

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-BQFP
Supplier Device Package	
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/w79e632a40fl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DEVICE	OPERATING	OPERATING	PACKAGE
DEVICE	FREQUENCY	VOLTAGE	LEAD FREE(ROHS)
	Up to 40.0MHz	5.0V ~ 5.5V	
W79E03ZA4UFL/FL	Up to 36.8MHz	4.5V ~ 5.5V	FLUU44, QFF44
	Up to 20.0MHz	3.3V ~ 5.5V	
VV/9LOJZAZJPL/FL	Up to 12.0MHz	3.0V ~ 5.5V	FLUU44, QFP44

3. PIN CONFIGURATIONS

6. MEMORY ORGANIZATION

The W79E(L)632 separates the memory into two separate sections, the Program Memory and the Data Memory. The Program Memory is used to store the instruction op-codes, while the Data Memory is used to store data or for memory mapped devices.

Program Memory

The Program Memory on the standard 8052 can only be addressed to 64 Kbytes long. By invoking the banking methodology, W79E(L)632 can extend to two 64KB flash EPROM banks, APFlash0 and APFlash1. There are on-chip ROM banks which can be used similarly to that of the 8052. All instructions are fetched for execution from this memory area. The MOVC instruction can also access this memory region. There is an auxiliary 4KB Flash EPROM bank (LDFlash) resided user loader program for In-System Programming (ISP). Both APFlashs allow serial or parallel download according to user loader program in LDFlash.

Data Memory

The W79E(L)632 can access up to 64Kbytes of external Data Memory. This memory region is accessed by the MOVX instructions. Unlike the 8051 derivatives, the W79E(L)632 contains on-chip 1K bytes MOVX SRAM of Data Memory, which can only be accessed by MOVX instructions. These 1K bytes of SRAM are between address 0000H and 03FFH. Access to the on-chip MOVX SRAM is optional under software control. When enabled by software, any MOVX instruction that uses this area will go to the on-chip RAM. MOVX addresses greater than 03FFH automatically go to external memory through Port 0 and 2. When disabled, the 1KB memory area is transparent to the system memory map. Any MOVX directed to the space between 0000H and FFFFH goes to the expanded bus on Port 0 and 2. This is the default condition. In addition, the W79E(L)632 has the standard 256 bytes of on-chip Scratchpad RAM. This can be accessed either by direct addressing or by indirect addressing. There are also some Special Function Registers (SFRs), which can only be accessed by direct addressing. Since the Scratchpad RAM is only 256 bytes, it can be used only when data contents are small. In the event that larger data contents are present, two selections can be used. One is on-chip MOVX SRAM, the other is the external Data Memory. The on-chip MOVX SRAM can only be accessed by a MOVX instruction, the same as that for external Data Memory. However, the on-chip RAM has the fastest access times.

Publication Release Date: Nov. 11, 2009 Revision A10

- 7 -

MD2–0: Stretch MOVX select bits: These three bits are used to select the stretch value for the MOVX instruction. Using a variable MOVX length enables the user to access slower external memory devices or peripherals without the need for external circuits. The RD or WR strobe will be stretched by the selected interval. When accessing the on-chip SRAM, the MOVX instruction is always in 2 machine cycles regardless of the stretch setting. By default, the stretch has value of 1. If the user needs faster accessing, then a stretch value of 0 should be selected.

MD2	MD1	MD0	Streto	h value	MOVX d	uration			
0	0	0		0	2 machin	e cycles			
0	0	1		1	3 machin	e cycles (Default)		
0	1	0		2	4 machin	e cycles			
0	1	1		3	5 machin	e cycles			
1	0	0		4	6 machin	e cycles			
1	0	1		5	7 machin	e cycles			
1	1	0		6	8 machin	e cycles			
1	1	1		7	9 machin	e cycles			
В	it:	7	6	5	4	3	2	1	0
		P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
Mnen	nonic:	P1				A	ddress: 9	0h	1

- P1.7–0: General purpose I/O port. Most instructions will read the port pins in case of a port read access, however in case of read-modify-write instructions, the port latch is read. Some pins also have alternate input or output functions. This alternate functions are described below:
 - P1.0 : T2 External I/O for Timer/Counter 2
 - P1.1 : T2EX Timer/Counter 2 Capture/Reload Trigger

Port 4 Control Register A

Port 1

- 13 -

Software Reset

Set CHPCON = 0X83, timer and enter IDLE mode. CPU will reset and restart from APFlash after time out.

Port 2

EA: ET2: ES: ET1: EX1: ET0: EX0:

Bit:	7	6	5	4	3	2	1	0	
	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	
					10 A	ddroco. A	0L		

Mnemonic: P2

Address: A0h

P2.7-0: Port 2 is a bi-directional I/O port with internal pull-ups. This port also provides the upper address bits for accesses to external memory.

