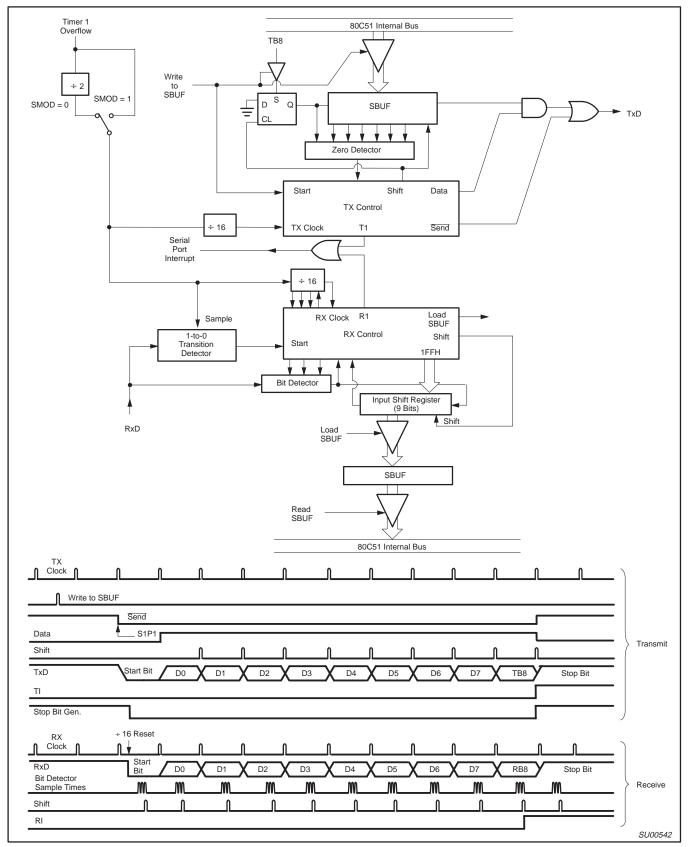
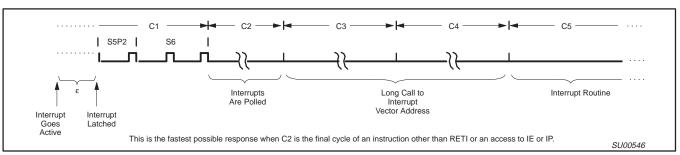



Figure 19. Serial Port Mode 3

P89C60X2/61X2

Figure 27. Interrupt Response Timing Diagram

The polling cycle/LCALL sequence is illustrated in Figure 27.

Note that if an interrupt of higher priority level goes active prior to S5P2 of the machine cycle labeled C3 in Figure 27, then in accordance with the above rules it will be vectored to during C5 and C6, without any instruction of the lower priority routine having been executed.

Thus the processor acknowledges an interrupt request by executing a hardware-generated LCALL to the appropriate servicing routine. In some cases it also clears the flag that generated the interrupt, and in other cases it doesn't. It never clears the Serial Port flag. This has to be done in the user's software. It clears an external interrupt flag (IE0 or IE1) only if it was transition-activated. The

hardware-generated LCALL pushes the contents of the Program Counter on to the stack (but it does not save the PSW) and reloads the PC with an address that depends on the source of the interrupt being vectored to, as shown in Table 10.

Execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs the processor that this interrupt routine is no longer in progress, then pops the top two bytes from the stack and reloads the Program Counter. Execution of the interrupted program continues from where it left off.

Note that a simple RET instruction would also have returned execution to the interrupted program, but it would have left the interrupt control system thinking an interrupt was still in progress, making future interrupts impossible.

External Interrupts

The external sources can be programmed to be level-activated or transition-activated by setting or clearing bit IT1 or IT0 in Register TCON. If ITx = 0, external interrupt x is triggered by a detected low at the \overline{INTx} pin. If ITx = 1, external interrupt x is edge triggered. In this mode if successive samples of the \overline{INTx} pin show a high in one cycle and a low in the next cycle, interrupt request flag IEx in TCON is set. Flag bit IEx then requests the interrupt.

Since the external interrupt pins are sampled once each machine cycle, an input high or low should hold for at least 12 oscillator periods to ensure sampling. If the external interrupt is transition-activated, the external source has to hold the request pin high for at least one cycle, and then hold it low for at least one cycle. This is done to ensure that the transition is seen so that interrupt request flag IEx will be set. IEx will be automatically cleared by the CPU when the service routine is called.

If the external interrupt is level-activated, the external source has to hold the request active until the requested interrupt is actually generated. Then it has to deactivate the request before the interrupt service routine is completed, or else another interrupt will be generated.

Response Time

The INTO and INTT levels are inverted and latched into IEO and IE1 at S5P2 of every machine cycle. The values are not actually polled by the circuitry until the next machine cycle. If a request is active and conditions are right for it to be acknowledged, a hardware subroutine call to the requested service routine will be the next instruction to be executed. The call itself takes two cycles. Thus, a minimum of three complete machine cycles elapse between activation of an external interrupt request and the beginning of execution of the first instruction of the service routine. Figure 27 shows interrupt response timings.

A longer response time would result if the request is blocked by one of the 3 previously listed conditions. If an interrupt of equal or higher priority level is already in progress, the additional wait time obviously depends on the nature of the other interrupt's service routine. If the instruction in progress is not in its final cycle, the additional wait time cannot be more the 3 cycles, since the longest instructions (MUL and DIV) are only 4 cycles long, and if the instruction in progress is RETI or an access to IE or IP, the additional wait time cannot be more than 5 cycles (a maximum of one more cycle to complete the instruction in progress, plus 4 cycles to complete the next instruction if the instruction is MUL or DIV).

Thus, in a single-interrupt system, the response time is always more than 3 cycles and less than 9 cycles.

As previously mentioned, the derivatives described in this data sheet have a four-level interrupt structure. The corresponding registers are IE, IP and IPH. (See Figures 24, 25, and 26.) The IPH (Interrupt Priority High) register makes the four-level interrupt structure possible.

The function of the IPH SFR is simple and when combined with the IP SFR determines the priority of each interrupt. The priority of each interrupt is determined as shown in the following table:

PRIORI	TY BITS				
IPH.x	IP.x				
0	0	Level 0 (lowest priority)			
0	1	Level 1			
1	0	Level 2			
1	1	Level 3 (highest priority)			

P89C60X2/61X2

80C51 8-bit Flash microcontroller family 64KB Flash, 512B/1024B RAM

An interrupt will be serviced as long as an interrupt of equal or higher priority is not already being serviced. If an interrupt of equal or higher level priority is being serviced, the new interrupt will wait until it is finished before being serviced. If a lower priority level interrupt is being serviced, it will be stopped and the new interrupt serviced. When the new interrupt is finished, the lower priority level interrupt that was stopped will be completed.

Table 10. Interrupt Table

SOURCE	POLLING PRIORITY	REQUEST BITS	HARDWARE CLEAR?	VECTOR ADDRESS
External interrupt 0	1	IEO	N (L) ¹ Y (T) ²	03H
Timer 0	2	TF0	Y	0BH
External interrupt 1	3	IE1	N (L) Y (T)	13H
Timer 1	4	TF1	Y	1BH
UART	5	RI, TI	Ν	23H
Timer 2	6	TF2, EXF2	N	2BH

NOTES:

1. L = Level activated

2. T = Transition activated

Reduced EMI Mode

The AO bit (AUXR.0) in the AUXR register when set disables the ALE output, unless the CPU needs to perform an off-chip memory access.

AUXR (8EH)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	EXTRAM	AO
AUXR.0 AUXR.1		AO EXTRAN	1	Turns off Controls access.		tput. data mem	ory

Dual DPTR

The dual DPTR structure (see Figure 28) enables a way to specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 that allows the program code to switch between them.

- New Register Name: AUXR1#
- SFR Address: A2H
- Reset Value: xxx000x0B

AUXR1 (A2H)

7	6	5	4	3	2	1	0
-	-	-	-	GF2	0	-	DPS

Where:

DPS = AUXR1/bit0 = Switches between DPTR0 and DPTR1.

Select Reg	DPS
DPTR0	0
DPTR1	1

The DPS bit status should be saved by software when switching between DPTR0 and DPTR1.

The GF2 bit is a general purpose user-defined flag.

Note that bit 2 is not writable and is always read as a zero. This allows the DPS bit to be quickly toggled simply by executing an INC AUXR1 instruction without affecting the GF2 bit.

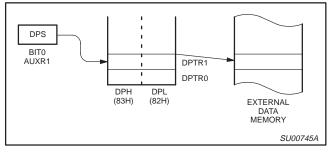


Figure 28.