Port 4 Chip-select Polarity

	Bit:	7	6	5	4	3	2	0.15	0
		P43INV	P42INV	P42INV	P40INV	-	-	Sil	POUP
Mr	nemonic	: P4CSIN				A	ddress: A	2h	200
P4xINV: The active Low.	e polarity	of P4.x v	vhen set	it as chip-	select sig	nal. High	= Active	High. Lov	v = Active
P0UP: Enable Port	0 weak	pull up.							
Port 4									
	Bit:	7	6	5	4	3	2	1	0
		-	-	-	-	P4.3	P4.2	P4.1	P4.0
Mi	nemonic	: P4				A	ddress: A	5h	
P4.3-0: Port 4 is a instruction (a bi-dire (SETB o	ctional I/C r CLR).) port wit	th interna	l pull-ups.	Port 4 (can not u	ise bit-ad	dressable
Interrupt Enable									
	Bit:	7	6	5	4	3	2	1	0

	EA	ES1	ET2	ES	ET1	EX1	ET0	EX0
Mnemonic	:: IE				A	ddress: A	8h	
Global enable. Ena	ble/disable	e all interr	upts.					
Enable Timer 2 inte	errupt.							
Enable Serial Port () interrupt							
Enable Timer 1 inte	errupt							
Enable external inte	errupt 1							
Enable Timer 0 inte	errupt							
Enable external inte	errupt 0							

- 17 -

nuvoTon

	Bit:	7	6	5	4	3	2	1	0
				1	50				
	Mnemonic	: SADDR					Address: A	\9h	
ADDR: The whicl	SADDR sho h the slave pr	uld be pro ocessor is	ogrammed designate	to the g ed.	iven or	broadcas	t address	for serial	port 0
OM Banking	Control								
	Bit:	7	6	5	4	3	2 /	1	0
							DODIO	1 -12	DOD4
		-	-	-	-	EN128K	DCP12	DCP11	DCP10
M N128K: On-o me OCP1x: A16 se	Inemonic: RC chip ROM ba chanism. The election. By d	- DMCON anking ena P1.x is se lefault, P1.	- able. Set elected to 7 is define	- this bit t be the au ed as A16	- o enable xiliary hig	APFlash ghest add	Addres	DCP11 ss: ABh PFlash1 b A16.	y bankir
M N128K: On-o me OCP1x: A16 so A16	Inemonic: RC chip ROM ba chanism. The election. By d P1.0	- DMCON anking ena P1.x is se lefault, P1.	- able. Set elected to 7 is define P1.2	- this bit t be the au ed as A16 P1.3	- o enable xiliary hig P1	APFlash ghest add	Addres Addres 0 and AF ress line A	DCP11 ss: ABh PFlash1 b A16. P1.6	public point
M N128K: On-o me OCP1x: A16 so A16 DCP12	Inemonic: RC chip ROM ba chanism. The election. By d P1.0 0	- DMCON anking ena e P1.x is se lefault, P1. P1.1 0	- able. Set elected to 7 is define P1.2 0	- this bit t be the au ed as A16 P1.3 0	c enable xiliary hig	APFlash ghest add	Addres Addres 0 and AF ress line A P1.5	DCP11 ss: ABh PFlash1 b A16. P 1.6	DCP10 by bankir P1.7 1
M N128K: On-o me DCP1x: A16 so A16 DCP12 DCP11	Inemonic: RC chip ROM ba chanism. The election. By d P1.0 0 0	- DMCON anking ena e P1.x is se lefault, P1. P1.1 0 0	- able. Set elected to 7 is define P1.2 0 1	- this bit t be the au ed as A16 P1.3 0 1	- xiliary hig P1	APFlash ghest add	Addres Addres a0 and AF ress line A P1.5 1 0	DCP11 ss: ABh PFlash1 b A16. P1.6 1	DCP10 by bankir P1.7 1 1
M N128K: On-o me DCP1x: A16 so A16 DCP12 DCP12 DCP11 DCP10	Inemonic: RC chip ROM ba chanism. The election. By d P1.0 0 0 0	- DMCON anking ena e P1.x is se lefault, P1. P1.1 0 0 1	- able. Set elected to 7 is define P1.2 0 1 0	- this bit t be the au ed as A16 P1.3 0 1	- xiliary hig P1	APFlash ghest add	Addres Addres 0 and AF ress line A 71.5 1 0 1	DCP11 ss: ABh PFlash1 b A16. P 1.6 1 1 0	DCP10 by bankin P1.7 1 1 1
M N128K: On-o me OCP1x: A16 so A16 DCP12 DCP12 DCP11 DCP10 SP Address I	Inemonic: RC chip ROM ba chanism. The election. By d P1.0 0 0 0 - 0 Byte	- DMCON anking ena P1.x is se lefault, P1. P1.1 0 0 1	- able. Set elected to 7 is define P1.2 0 1 0	- this bit t be the au ed as A16 P1.3 0 1 1	- xiliary hig P1	APFlash ghest add I.4 F	Addres Addres 0 and AF ress line A P1.5 1 0 1	DCP11 ss: ABh PFlash1 b A16. P1.6 1 1 0	DCP10 y bankir P1.7 1 1 1
M N128K: On-c me DCP1x: A16 so A16 DCP12 DCP12 DCP11 DCP10 SP Address I	Inemonic: RC chip ROM ba chanism. The election. By d P1.0 0 0 0 0 -ow Byte Bit:	- DMCON anking ena e P1.x is se lefault, P1. P1.1 0 0 1	- able. Set elected to 7 is define P1.2 0 1 0 6	- this bit t be the au ed as A16 P1.3 0 1 1	- xiliary hig P1 (((APFlash ghest add I.4 F 1))) 3	Addres Addres a0 and AF ress line A P1.5 1 0 1	DCP11 ss: ABh PFlash1 b A16. P 1.6 1 1 0	DCP10 y bankir P1.7 1 1 1 0
M N128K: On-o me OCP1x: A16 so A16 DCP12 DCP12 DCP11 DCP10 SP Address I	Inemonic: RC chip ROM ba chanism. The election. By d P1.0 0 0 0 0 -ow Byte Bit:	- DMCON anking ena e P1.x is se lefault, P1. P1.1 0 0 1 7 7 A7	- able. Set elected to 7 is define P1.2 0 1 0 6 A6	- this bit t be the au ed as A16 P1.3 0 1 1 1 5 A5	- c enable xiliary hig P1 () () () () () () () () () () () () ()	APFlash ghest add	Addres Addres and AF ress line A 2 1 1 2 2 A2	DCP11 ss: ABh PFlash1 b A16. P1.6 1 0 1 A1 A1	DCP10 y bankir P1.7 1 1 1 0 A0