DPTR Instructions

The instructions that refer to DPTR refer to the data pointer that is currently selected using the AUXR1/bit 0 register. The six instructions that use the DPTR are as follows:

INC DPTR	Increments the data pointer by 1
MOV DPTR, #data16	Loads the DPTR with a 16-bit constant
MOV A, @ A+DPTR	Move code byte relative to DPTR to ACC
MOVX A, @ DPTR	Move external RAM (16-bit address) to ACC
MOVX @ DPTR , A	Move ACC to external RAM (16-bit address)
JMP @ A + DPTR	Jump indirect relative to DPTR

The data pointer can be accessed on a byte-by-byte basis by specifying the low or high byte in an instruction which accesses the SFRs. See application note AN458 for more details.

P89C60X2/61X2

Expanded Data RAM Addressing

The P89C60X2 has internal data memory that is mapped into four separate segments: the lower 128 bytes of RAM, upper 128 bytes of RAM, 128 bytes Special Function Register (SFR), and 256 bytes expanded RAM (ERAM) (768 bytes for the P89C61X2).

The four segments are:

- 1. The Lower 128 bytes of RAM (addresses 00H to 7FH) are directly and indirectly addressable.
- The Upper 128 bytes of RAM (addresses 80H to FFH) are indirectly addressable only.
- 3. The Special Function Registers, SFRs, (addresses 80H to FFH) are directly addressable only.
- The 256/768-bytes expanded RAM (ERAM, 00H 1FFH/2FFH) are indirectly accessed by move external instruction, MOVX, and with the EXTRAM bit cleared, see Figure 29.

The Lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128 bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy the same address space as the SFR. That means they have the same address, but are physically separate from SFR space.

When an instruction accesses an internal location above address 7FH, the CPU knows whether the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction. Instructions that use direct addressing access SFR space. For example:

MOV 0A0H,#data

accesses the SFR at location 0A0H (which is P2). Instructions that use indirect addressing access the Upper 128 bytes of data RAM.

For example:

MOV @R0,acc

where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H).

The ERAM can be accessed by indirect addressing, with EXTRAM bit cleared and MOVX instructions. This part of memory is physically located on-chip, logically occupies the first 256/768 bytes of external data memory in the P89C60X2/61X2.

With EXTRAM = 0, the ERAM is indirectly addressed, using the MOVX instruction in combination with any of the registers R0, R1 of the selected bank or DPTR. An access to ERAM will not affect ports P0, P3.6 (WR#) and P3.7 (RD#). P2 SFR is output during external addressing. For example, with EXTRAM = 0,

MOVX @R0,acc

where R0 contains 0A0H, accesses the ERAM at address 0A0H rather than external memory. An access to external data memory locations higher than the ERAM will be performed with the MOVX DPTR instructions in the same way as in the standard 80C51, so with P0 and P2 as data/address bus, and P3.6 and P3.7 as write and read timing signals. Refer to Figure 30.

With EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar to the standard 80C51. MOVX @ Ri will provide an 8-bit address multiplexed with data on Port 0 and any output port pins can be used to output higher order address bits. This is to provide the external paging capability. MOVX @DPTR will generate a 16-bit address. Port 2 outputs the high-order eight address bits (the contents of DPH) while Port 0 multiplexes the low-order eight address bits (DPL) with data. MOVX @Ri and MOVX @DPTR will generate either read or write signals on P3.6 (WR) and P3.7 (RD).

The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM) internal data memory. The stack may not be located in the ERAM.

AUXR	Addres	ss = 8EH								Reset Value = xxxx	xx00B
	Not Bit	ot Bit Addressable									
			_	_	_	_	_	EXTRAM	AO		
	Bit:	7	6	5	4	3	2	1	0		
Symbol	Fund	ction									
AO	Disa	ble/Enable	ALE								
	AO		Operating	Mode							
	0		ALE is emi in 6-clock r		onstant rate	of $^{1}/_{6}$ the o	scillator fre	quency (12-c	lock mod	le; ¹ / ₃ f _{OSC}	
	1		ALE is activ	ve only du	ring off-chip	memory ac	cess.				
EXTRAM	Inter	nal/Externa	RAM acces	ss using M	OVX @Ri/@	DPTR					
	EXT 0 1	RAM	Operating Internal ER External da	AM acces	s using MO / access.	VX @Ri/@I	OPTR				
	Not i	mplemente	d, reserved	or future u	se*.						
			served bits. The lue will be 1. Th					e new features. I	n that case,	the reset or inactive value	
											SU01613