ISP Address High Byte

Bit:	7	6	5	4	3	2	1	0
	A15	A14	A13	A12	A11	A10	A9	A8

Mnemonic: SFRAH

Address: ADh

High byte destination address for In System Programming operation. SFRAH and SFRAL address a specific ROM byte for erasure, programming or read. Sol of the second

nuvoTon

	P3.3 P3.2 P3.1 P3.0	INT1 INT(TxD RxD	Exte Exte Seri Seri	ernal interr ernal interr al port 0 o al port 0 ir	rupt 1 rupt 0 rutput nput						
Interru	pt Priority										
	В	it:	7	6	5	4	3	2	1	0	
			-	-	PT2	PS	PT1	PX1	PT0	PX0	
	Mnen	nonic: I	P				NG A	Address: B	8h		-
IP.7:	This bit is un-i	mplem	ented a	nd will rea	d high.						
PT2:	This bit define	s the T	imer 2 i	nterrupt pi	riority. PT2	2 = 1 sets	it to high	er priority	level.		
PS:	This bit define	s the S	erial po	rt 0 interru	pt priority	. PS = 1 s	ets it to h	igher prior	ity level.		
PT1:	This bit define	s the T	imer 1 i	nterrupt pi	riority. PT	1 = 1 sets	it to high	er priority	level.		
PX1:	This bit define	s the E	xternal	interrupt 1	priority. F	PX1 = 1 se	ets it to high	gher priori	ty level.		
PT0:	This bit define	s the T	imer 0 i	nterrupt pi	riority. PT) = 1 sets	it to high	er priority	level.		
PX0:	This bit define	s the E	xternal	interrupt 0	priority. F	PX0 = 1 se	ets it to high	gher priori	ty level.		
Slave	Address Mask	Enable	•								
	В	it:	7	6	5	4	3	2	1	0	5
	Mnen	nonic: S	SADEN				A	Address: B	9h		

SADEN: This register enables the Automatic Address Recognition feature of the Serial port 0. When a bit in the SADEN is set to 1, the same bit location in SADDR will be compared with the incoming serial data. When SADEN.n is 0, then the bit becomes a "don't care" in the comparison. This register enables the Automatic Address Recognition feature of the Serial port 0. When all the bits of SADEN are 0, interrupt will occur for any incoming address.

ALEOFF: This bit disables the expression of the ALE signal on the device pin during all on-board program and data memory accesses. External memory accesses will automatically enable ALE independent of ALEOFF.

0 = ALE expression is enable; 1 = ALE expression is disable

DME0: This bit determines the on-chip MOVX SRAM to be enabled or disabled. Set this bit to 1 will enable the on-chip 1KB MOVX SRAM.

Timer 2 LSB

CY: Carry flag: Set for an arithmetic operation which results in a carry being generated from the ALU. It is also used as the accumulator for the bit operations.

AC: Auxiliary carry: Set when the previous operation resulted in a carry from the high order nibble.

F0: User flag 0: General purpose flag that can be set or cleared by the user.

RS.1-0: Register bank select bits:

RS1	RS0	Register bank	Address
0	0	0	00-07h
0	1	1	08-0Fh
1	0	2	10-17h
1	1	3	18-1Fh

OV: Overflow flag: Set when a carry was generated from the seventh bit but not from the 8th bit as a result of the previous operation, or vice-versa.

F1: User Flag 1: General purpose flag that can be set or cleared by the user by software.

P: Parity flag: Set/cleared by hardware to indicate odd/even number of 1's in the accumulator.

Watchdog Control

Bit:	7	6	5	4	3	2	1	0
2	-	POR	-	-	WDIF	WTRF	EWT	RWT

Mnemonic: WDCON

Address: D8h

POR: Power-on reset flag. Hardware will set this flag on a power up condition. This flag can be read or written by software. A write by software is the only way to clear this bit once it is set.

WDIF: Watchdog Timer Interrupt Flag. If the watchdog interrupt is enabled, hardware will set this bit to indicate that the watchdog interrupt has occurred. If the interrupt is not enabled, then this bit indicates that the time-out period has elapsed. This bit must be cleared by software.

Reset State

Most of the SFRs and registers on the device will go to the same condition in the reset state. The Program Counter is forced to 0000h and is held there as long as the reset condition is applied. However, the reset state does not affect the on-chip RAM. The data in the RAM will be preserved during the reset. However, the stack pointer is reset to 07h, and therefore the stack contents will be lost. The RAM contents will be lost if the V_{DD} falls below approximately 2V, as this is the minimum voltage level required for the RAM to operate normally. Therefore after a first time power on reset the RAM contents will be indeterminate. During a power fail condition, if the power falls below 2V, the RAM contents are lost.

After a reset most SFRs are cleared. Interrupts and Timers are disabled. The Watchdog timer is disabled if the reset source was a POR. The port SFRs have FFh written into them which puts the port pins in a high state. Port 0 floats as it does not have on-chip pull-ups.

SFR NAME	RESET VALUE	SFR NAME	RESET VALUE
P0	1111111b	IE	0000000b
SP	00000111b	SADDR	0000000b
DPL	0000000b	P3	11111111b
DPH	0000000b	IP	x000000b
PMR	010xx0x0b	SADEN	0000000b
STATUS	000x0000b	T2CON	0000000b
PC	0000000b	T2MOD	00000x00b
PCON	00xx0000b	RCAP2L	0000000b
TCON	0000000b	RCAP2H	0000000b
TMOD	0000000b	TL2	0000000b
TL0	0000000b	TH2	0000000b
TL1	0000000b	TA	11111111b
TH0	0000000b	PSW	0000000b
TH1	0000000b	WDCON	0x0x0xx0b
CKCON	0000001b	ACC	0000000b
P1	1111111b	EIE	xxx00000b
P4CONA	0000000b	P4CONB	0000000b
P40AL	0000000b	P40AH	0000000b
P41AL	0000000b	P41AH	0000000b
P42AL	0000000b	P42AH	0000000b
P43AI	0000000b	P43AH	0000000b
CHPCON	0000000b	P4CSIN	0000000b
ROMCON	00000111b	SFRAL	0000000b
SFRAH	0000000b	SFRFD	0000000b
CHPCON ROMCON SFRAH	00000000b 00000111b 00000000b	P4CSIN SFRAL SFRFD	000000

Table 6. SFR Reset Value

Priority Level Structure

There are three priority levels for the interrupts, highest, high and low. The interrupt sources can be individually set to either high or low levels. Naturally, a higher priority interrupt cannot be interrupted by a lower priority interrupt. However there exists a pre-defined hierarchy amongst the interrupts themselves. This hierarchy comes into play when the interrupt controller has to resolve simultaneous requests having the same priority level. This hierarchy is defined as shown below; the interrupts are numbered starting from the highest priority to the lowest.