Figure 29. AUXR: Auxiliary Register

DC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0 \degree C$ to +70 $\degree C$; $V_{CC} = 5 \lor \pm 10\%$; $V_{SS} = 0 \lor (20/33 \text{ MHz max. CPU clock})$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP ¹	MAX	
VIL	Input low voltage ¹¹	4.5 V < V _{CC} < 5.5 V	-0.5		0.2 V _{CC} -0.1	V
V _{IH}	Input high voltage (ports 0, 1, 2, 3, EA)	-	0.2 V _{CC} +0.9		V _{CC} +0.5	V
V _{IH1}	Input high voltage, XTAL1, RST ¹¹	-	0.7 V _{CC}		V _{CC} +0.5	V
V _{OL}	Output low voltage, ports 1, 2, 3 8	$V_{CC} = 4.5 \text{ V}; I_{OL} = 1.6 \text{ mA}^2$	-		0.4	V
V _{OL1}	Output low voltage, port 0, ALE, PSEN 7, 8	$V_{CC} = 4.5 \text{ V}; I_{OL} = 3.2 \text{ mA}^2$	-		0.45	V
V _{OH}	Output high voltage, ports 1, 2, 3 ³ $V_{CC} = 4.5 \text{ V}; \text{ I}_{OH} = -30 \mu\text{A} V_{CC} = 0.7 \cdot$		-	V		
V _{OH1}	Output high voltage (port 0 in external bus mode), ALE ⁹ , PSEN ³	high voltage (port 0 in external bus V_{CC} = 4.5 V; I_{OH} = -3.2 mA V_{CC} - 0.7 - ALE ⁹ , PSEN ³		V		
IIL	Logical 0 input current, ports 1, 2, 3	V _{IN} = 0.4 V	-1		-75	μA
I _{TL}	Logical 1-to-0 transition current, ports 1, 2, 3 ⁶	V _{IN} = 2.0 V; See note 4	-		-650	μA
ILI	Input leakage current, port 0	$0.45 < V_{IN} < V_{CC} - 0.3$	-		±10	μA
I _{CC}	Power supply current (see Figure 38):	See note 5				
	Active mode (see Note 5)					
	Idle mode (see Note 5)					
	Power-down mode or clock stopped	T _{amb} = 0 °C to 70 °C		<30	100	μA
	(see Figure 42 for conditions)					
	Programming and erase mode	f _{OSC} = 20MHz		60		mA
R _{RST}	Internal reset pull-down resistor	-	40		225	kΩ
CIO	Pin capacitance ¹⁰ (except EA)	-	-		15	pF

NOTES:

1. Typical ratings are not guaranteed. The values listed are at room temperature, 5 V.

2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V_{OL}s of ALE and ports 1 and 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I_{OL} can exceed these conditions provided that no single output sinks more than 5 mA and no more than two outputs exceed the test conditions.

 Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the V_{CC}-0.7 specification when the address bits are stabilizing.

 Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when V_{IN} is approximately 2 V.

 See Figures 39 through 42 for I_{CC} test conditions and Figure 38 for I_{CC} vs. Frequency. 12-clock mode characteristics:

Active mode: I_{CC} (MAX) = (8.5 + 0.62 × FREQ. [MHz])mA

Idle mode: I_{CC} (MAX) = (3.5 + 0.18 × FREQ. [MHz])mA

6. This value applies to $T_{amb} = 0^{\circ}C$ to +70°C. 7. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.

8. Under steady state (non-transient) conditions, IOL must be externally limited as follows:

- Maximum I_{OL} per port pin: 15 mÅ
 - Maximum I_{OL} per 8-bit port: 26 mA
 - Maximum total I_{OL} for all outputs: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

9. ALE is tested to V_{OH1}, except when ALE is off then V_{OH} is the voltage specification.

10. Pin capacitance is characterized but not tested. Pin capacitance is less than 25 pF. Pin capacitance of ceramic package is less than 15 pF (except EA is 25 pF).

11. To improve noise rejection a nominal 100 ns glitch rejection circuitry has been added to the RST pin, and a nominal 15 ns glitch rejection circuitry has been added to the INT0 and INT1 pins. Previous devices provided only an inherent 5 ns of glitch rejection.