SOURCE	FLAG	VECTOR ADDRESS	PRIORITY LEVEL
External Interrupt 0	IE0	0003h	1(highest)
Timer 0 Overflow	TF0	000Bh	2
External Interrupt 1	IE1	0013h	3
Timer 1 Overflow	TF1	001Bh	324 On
Serial Port	RI + TI	0023h	5
Timer 2 Overflow	TF2 + EXF2	002Bh	6
Watchdog Timer	WDIF	0063h	7 (lowest)

Table 7. Priority structure of interrupts

Publication Release Date: Nov. 11, 2009 Revision A10

nuvoTon

time-base may be either clock cycles/12 or clock cycles/4 as selected by the bits TxM of the CKCON SFR.

Mode 1

Mode 1 is similar to Mode 0 except that the counting register forms a 16 bit counter, rather than a 13 bit counter. This means that all the bits of THx and TLx are used. Roll-over occurs when the timer moves from a count of FFFFh to 0000h. The timer overflow flag TFx of the relevant timer is set and if enabled an interrupt will occur. The selection of the time-base in the timer mode is similar to that in Mode 0. The gate function operates similarly to that in Mode 0.

Mode 2

In Mode 2, the timer/counter is in the Auto Reload Mode. In this mode, TLx acts as a 8 bit count register, while THx holds the reload value. When the TLx register overflows from FFh to 00h, the TFx bit in TCON is set and TLx is reloaded with the contents of THx, and the counting process continues from here. The reload operation leaves the contents of the THx register unchanged. Counting is enabled by the TRx bit and proper setting of GATE and INTx pins. As in the other two modes 0 and 1 mode 2 allows counting of either clock cycles (clock/12 or clock/4) or pulses on pin Tn.

Publication Release Date: Nov. 11, 2009 Revision A10

nuvoTon

Figure 14. 16-Bit Capture Mode

Auto-reload Mode, Counting up

The auto-reload mode as an up counter is enabled by clearing the CP / $\overline{RL2}$ bit in the T2CON register and clearing the DCEN bit in T2MOD register. In this mode, Timer/Counter 2 is a 16 bit up counter. When the counter rolls over from FFFFh, a reload is generated that causes the contents of the RCAP2L and RCAP2H registers to be reloaded into the TL2 and TH2 registers. The reload action also sets the TF2 bit. If the EXEN2 bit is set, then a negative transition of T2EX pin will also cause a reload. This action also sets the EXF2 bit in T2CON.

Figure 15. 16-Bit Auto-reload Mode, Counting Up

Auto-reload Mode, Counting Up/Down

Timer/Counter 2 will be in auto-reload mode as an up/down counter if CP / RL2 bit in T2CON is cleared and the DCEN bit in T2MOD is set. In this mode, Timer/Counter 2 is an up/down counter whose direction is controlled by the T2EX pin. A 1 on this pin cause the counter to count up. An overflow while counting up will cause the counter to be reloaded with the contents of the capture registers. The next down count following the case where the contents of Timer/Counter equal the capture registers will load an FFFFh into Timer/Counter 2. In either event a reload will set the TF2 bit. A reload will also toggle the EXF2 bit. However, the EXF2 bit can not generate an interrupt while in this mode.

Figure 16. 16-Bit Auto-reload Up/Down Counter

nuvoton

The Watchdog timer should first be restarted by using RWT. This ensures that the timer starts from a known state. The RWT bit is used to restart the watchdog timer. This bit is self clearing, i.e. after writing a 1 to this bit the software will automatically clear it. The watchdog timer will now count clock cycles. The time-out interval is selected by the two bits WD1 and WD0 (CKCON.7 and CKCON.6). When the selected time-out occurs, the Watchdog interrupt flag WDIF (WDCON.3) is set. After the time-out has occurred, the watchdog timer waits for an additional 512 clock cycles. If the Watchdog Reset EWT (WDCON.1) is enabled, then 512 clocks after the time-out, if there is no RWT, a system reset due to Watchdog timer will occur. This will last for two machine cycles, and the Watchdog timer reset flag WTRF (WDCON.2) will be set. This indicates to the software that the watchdog was the cause of the reset.

When used as a simple timer, the reset and interrupt functions are disabled. The timer will set the WDIF flag each time the timer completes the selected time interval. The WDIF flag is polled to detect a timeout and the RWT allows software to restart the timer. The Watchdog timer can also be used as a very long timer. The interrupt feature is enabled in this case. Every time the time-out occurs an interrupt will occur if the global interrupt enable EA is set.

The main use of the Watchdog timer is as a system monitor. This is important in real-time control applications. In case of some power glitches or electro-magnetic interference, the processor may begin to execute errant code. If this is left unchecked the entire system may crash. Using the watchdog timer interrupt during software development will allow the user to select ideal watchdog reset locations. The code is first written without the watchdog interrupt or reset. Then the watchdog interrupt is enabled to identify code locations where interrupt occurs. The user can now insert instructions to reset the watchdog timer which will allow the code to run without any watchdog timer interrupts. Now the watchdog timer reset is enabled and the watchdog interrupt may be disabled. If any errant code is executed now, then the reset watchdog timer instructions will not be executed at the required instants and watchdog reset will occur.

The watchdog time-out selection will result in different time-out values depending on the clock speed. The reset, when enabled, will occur 512 clocks after the time-out has occurred.

WD1	WD0	WATCHDOG INTERVAL	NUMBER OF CLOCKS	Time @ 1.8432 MHz	Time @ 10 MHz	Time @ 25 MHz
0	0	2 ¹⁷	131072	71.11 mS	13.11 mS	5.24 mS
0	1	2 ²⁰	1048576	568.89 mS	104.86 mS	41.94 mS
1	0	2 ²³	8388608	4551.11 mS	838.86 mS	335.54 mS
13	1	2 ²⁶	67108864	36408.88 mS	6710.89 mS	2684.35 mS

Table 9. Time-out values for the watchdod time	Table 9	. Time-out	values fo	or the	Watchdog	timer
--	---------	------------	-----------	--------	----------	-------

The Watchdog timer will de disabled by a power-on/fail reset. The Watchdog timer reset does not disable the watchdog timer, but will restart it. In general, software should restart the timer to put it into a known state.

ADE -The control bits that support the Watchdog timer are discussed below.

- 49 -

- 1. RI must be 0 and
- 2. Either SM2 = 0, or the received stop bit = 1.

If these conditions are met, then the stop bit goes to RB8, the 8 data bits go into SBUF and RI is set. Otherwise the received frame may be lost. After the middle of the stop bit, the receiver goes back to looking for a 1-to-0 transition on the RxD pin.

Mode 3

This mode is similar to Mode 2 in all respects, except that the baud rate is programmable. The user must first initialize the Serial related SFR SCON before any communication can take place. This involves selection of the Mode and baud rate. The Timer 1 should also be initialized if modes 1 and 3 are used. In all four modes, transmission is started by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI = 0 and REN = 1. This will generate a clock on the TxD pin and shift in 8 bits on the RxD pin. Reception is initiated in the other modes by the incoming start bit if REN = 1. The external device will start the communication by transmitting the start bit.

Figure 23. Serial Port Mode 3

Table 10. Serial Ports Modes

SM1	SMO	MODE	TYPE	BAUD CLOCK	FRAME SIZE	START BIT	STOP BIT	9TH BIT FUNCTION
0	0	0	Synch.	4 or 12 TCLKS	8 bits	No	No	None
0	1	2.1%	Asynch.	Timer 1 or 2	10 bits	1	1	None
1	0	2	Asynch.	32 or 64 TCLKS	11 bits	1	1	0, 1
1	1	3	Asynch.	Timer 1 or 2	11 bits	1	1	0, 1

DC Characteristics, continued

DADAMETED	SYM			TEST CONDITIONS	
PARAMETER	5111.	MIN.	MAX.	UNIT	TEST CONDITIONS
Input High Voltage	Musa	2.4	VDD +0.2	V	VDD = 5.5V
P0, P1, P2, P3, EA	VIH1	1.8	VDD +0.2	V	VDD = 3.3V
Input High Voltage DST	Villio	3.5	VDD +0.2	V	VDD = 5.5V
Input high voltage KST	VIH2	2.0	Vdd +0.2	V	VDD = 3.3V
Input High Voltage	Villo	3.5	Vdd +0.2	V	VDD = 5.5V
XTAL1 ^[*3]	VIH3	2.0	Vdd +0.2	V	VDD = 3.3V
Sink current	Iol-1	4	8	mA	VDD = 4.5V, VOL = 0.45
P1, P3	ISKI	3.2	7	mA	VDD = 3.3V, VOL = 0.4
Sink current	L-1-0	10	14	mA	VDD=4.5V , $VOL=0.45V$
P0,P2, ALE, PSEN	ISK2	6.5	9.5	mA	VDD = 3.3V, VOL=0.4
Source current	Ten1	-180	-330	uA	VDD = 4.5V, VOL = 2.4V
P1, P2 (I/O), P3	ISTI	-100	-220	uA	VDD = 3.3V, VOL = 1.4V
Source current		-10	-14	mA	VDD = 4.5V, VOL = 2.4V
P0,P2 (address), ALE, PSEN	Isr2	-6	-9	mA	VDD = 3.3V, VOL = 1.4V
Output Low Voltage	Void	-	0.45	V	VDD = 4.5V, IOL = +6 mA
P1, P2 (I/O), P3	VOLI	-	0.4	V	VDD = 3.3V, IOL = +3.8 mA
Output Low Voltage		-	0.45	V	VDD = 4.5V, IOL = +10 mA
P0, P2(address), ALE, PSEN ^[*2]	VOL2	-	0.4	V	VDD = 3.3V, IOL = +6.5 mA
Output High Voltage		2.4	-	V	$V\text{DD}=4.5\text{V},\text{IOH}=-180\mu\text{A}$
P1, P3	VUIT	1.4	-	V	VDD = 3.3V, IOL = -100 uA
Output High Voltage	Voua	2.4	-	V	VDD = 4.5V, IOH = -10mA
P0, P2, ALE, PSEN ^[*2]	V UHZ	1.4	-	V	VDD = 3.3V, IOL = -6 mA