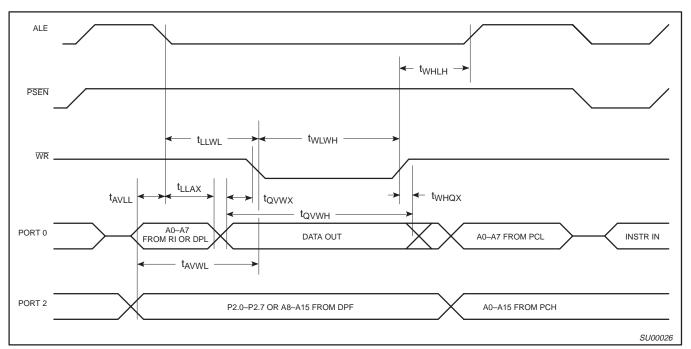


Figure 33. External Data Memory Write Cycle

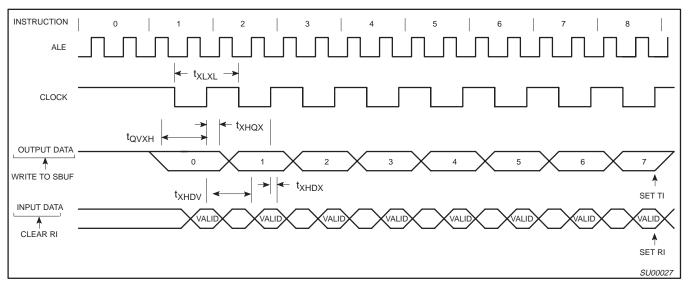


Figure 34. Shift Register Mode Timing

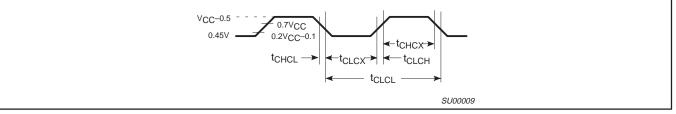


Figure 35. External Clock Drive

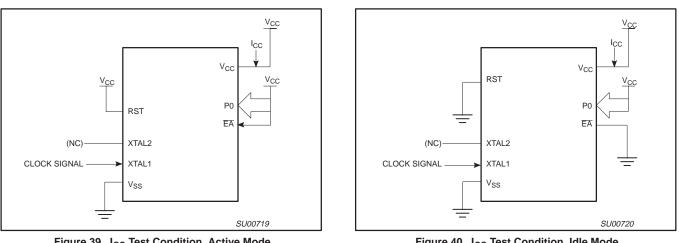
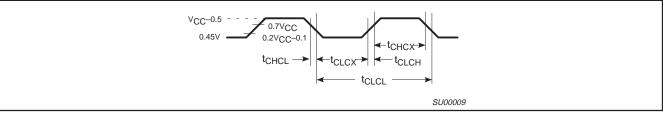
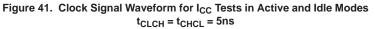
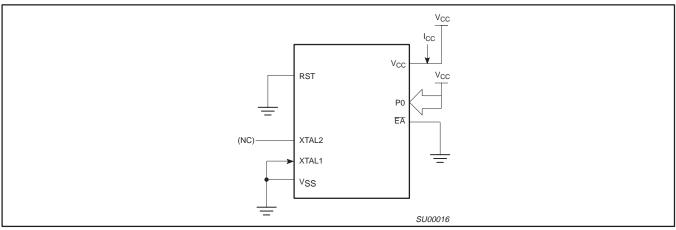
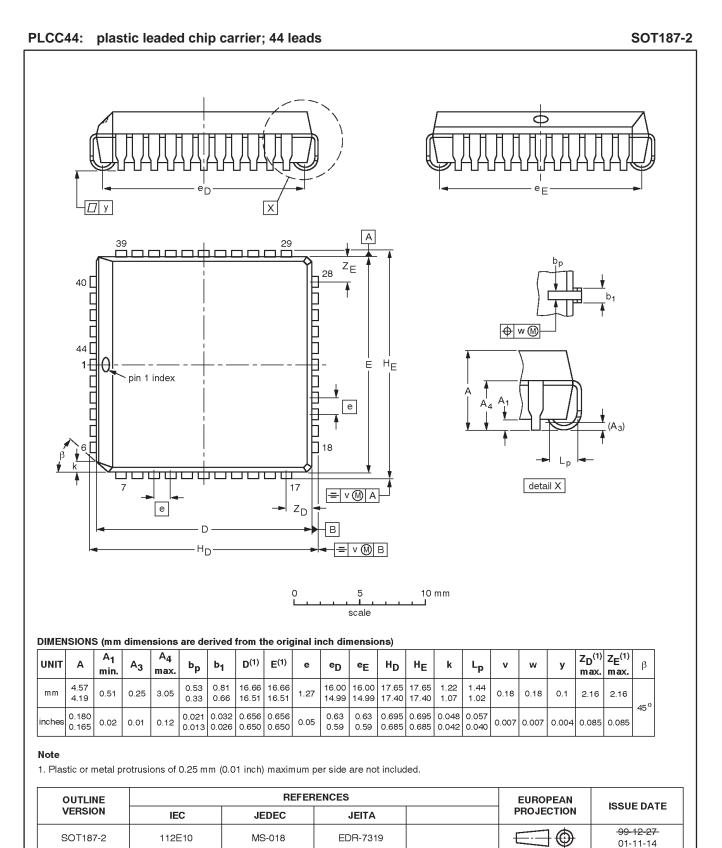
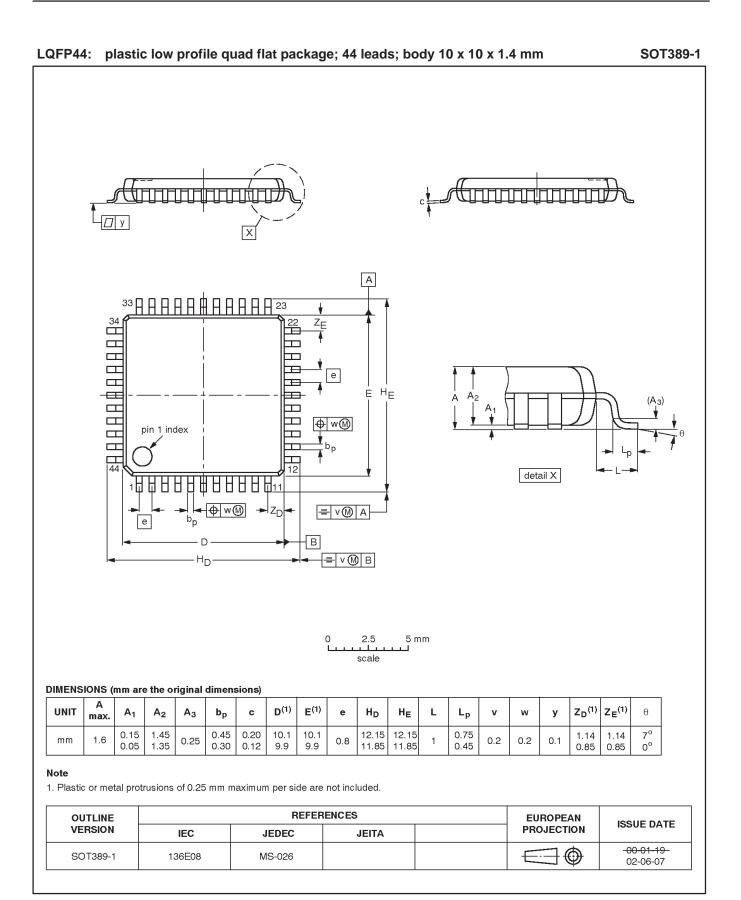




Figure 39. I_{CC} Test Condition, Active Mode All other pins are disconnected

Figure 40. I_{CC} Test Condition, Idle Mode All other pins are disconnected


Figure 42. I_{CC} Test Condition, Power Down Mode All other pins are disconnected. V_{CC} = 2 V to 5.5 V

P89C60X2/61X2

P89C60X2/61X2

2003 Sep 11

P89C60X2/61X2

REVISION HISTORY

Rev	Date	Description	
_2	20030911	Preliminary data (9397 750 11927); ECN 853-2400 30250 of 25 August 2003	
		Modifications:	
		 Added Watchdog Timer feature 	
		 Added DIP40 package 	
_1	20020723	Preliminary data (9397 750 10131)	

Data sheet status

Level	Data sheet status ^[1]	Product status ^{[2] [3]}	Definitions
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
11	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
111	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax:

Fax: +31 40 27 24825

Date of release: 09-03

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com

Document order number:

Pate of release: 09-03

9397 750 11927

Let's make things better.

© Koninklijke Philips Electronics N.V. 2003

All rights reserved. Printed in U.S.A.