Notes:

*1. RST pin is a Schmitt trigger input.

*2. P0, ALE and PSEN are tested in the external access mode.

*3. XTAL1 is a CMOS input.

*4. Pins of P1, P2, P3 can source a transition current when they are being externally driven from 1 to 0. The transition is mc current reaches its maximum value when VIN approximates to 2V.

- 65 -

17.3 A.C. Characteristics

Note: Duty cycle is 50%.

External Clock Characteristics

 $(T_A = 25^{\circ}C, V_{DD} = 5.0V.)$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	NOTES
Clock High Time	t _{CHCX}	12	-	-	nS	6
Clock Low Time	t _{CLCX}	12	-	-	nS	200
Clock Rise Time	t _{CLCH}	-	-	10	nS	12 1
Clock Fall Time	t _{CHCL}	-	-	10	nS	202

17.3.1 A.C. Specification

 $(T_A = 25^{\circ}C, V_{DD} = 5.0V.)$

	PARAMETER	SYMBOL	VARIABLE CLOCK MIN.	VARIABLE CLOCK MAX.	UNITS
	Oscillator Frequency	1/t _{CLCL}	0	40	MHz
	ALE Pulse Width	t _{LHLL}	1.5t _{CLCL} - 5		nS
	Address Valid to ALE Low	t _{AVLL}	0.5t _{CLCL} - 5		nS
	Address Hold After ALE Low	t _{LLAX1}	0.5t _{CLCL} - 5		nS
	Address Hold After ALE Low for MOVX Write	t _{LLAX2}	0.5t _{CLCL} - 5		nS
Str.	ALE Low to Valid Instruction In	t _{LLIV}		2.5t _{CLCL} - 20	nS
25	ALE Low to PSEN Low	t _{LLPL}	0.5t _{CLCL} - 5		nS
an 1	PSEN Pulse Width	t _{PLPH}	2.0t _{CLCL} - 5		nS
	PSEN Low to Valid Instruction In	t _{PLIV}		2.0t _{CLCL} - 20	nS
S	Input Instruction Hold After PSEN	t _{PXIX}	0		nS
1	Input Instruction Float After PSEN	t _{PXIZ}		t _{CLCL} - 5	nS
	Port 0 Address to Valid Instr. In	t _{AVIV1}		3.0t _{CLCL} - 20	nS
	Port 2 Address to Valid Instr. In	t _{AVIV2}		3.5t _{CLCL} - 20	nS
	PSEN Low to Address Float	t _{PLAZ}	0		nS
	Data Hold After Read	t _{RHDX}	0		nS
	Data Float After Read	t _{RHDZ}		t _{CLCL} - 5	nS
	RD Low to Address Float	t _{RLAZ}		0.5t _{CLCL} - 5	nS

17.3.2 Operating Frequency vs Voltage

DEVICE	OPERATING FREQUENCY	OPERATING VOLTAGE	
	Up to 40.0MHz	5.0V ~ 5.5V	
W79E03ZA4UPL	Up to 36.8MHz	4.5V ~ 5.5V	
	Up to 20.0MHz	3.3V ~ 5.5V	
WI9L03ZAZSPL	Up to 12.0MHz	3.0V ~ 5.5V	

17.3.3 MOVX Characteristics Using Strech Memory Cycle

PARAMETER	SYMBOL	VARIABLE CLOCK MIN.	VARIABLE CLOCK MAX.	UNITS	STRECH
Data Access ALE Pulse Width	t _{LLHL2}	1.5t _{CLCL} - 5 2.0t _{CLCL} - 5		nS	$t_{MCS} = 0$ $t_{MCS} > 0$
Address Hold After ALE Low for MOVX write	t _{LLAX2}	0.5t _{CLCL} - 5		nS	Non (
RD Pulse Width	t _{RLRH}	2.0t _{CLCL} - 5 t _{MCS} - 10		nS	$t_{MCS} = 0$ $t_{MCS} > 0$
WR Pulse Width	t _{wLWH}	2.0t _{CLCL} - 5 t _{MCS} - 10		nS	$t_{MCS} = 0$ $t_{MCS} > 0$
RD Low to Valid Data In	t _{RLDV}		2.0t _{CLCL} - 20 t _{MCS} - 20	nS	$t_{MCS} = 0$ $t_{MCS} > 0$
Data Hold after Read	t _{RHDX}	0		nS	
Data Float after Read	t _{RHDZ}		t _{CLCL} - 5 2.0t _{CLCL} - 5	nS	$t_{MCS} = 0$ $t_{MCS} > 0$
ALE Low to Valid Data In	t _{LLDV}		2.5t _{CLCL} - 5 t _{MCS} + 2t _{CLCL} - 40	nS	$t_{MCS} = 0$ $t_{MCS} > 0$
Port 0 Address to Valid Data In	t _{AVDV1}		3.0t _{CLCL} - 20 2.0t _{CLCL} - 5	nS	$t_{MCS} = 0$ $t_{MCS} > 0$
ALE Low to RD or WR Low	t _{LLWL}	0.5t _{CLCL} - 5 1.5t _{CLCL} - 5	0.5t _{CLCL} + 5 1.5t _{CLCL} + 5	nS	$t_{MCS} = 0$ $t_{MCS} > 0$
Port 0 Address to RD or WR Low	t _{AVWL}	t _{CLCL} - 5 2.0t _{CLCL} - 5		nS	$t_{MCS} = 0$ $t_{MCS} > 0$
Port 2 Address to \overline{RD} or \overline{WR} Low	t _{AVWL2}	1.5t _{CLCL} - 5 2.5t _{CLCL} - 5		nS	$t_{MCS} = 0$ $t_{MCS} > 0$
Data Valid to WR Transition	t _{QVWX}	-5 1.0t _{CLCL} - 5		nS	$t_{MCS} = 0$ $t_{MCS} > 0$
Data Hold after Write	twнqx	t _{CLCL} - 5		nS	$t_{MCS} = 0$

- 67 -

18. TYPICAL APPLICATION CIRCUITS

Expanded External Program Memory and Crystal

Figure A	١
----------	---

CRYSTAL	C1	C2	R
16 MHz	20P	20P	
24 MHz	12P	12P	-
33 MHz	10P	10P	3.3K
40 MHz	1P	1P	3.3K

The above table shows the reference values for crystal applications.

Note: C1, C2, R components refer to Figure A.

Expanded External Data Memory and Oscillator

- 71 -

nuvoTon

INC DPTR CJNE A, SFRFD, ERROR_64K CJNE R2,#0H,READ_VERIFY_64K INC R1 MOV SFRAH,R1 CJNE R1,#0H,READ_VERIFY_64K

* PROGRAMMING COMPLETLY, SOFTWARE RESET CPU

MOV TA,#AAH MOV TA,#55H

MOV CHPCON,#83H ; SOFTWARE RESET. CPU will restart from APFlash0

ERROR_64K:

DJNZ R4,UPDATE_64K ; IF ERROR OCCURS, REPEAT 3 TIMES. ; IN-SYST PROGRAMMING FAIL, USER'S PROCESS TO DEAL WITH IT.

21. REVISION HISTORY

VERSION	DATE	PAGE	DESCRIPTION
A1	July 8, 2003	-	Initial Issued
A2	Apr 28, 2005	2	Add Lead Free package.
A 2	Aug 16, 2005	2, 4, 10	Add Port 0 pull-up resisters information
AS	Aug 16, 2005	59	Remove encrypt function of Security bits B2 description
		-	Add wide voltage device (W79L632)
		3	Add device list.
A4 November 6, 2006	61-62	Modify DC characteristic.	
		2	Remove all Leaded package parts.
		3, 64	Revise Operating speed to 20MHz on W79L632A25PL.
٨٢		2, 3	Add QFP44 and DIP40 package parts.
AD	January 03, 2007	66, 67	Add test condition in AC specification.
A6	February 1, 2007	11	Revise the Timer Mode Setting to "Mode 1: 16-bits, no pre-scale".
A7	January 6, 2009	2	1. Add a note for V_{DD} during power on/off.
٨٥	February 11, 2000	3	1. Modify the operating frequency vs voltage
A8 February 11, 200	rebluary 11, 2009	67	2. Add 17.3.2 Operating Frequency vs Voltage
A9	August 18, 2009	73	Add the QFP 44PIN package dimension
A10	Nov. 11, 2009	3	Remove the DIP40 package

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners

- 79 -